2167-28 Advanced School on Direct and Inverse Problems of Seismology 27 September - 8 October, 2010 Relative location, relative moment tensor inversion Torsten Dahm Institut fuer Geophysik Universitaat Hamburg Germany Relative location, relative moment tensor inversion ICTP Course 2010 Trieste Torsten Dahm [email protected] Institut für Geophysik, Universität Hamburg contributions from: Th. Fischer, J. Reinhardt Dahm, ICTP 2010 III – p.1 Earthquake swarms & cluster .0 45 .9 ) 39 km 44 no 7 e 0. a st 2 ( . rth (k 4 .4 44 ) m .5 40 .1 45 .0 44 no 4 rth 40 . .2 44 (k m ea s -9.0 -9.3 .9 .7 39 height (km) t (k40.2 . 44 44 -8.7 40 no 4 rth ) m (k -9.0 .0 44 .1 45 40 44 m (k 40 .2 . (km 44 st no 7 rth ea ) .4 .5 -9.3 39 ) .9 45 .0 height (km) .1 44 44 .5 -8.7 40 .1 ) .5 st m) ea (k m 44 .9 ) .7 39 45 .0 ) 44( .k7m no rt h 44 .4 44 .1 39.9 40.5 east40.2 (km) 45.0 40.2 (km) 40.5 east 39.9 44.7 north 44.4 (km) 44.1 700 clustered events from the 1997 Bohemian massive earthquake swarm (see Dahm, Sileny and Horalek, 2000). Dahm, ICTP 2010 III – p.2 A. Precise earthquake location The simultaneous location of clustered earthquakes and multiplets increases the location accuracy and reduces model-dependent bias. Dahm, ICTP 2010 III – p.3 Single source location (Geigers method) = (X, Y, Z): Equation for one observation at X velocity) t = tobs = h + T (x, X, (summ. conv.) linearizing around starting model m0 tobs − ttheo (m0) ≈ ∂t ∂t (m0k − mk ) = Δmk ∂mk ∂mk t h T x = (x, y, z) m = (h, X − x, Y − y, Z − z) with : : : : : arrival time origin time travel time location vector model vector Dahm, ICTP 2010 III – p.4 master event location station Δ t = Δ t0 + Δ x / c 1 2 sources far-field equation (i=slave event, j =master event): n obs obs ti − tj = (hi − hj ) + (xi − xj ) c with n : unit vector of ray to X c : velocity at source Dahm, ICTP 2010 III – p.5 master event location relative locations with high accuracy, but absolute location is not improved location of master event is not changed high precision time-difference measurements when waveforms are similar a minor influence of the unmodelled unknown structure far away from the cluster systematic time errors at a station have no effect on the results Dahm, ICTP 2010 III – p.6 Double difference method Dahm, ICTP 2010 III – p.7 Double difference method (linearized) The parallel ray assumption is relaxed. For each : observation at X obs ) − (ttheo − ttheo ) = (tobs − t (i) (j) (i) (j) = (j) ∂t(i) ∂t (i) (j) Δmk − Δmk ∂mk ∂mk advantage : bended rays, mixed input data disadvantage : nonlinear, iterative scheme accurate theoretical traveltime differences (see Waldhauser and Ellsworth, BSSA, 2000) Dahm, ICTP 2010 III – p.8 Double difference method Relocation of 28 events from the Berkeley cluster (Waldhauser and Ellsworth, BSSA, 2000) Dahm, ICTP 2010 III – p.9 Application to 1997 Vogtland swarm 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 WEBNET waveform data available (Horálek, pers. comm.) Precise estimate of time shift for best coherence Arrival time differences with high accuracy Easy amplitude picking Dahm, ICTP 2010 III – p.10 A. accurate time difference measurment 0.0 0.5 1.0 1.5 2.0 very accurate arrival time dif0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 ference measurements when waveforms are similar (correlation approach) Dahm, ICTP 2010 III – p.11 B. multiplet analysis Coherence analysis (Maurer and Deichmann, 1995) with events of the 1997 earthquake swarm beneath Novy Kostel 600 400 37 % of the events (274) grouped in 14 multiplets 200 0 0 200 400 600 relative time differences extracted correlation calculated coefficients Dahm, ICTP 2010 III – p.12 C. high precision relocation 002 016 115 031 481 327 225 319 287 352 431 494 517 697 500 0 20 -500 -500 0 500 15 y [m] (W->E) 1 2 3 4 5 6 7 8 9 multiplet No. 10 11 12 13 14 time [days] x [m] (S->N) 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 multiplet no. Dahm, ICTP 2010 III – p.13 D. Precise source mechanisms For clustered earthquakes and for multiplets a relative amplitude inversion (relative moment tensor) is possible and allows to analyse weak events. Having accurate locations and source mechanism is useful for the identification of micro-faults and stress inversion Dahm, ICTP 2010 III – p.14 relative moment tensor inverson (i) (i) h m u = k k I station source (1) mk I Green function (2) mk (k=1,6) Body waves amplitudes depend on a single scalar Green function, that can be eliminated when one master event mechanism is known Dahm, ICTP 2010 III – p.15 relative moment tensor inversion moment tensors relative to the tensor of a master event, but absolute tensors (moments) are not improved moment tensor of the master event is not improved relative amplitudes are measured with high precision when waveforms are similar unmodelled unknown structure far away from the cluster has a minor influence on the results systematic station effects have no impact on the results Dahm, ICTP 2010 III – p.16 assumptions the mechanism of the reference event is well known a priori events are narrow clustered and seismograms are lowpass filtered (temporal and spatial point source, all events occur within approx. one wavelength from the master event) used frequency range below the corner frequency of the largest studied event of the cluster isolated, non-interfering body-waves are used Dahm, ICTP 2010 III – p.17 Estimation of Moment Tensors 1 2 3 4 5 6 7 8 multiplet no. 9 10 11 12 13 14 Relative moment tensor inversion (Dahm, 1996) automated picking of P- and S-phase amplitudes 522 moment tensors inverted Classification with multiplets possible Dahm, ICTP 2010 III – p.18 Plane with en echelon faults z [m] -500 0 x’ [m] (45° N) 500 -500 8500 500 8500 9000 9000 9500 9500 287 352 697 431 517 0 z [m] y’ [m] (135° N) 287 352 697 431 517 1 2 3 4 5 6 7 8 9 1011 12 1314 multiplet no. Dahm, ICTP 2010 III – p.19 body-wave approach for each ray (P, SV, SH): ũ = hk mk I , with hP1 = − cos(2ϕ)sin2 α , hP2 = sin(2ϕ)sin2 α , hP3 = cos ϕsin2α , hP4 = sin ϕsin2α , hP5 = 2 − 3sin2 α , hP6 = 1 , and similar for SH-waves. hSV 1 hSV 2 hSV 3 hSV 4 hSV 5 hSV 6 = −0.5 cos(2ϕ)sin2α , = 0.5 sin(2ϕ)sin2α , = cos ϕcos2α , = sin ϕcos2α , = −1.5sin2α , = 0, (e.g. Aki & Richards, 1982) Dahm, ICTP 2010 III – p.20 used convention take-off angle: α azimuth angle: ϕ moment tensor: m1 = m2 = m3 = m4 = m5 = m6 = 1 (M22 − M11 ) 2 M12 M13 M23 1 (0.5(M22 − M11 ) − M33 ) 3 1 (M11 + M22 + M33 ) 3 Dahm, ICTP 2010 III – p.21 what is different? the ”Green function I ” is a scalar for each body-wave mode =⇒ it can be eliminated when using two earthquakes from the same source region (1) ũ = I = (1) (1) hk mk I ũ(2) (2) (2) hk mk leading to (2) ũ (1) (1) hl ml (1) = ũ (2) (2) hk mk T [data] = [vector ] [unknown model] Dahm, ICTP 2010 III – p.22 additional polarity constraints (1) (1) ũ(2) hl ml (2) (2) = ũ(1) hk mk ũ(2) (2) (2) 0 ≤ hk mk (2) |ũ | [data] = [vector ]T [unknown model ] 0 ≤ polarity · [ geometry ]T [unknown model ] Dahm, ICTP 2010 III – p.23 relative method without master From (1) (1) hl ml (2) ũ (1) = ũ (2) (2) hk mk we formally write 0 2 4 0 const = 2 3 5 (1) −ũ(2) hl = 4 (1) −ũ(2) h1 1 (1) ml (2) (2) + ũ(1) hk mk ... ... (2) −ũ(2) h6 1 2 (2) ũ(1) h1 1 ... ... (2) ũ(1) h6 1 6 6 6 6 6 6 36 6 6 56 6 6 6 6 6 6 6 6 4 (1) m1 (1) m2 . . . (1) m6 (2) m1 (2) m2 . . . (2) 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 m6 Dahm, ICTP 2010 III – p.24 Hindu Kush deep cluster Hindu Kush (a) (b) 70˚ 30' 71˚ 00' 20 km 36.75 36˚ 45' 36˚ 30' 8 11 10 10 8 9 7 2 2 6 7 3 36˚ 15' 5 9 1 1 6 36.50 11 3 5 4 36.25 4 175 200 225 z[km] 250 Dahm, ICTP 2010 III – p.25 TAM INU SSB ECH YAK ATD BJT OBN ARU KIV KURK BRVK AAK WUS ABKT NIL record section for event No 1 t - x/8 (s) 400 300 sS 200 S PcP 100 0 P -100 PP pP sP -200 -300 1000 2000 3000 4000 5000 6000 7000 x (km) Dahm, ICTP 2010 III – p.26 data processing 11 events with max. distance of 35 km. band-pass filter between 0.05 Hz and 0.1 Hz; wavelength between ≈ 80 km (P) and ≈ 46 km (S) P-, S-, pP-, sP-, PP-phases selected where no interference peak amplitudes measured Dahm, ICTP 2010 III – p.27 measuring amplitudes Dahm, ICTP 2010 III – p.28 inversion results Dahm, ICTP 2010 III – p.29 programs and directories directory example 1. relref.exe: relative inversion with reference mechanism 2. relrpos.exe: relative inversion without reference mechanism 3. syndat4relef.f: generate synthetic input to test geometry 4. pltbeachball.cmd: plot solutions in comparison to Harvad CMT Dahm, ICTP 2010 III – p.30 relref.f Input: relref.inp Output: 1. relref.out: full listing of result 2. result.par: short version of result for plotting 3. relray.pola: polarities used 4. . . . Dahm, ICTP 2010 III – p.31 description of input file HK, 11ev, 28.07.99, Pol iev ibit inorm idyn iclust imat idev ipol 11 56 +1 0 0 0 6 0 fact(i),i=1,iev (16f5.1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00E+00 1.0 1.0 1.0 1.0 1.0 1 .0000 wt cmp azi toff / u(i,j), i=1,iev 1.00 1 23.062 102.630 AAK P 0.000 0.000 0 -7.9522000000000e+03 25.644 98.997 0.0000 1.000e+00 -1 0 -1.9283100000000e+05 23.072 99.817 0.0000 1.000e+00 -1 1 0.0000000000000e+00 21.440 100.23 4 0.0000 1.000e+00 0 0 -7.2773000000000e+04 23.992 106.039 0.0000 1.000e+00 -1 ...... Reference Mechanisms 1 0 -0.76 0.07 ..... ..... 0.00 -0.63 0.12 0.76 0.40 Dahm, ICTP 2010 III – p.32 parameter description (formatted input!) line 1 : text, not used line 3 : iev: No of events : ibit: No of extracted phases per event (max) : inorm: 1 defines fact(i)=1 : idyn: 0 defines weighting with wt(j) of each phase : iclust: 0 azimuth (ϕ) and take-off angle (α) defined only by event 1 : iclust: 1 take-off and azi as given in phase reading line : idummy not used : idev 5 deviatoric moment tensor constraint : ipol 1 if polarity constraints should be used line 5 : (16f5.1) (fact(i),i=1,iev) to weight individual events (not recommended) line 13 ff : event block-wise reading of phase amplitudes last line(s) : definining moment tensor of reference event(s) HK, 11ev, 28.07.99, Pol iev ibit inorm idyn iclust imat idev ipol 11 56 +1 0 0 0 6 0 fact(i),i=1,iev (16f5.1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Dahm, ICTP 2010 III – p.33 1 ibit blocks of phase amplitudes head line block of size iev : wt: weight, : cmp: compenent (1=ver,2=rad,3=trans), : azi: mean azimuth, : toff: mean take-off, : cstat: station name, : cph: phase name, must begin with either P (P-wave) or S (S-wave) : isk(i,j): phase reading may be scipped (except polarity constraint) : u(i,j): measured amplitude : azi(i,j): azimuth of ray : toff(i,j): take-off angle of ray : rm: dummy value, not used : tdiff: relative arrival time difference (not used here) : f1: geometrical spreading correction factor (if iclust=2) wt cmp azi toff / u(i,j), i=1,iev 1.00 1 23.062 102.630 AAK P 0.000 0.000 0 -7.9522000000000e+03 25.644 98.997 0.0000 1.000e+00 -1 0 -1.9283100000000e+05 23.072 99.817 0.0000 1.000e+00 -1 1 0.0000000000000e+00 21.440 100.23 4 0.0000 1.000e+00 0 0 -7.2773000000000e+04 23.992 106.039 0.0000 1.000e+00 -1 Dahm, ICTP 2010 III – p.34 reference event(s) moment tensors add reference event lines as needed, each containing kref : No of reference event as given in the data-block is : (0) give moment tensor as M11 , M12 , M22 , M13 , M23 , M33 xmref(1-6) : six moment tensor components as defined by is rmref : scalar moment of reference event Reference Mechanisms 1 0 -0.76 0.07 0.00 -0.63 0.12 0.76 0.40 Dahm, ICTP 2010 III – p.35 practical 1. reproduce results using relref.exe 2. introduce deviatoric source constraint 3. introduce polarity constraint 4. use only event 1 as reference event (relref.exe) 5. change moment tensor of reference event 1. edit input file (relref.inp) and make changes 2. run relref.exe 3. view output files, e.g. relref.out 4. plot results in comparison to CMT solutions (e.g. pltbeachball.cmd) Dahm, ICTP 2010 III – p.36
© Copyright 2026 Paperzz