Surface plasmon resonance (SPR) applications in immunology Biosensors and bioassays Data generation and analysis • Experimental design • Information extracted from data Antibodies for therapeutic and biotechnological applications • Concentration determination • Class determination • Binding kinetics • Binding stoichiometry • Epitope determination • Screening / ranking Danièle Altschuh [email protected] http://biocapteurs.u-strasbg.fr/ ESBS, Parc d'Innovation, Boulevard S. Brant BP 10413, 67412 ILLKIRCH Cedex, France Definition of a biosensor A biosensor is an analytical device comprising two elements in spatial proximity: A biological recognition element able to interact specifically with a target A transducer able to convert the recognition event into a measurable signal Biosensors and bioassays A) Bioassay Interaction Separation Detection B) Biosensor Interaction = signal (detection) Recognition unit Target Recognition elements • Proteins (Enzymes, antibodies, receptors, antigens) • Nucleic acids (Ribozymes, Aptamers, Hybridization sequences) • Cells • ………. Transducers • Electrochemical • Thermometric • Surface Plasmon Resonance • Interferometry • ……. Hoa XD, Kirk AG, Tabrizian M. (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron. 2007 Sep 30;23(2):151-60. Epub 2007 Jul 20. Review. Instrumentation (non-exhaustive) SPR Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit. 2007 Sep-Oct;20(5):300-66. (Horiba) SensíQ® (Nomadics) …… www.discoversensiq.com/products/sensiq/ QCM Cooper MA, Singleton VT. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit. 2007 May-Jun;20(3):154-84. Review. Biacore 3000 Biacore T100 GE Healthcare Biacore http://www.biacore.com Principle of the BIACORE technology (GE Healthcare - Biacore, Uppsala, Sweden) BIACORE instruments are optical biosensors based on the phenomenon of surface plasmon resonance (SPR). 1 Intensity prism glass gold Sensor Surface 1 Angle Flow 2 2 RU Sensorgram 2 prism Sensor Surface glass gold 1 Flow Time The variation in SPR signal (position of the resonance angle) is expressed in arbitrary units called resonance unit : RU It is expressed as a function of time. The resulting graph is called a sensorgram. 1000 RU = 1ng protein/mm2 Biacore® SPR technology: http://www.biacore.com/technology/core.lasso The sensor surface Ligand Carboxylated dextran (non cross-linked) Linker Gold Glass Properties: * Aqueous environnement (hydrogel containing 97-98% water) * Mobility (chains are not cross-linked) * Efficient use of the evanescent field (thickness about 100 nm) * Increased sensitivity (more coupling sites than on a flat surface) * Allows covalent coupling (through carboxyl groups) The phases of a sensorgram RU 10 Time (s) Response (RU) Analyte injection phase Post-injection phase Regeneration 17000 16000 15000 14000 0 120 Time (s) 240 360 Simulated kinetics for Ka = ka/kd = 109 M-1 ka (M-1.sec-1) kd (sec-1) Ka (M-1) 104 105 106 107 10-5 10-4 10-3 10-2 109 109 109 109 Response(RU) 250 200 150 100 50 0 0 120 240 360 480 600 Time (seconds) (PM 50000, Rmax 200 Rus, Flow 10 µl/mn, A= 50 nM) Surface plasmon resonance (SPR) applications in immunology Biosensors and bioassays Data generation and analysis • Experimental design • Information extracted from data Antibodies for therapeutic and biotechnological applications • Concentration determination • Class determination • Binding kinetics • Binding stoichiometry • Epitope determination • Screening / ranking Experimental design - Immobilization of the ligand (recognition element, receptor) - Reference surfaces - Regeneration Active (ligand) surface * Covalent - amine coupling - thiol coupling Analyte Ligand * Captured ligand - streptavidin/biotin - NTA/His-tag - hydrophobic surfaces/lipids - anti-antibody/antibody - anti-GST/GST(fusion proteins) - anti-peptide/peptide (fusion proteins) Analyte Ligand Capture Reference surface Injection RU 17500 Post-injection Régénération 17000 16500 16000 15500 Response 15000 14500 14000 13500 0 40 80 120 160 200 240 280 320 Time RU 1600 Injection Post-injection 1400 1200 1000 800 Response 600 400 200 0 -200 0 50 100 Time 150 200 250 s 360 400 s Reference substraction Refererence surface Active surface Injection phase Injection phase Active - reference Experimental conditions [temperature, solvent viscosity (diffusion), flow rate, A0, Lfree] Kinetic conditions Mass transport conditions A0 (C) A0 (C) = = Asurf Asurf Affinity parameters A0 km km Asurf + L Quantification of the analyte ka kd AL A0 km km Asurf + L ka kd Goldstein, B., Coombs, D., He, X., Pineda, A. R., and Wofsy, C. (1999) The influence of transport on the kinetics of binding to surface receptors: application to cells and BIAcore, J Mol Recognit 12, 293-9 Karlsson, R., Roos, H., Fägerstam, L., and Persson, B. (1994) Kinetic and concentration analysis using BIA technology, Methods : A Companion to Methods in Enzymology 6, 99-110 AL Kinetic conditions : Affinity, kinetic parameters Mass transport conditions : Active analyte concentration 30 1000 Rmax = 50 RUs, [A0] = 1 & 10 nM Rmax = 5000 RUs, [A0] = 1 & 10 nM 750 20 500 10 250 0 0 60 120 180 240 300 dR = ka ∗ A0 ∗ (Rmax − R) − kd ∗ R dt R= ( ka ∗ A0 ∗ Rmax ∗ 1− e ka ∗ A0 + kd −(ka ∗A0 + kd )t 0 0 60 120 180 240 300 dR /dt ≈ kt ∗ A0 ) ka = 10+6 M-1 s-1 kd = 10-2 s-1 Ka = 10+8 M-1 MM= 25000, Fl=30 microl/mn Information extracted from SPR data • Detection of binding (low affinity), ranking of binders • Quantitative characterization of binding - Affinity (Ka, Kd), kinetic (kon, koff), thermodynamic (∆H, T∆S) parameters - Binding stoichiometry • Molecular properties - Active concentration - Multimerisation - Aggregation - Homogeneity Détection d’une interaction - Criblage - classement Anticorps Composés chimiques MW 400 - 600 da MW 150.000 da 1 min injection at 20µM (6 -40 RU) 2 min injection Injection Injection Post-injection Response (RU) 25 20 1,2 4 15 3 10 5 6 5 0 -5 0 50 100 Time (s) 150 200 Post-injection Affinity (Ka, Kd) and kinetic (kon, koff) parameters scFv LR28B4 RU (31 - 500nM) 40 30 scFvs sur une surface gastrine 20 10 0 0 50 100 150 Time 200 250 s ka (1/Ms) kd (1/s) Rmax (RU) KA (1/M) KD (M) Chi2 2.76e4 5.79e-4 54.8 4.77e7 2.1e-8 1.36 R = ka . C . Rmax ka . C + kd x (1 - e - (ka . C + kd ) . t ) Measurements of active analyte concentrations in total mass transport conditions Karlsson R, Roos H, Fägerstam L, Persson B. Kinetic and concentration analysis using BIA technology. 1994. Methods 6, 97-108. 9000 80 nM 5000 Calibration curve 40 nM 3000 20 nM 10 nM 5 nM 1000 -1000 60 210 360 510 660 Time (sec) Binding rate (RU/sec) Response (RU) 7000 10 20 Simulated sensorgrams (high ligand density) ka 105 M-1.sec-1 kd 10-3 sec-1 Rmax 50.000 RU PM 25.000 da 40 Analyte concentration (nM) [A] variable 80 Calibration Free Concentration Analysis (CFCA) Biacore T100 evaluation software 2.0.1. (GE-Healthcare Biacore) Curve Sample Dilution factor Meas.Conc (M) Calc. Conc (M) Fc=4-3 scFv1F4-M 600 1.686E-09 1.012E-06 Aggregates / multimers (Binding stoichiometry ) Rmax (analyte) RLigand Rmax RLigand Rmax RLigand Rmax RLigand Rmax RLigand Rmax RLigand = = = MMAnalyte MMLigand 2 x MMAnalyte MMLigand MMAnalyte MMLigand Bivalent analyte binding model to fit kinetic data Langmuir and complex kinetics Langmuir binding Bivalent binding model No fit Réponse (RU) 16 koff = 0,001 s-1 Ka = 108 M-1 [A]=10 nM (30 kda) 12 Rmax = 100 RU 8 koff = 0,01 s-1 Ka = 107 M--1 4 koff = 0,1 s-1 Ka = 106 M-1 koff = 1 s-1 Ka = 105 M-1 0 0 100 200 300 400 Réponse (RU) Temps (s) 12 [A]=10 nM (30 kda) Rmax = 10000 RU 8 Rmax 4 Ka = 105 M-1 Rmax = 1000 RU 0 0 100 200 Temps (s) 300 400 Réponse (RU) 60 [A] = 10000 nM [A] 40 Rmax = 100 RU 20 [A] = 1000 nM Ka = 105 M-1 [A] = 100 nM 0 0 100 200 Temps (s) 300 400 Data interpretation Lower concentration, stronger binding SPR Response (RU) Conventional assay Rmax Time (sec) Response (RU) Higher concentration, weaker binding Rmax Time (sec) Aggregates Response (RU) Rmax Time (sec) Data generation and analysis De Crescenzo G., Boucher C., Durocher Y. and Jolicoeur M. (2008). Kinetic Characterization by Surface Plasmon Resonance-Based Biosensors: Principle and Emerging Trends Cellular and Molecular Bioengineering Volume 1, Number 4 / 204-215. Karlsson, R., and Fält, A. (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors J Immunol Methods 200, 121-33. Myszka, D. G. (1999) Improving biosensor analysis J Mol Recognit 12, 279-84 Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature J Mol Recognit. 2008 Nov-Dec;21(6):355-400. Review. Surface plasmon resonance (SPR) applications in immunology Biosensors and bioassays Data generation and analysis • Experimental design • Information extracted from data Antibodies for therapeutic and biotechnological applications • Concentration determination • Class determination • Binding kinetics • Binding stoichiometry • Epitope determination • Screening / ranking Antibodies for therapeutic and biotechnological applications Antigen Ab repertoire (in vivo) Ab library (in vitro) Immunization Serum Polyclonal antibodies - Detection Hybridoma cell Monoclonal antibodies Recombinant antibodies - Selection - Characterization of properties - Characterization / optimization of properties Antibody design criteria: affinity, selectivity, class, expression level, stability…. Assay objectives • Screening/ranking • Concentration • Binding parameters (kon, koff, KD) • Selectivity • Subclass determination • Epitope identification Samples to characterize • Therapeutic antibodies - monoclonal for passive immunization - polyclonal (serum) for passive immunization - polyclonal (serum) in active immunization • Unwanted serum antibodies (drug immunogenicity) • Antibodies for biotechnological applications - monoclonal - polyclonal (serum) Concentration determination Chavane N, Jacquemart R, Hoemann CD, Jolicoeur M, De Crescenzo G. (2008 ) At-line quantification of bioactive antibody in bioreactor by surface plasmon resonance using epitope detection. Anal Biochem. 378:158-65. Aim to monitor the concentration of bio-active antibody (unpurified) secreted during bioreactor culture mAb (unpurified sample) Antigen (peptide) Mass transport conditions (Rmax 12.000 - 40.000 RU) - High antigen immobilization level (400-3000 RU) - (Low) flow rate (20 µl/mn) - Sample injection (1/20 dilution in running buffer) - Short injection and post-injection phases - Regeneration (HCl-glycine pH 2.0) dR /dt ≈ kt ∗ A0 Chavane et al. (2008 ) Anal Biochem. 378:158-65. mAb poduced by hybridoma cell line Subclass determination van Remoortere A, van Dam GJ, Hokke CH, van den Eijnden DH, van Die I, Deelder AM. 2001 Profiles of immunoglobulin M (IgM) and IgG antibodies against defined carbohydrate epitopes in sera of Schistosoma-infected individuals determined by surface plasmon resonance. Infect Immun. 69:2396-401. Aims - to monitor the presence of serum antibodies to carbohydrate epitopes in the sera of individuals infected with parasites (Schistosama) - to define the IgG and IgM subclass distribution of the antibodies Class specific Ab Conditions « Loose » - antigen (glycoprotein ~4000 RU) - flow rate 5 µl/mn - sera diluted 1/40 in running buffer - class specific ab diluted 1/100 in running buffer - 2 min injection and post-injection phases - regeneration 100 mM HCl Serum Ab Antigen van Remoortere A et al. (2001) Infect Immun. 69:2396-401. Serum ab Anti IgM Anti IgG Binding kinetics Barderas R, Shochat S, Timmerman P, Hollestelle MJ, Martínez-Torrecuadrada1 JL, Höppener JWM, Altschuh D, Meloen R, Casal JI (2007). Designing antibodies for the inhibition of gastrin activity in tumoral cell lines. Int. J. Cancer 122: 2351-9 V V Aims - to characterize the gastrin binding properties of antibody fragments - to select candidates for cellular assay H 1 CH L CL CH2 CH3 Kinetic conditions (Rmax 100 - 1000 RU) - Low antigen immobilisation level (10 - 130 RU)) - (High) flow rate (30 µl/mn) - Injection of a range of Ab concentrations - 1mn injection and 5mn post-injection phases Recombinant antibody fragment Antigen (gastrin) R= ( ka ∗ A0 ∗ Rmax ∗ 1− e ka ∗ A0 + kd −(ka ∗A0 + kd )t ) scFv LR28B4 RU RU (31 - 500nM) 40 400 30 300 20 200 10 100 scFv MBE7 (31- 1000 nM) 0 0 0 50 100 150 200 Time 0 250 50 100 150 200 ka (1/Ms) kd (1/s) Rmax (RU) KA (1/M) KD (M) Chi2 2.76e4 5.79e-4 54.8 4.77e7 2.1e-8 1.36 ka (1/Ms) kd (1/s) Rmax (RU) 1.29e5 0.108 575 s KA (1/M) KD (M) Chi2 1.19e6 8.38e-7 14.3 ? RU scFv 119EB1 20 (69 -1100 nM) 40 Response RU 25 15 10 250 Time s Rmax calc =94 RU 20 0 5 -20 0 0 50 100 150 200 Time ka1 (1/Ms) kd1 (1/s) ka2 (1/RUs) kd2 (1/s) Rmax (RU) 1.11e5 0.0526 7.4e-4 2.46e-3 44.3 250 0 s Chi2 0.5 ka1 (1/Ms) kd1 (1/s) 518 0.322 100 Time ka2 (1/RUs) kd2 (1/s) 2.69e-5 2.95e-3 200 300 Rmax (RU) 338 s Chi2 0.613 Identification d’un épitope - Cartographie d’épitope (Epitope mapping) - Analyse mutationelle - Inhibition ou compétition Epitope identification Rauffer N, Zeder-Lutz G, Wenger R, Van Regenmortel MH, Altschuh D Structure-activity relationships for the interaction between cyclosporin A derivatives and the Fab fragment of a monoclonal antibody. Mol Immunol. 1994 Aug;31(12):913-22. Aim to identify the functional (versus structural) epitope Affinity in solution (mass transport conditions) Use a ligand surface to calibrate the free antibody in antibody-antigen mixtures Recombinant antibody fragment + Cyclosporin analog Antigen (cyclosporin) f: Ratio bound/total Fab d: free Fab concentration Crystallographic structure of the complex between Fab R45-45-11 and cyclosporin H3: Thr H95, Leu H97, Gly H100C, Asn H100D, Tyr H100E, Pro H100F, Trp H100J L1: Tyr L32 L2: Tyr L50 3 L2: Gly L91 Ser L92 5 11 H1: Tyr H33 Tyr H35 H2: Phe H50 Asn H52A Altschuh D, Vix O, Rees B, Thierry JC. 1992. Science 256 : 92-4 Vix O, Rees B, Thierry JC, Altschuh D. 1993. Proteins 15: 339-48. Cyclosporin ELISA versus SPR Effect on binding of cyclosporin modifications Cyclosporin 2 Cs residue 3 ELISA data (Quesniaux et al., 1987) Biacore data (Rauffer et al., 1994) DDG values 1 4 11 5 6 10 7 9 8 MeBmt 1 Abu 2 Sar 3 MeLeu 4 Val 5 MeLeu 6 Ala 7 + +++ +++ +++ +++ - not modifi ed - 0.2 to + 1.2 ≥ + 3.5 + 1.3 to + 2.2 ≥ + 4.8 + 0.9 + 0.9 D-Ala-8 MeLeu 9 MeLeu 10 MeVal 11 + +++ + 0.6 + 0.04 to + 2.1 + 1.0 to + 3.0 ≥ + 3.9 Quesniaux VF, Tees R, Schreier MH, Wenger RM, Van Regenmortel MH. 1987b. Fine specificity and cross-reactivity of monoclonal antibodies to cyclosporine. Mol. Immunol. 24: 1159-68. Rauffer N, Zeder-Lutz G, Wenger R, Van Regenmortel MH, Altschuh D. 1994. Structure-activity relationships for the interaction between cyclosporin A derivatives and the Fab fragment of a monoclonal antibody. Mol. Immunol. 31: 913-22 Structure - binding activity relationship Antigen X Structural data Y CsA residue Antigen X Antibody Y MeBmt 1 Abu2 Sar 3 MeLeu 4 Val 5 MeLeu 6 Ala 7 D-Ala-8 MeLeu 9 MeLeu 10 MeVal 11 Area Fraction buried (%) buried (%) 10.5 10.2 11.9 19.8 5.4 8.1 0 0.9 14.8 2.1 16.3 32.1 64.1 98.1 67.6 81.8 30.4 0 7.3 59.1 18.1 93.8 Biacore data ∆∆G values not modified - 0.2 to + 1.2 ≥ + 3.5 + 1.3to +2.2 ≥ + 4.8 + 0.9 + 0.9 + 0.6 + 0.04to +2.1 + 1.0to +3.0 ≥ + 3.9 The importance of a residue for binding activity correlates well with the fraction of its surface that becomes burried upon complex formation (not with the area buried) Structure - Binding activity Relationship Is it possible to associate energy values with the contacts observed in the crystal structure ? Experimental Theoretical Atoms lost ∆∆G (kcal/mol) ∆∆G (kcal/mol) Ratio Ala-2-Cs Cγ 1.2 1.3 0.9 MeVal-4-Cs Cβ 2.2 2.4 0.9 Leu-4-Cs CN 1.5 0.3 5.0 MeVal-6-Cs Cβ 0.9 0.8 1.1 Leu-10-Cs CN 3.0 0.1 30.0 Cγ1,Cγ2 ≥3.9 2.2 ≥1.8 Analog MeAla-11-Cs Experimental : ∆∆G = -RT ln [Ka(analog)/(Ka (CsA) Theoretical : ∆∆G = area buried x 24 cal/A2 (Chothia, 1974, Nature 248:338-339) Binding stoichiometry Dennehy KM, Elias F, Zeder-Lutz G, Ding X, Zigan P, Altschuh D, Fred Lühder F & Hünig T (2006) Monovalency of CD28 maintains the antigen-dependence of T cell co-stimulatory responses. J. Immunol. 259: 77-86 Aim To investigate if the bivalent analyte binds monovalently or bivalently to the bivalent ligand Conditions that allow surface saturation - Low ligand immobilisation level (~50-60 RU) - Injection of a saturating analyte concentration (20 or -1000 nM)) - Repeated analyte injections CD28Ig (Co-stimulatory TCR) Ab Dennehy KM et al. (2006) J. Immunol. 259: 77-86 Screening/ranking Leonard P, Säfsten P, Hearty S, McDonnell B, Finlay W, O'Kennedy R. High throughput ranking of recombinant avian scFv antibody fragments from crude lysates using the Biacore A100. J Immunol Methods. 2007 Jun 30;323(2):172-9 Wassaf D, Kuang G, Kopacz K, Wu QL, Nguyen Q, Toews M, Cosic J, Jacques J, Wiltshire S, Lambert J, Pazmany CC, Hogan S, Ladner RC, Nixon AE, Sexton DJ. (2006). High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal Biochem. Apr 15;351(2):241-53 Aim - Identify highest affinity binders from antibody libraries - Identify active site binders (inhibition) Kinetic conditions - Low ligand immobilisation level - 5-7 mn post-injection phase - Regeneration (10 mM NaOH / no)) Leonard P, Säfsten P, Hearty S, McDonnell B, Finlay W, O'Kennedy R. High throughput ranking of recombinant avian scFv antibody fragments from crude lysates using the Biacore A100. J Immunol Methods. 2007 Jun 30;323(2):172-9 0 - 217 RU (30 nM) C reactive protein 0 - 200 RU scFv to screen (expression levels) 2000 RU (50 µg/ml) Biotinylated anti HA-tag antibody Streptavidine Control surfaces 96 scFvs / 6 hours 8/cycle Leonard P et al. (2007). J Immunol Methods. 323(2):172-9 Wassaf D, Kuang G, Kopacz K, Wu QL, Nguyen Q, Toews M, Cosic J, Jacques J, Wiltshire S, Lambert J, Pazmany CC, Hogan S, Ladner RC, Nixon AE, Sexton DJ. (2006). High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal Biochem. Apr 15;351(2):241-53 Cell-based SPR biosensor (Biacore 3000) 30-113 RU (4-250 nM) Fab 30-113 RU Biotinylated ag (human tissue kallikrein) Array-based SPR biosensor (Flexchip) (100 nM) Wassaf D et al. (2006) Anal Biochem. Apr 15;351(2):241-53 Affinity ranking hK1 100 nM Inhibition - hK1 - hK1 + aprotinin Wassaf D et al. (2006) Anal Biochem. Apr 15;351(2):241-53 KD = koff / kon Antibodies as biosensor recognition elements Chambers JP, Arulanandam BP, Matta LL, Weis A, Valdes JJ. Biosensor recognition elements Curr Issues Mol Biol. 2008;10(1-2):1-12. Review. Conroy PJ, Hearty S, Leonard P, O'Kennedy RJ. Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol. 2009 Feb;20(1):10-26 Antibodies as therapeutic molecules Tabrizi MA, Bornstein GG, Klakamp SL, Drake A, Knight R, Roskos L. (2009) Translational strategies for development of monoclonal antibodies from discovery to the clinic. Drug Discov Today. 14:298-305. Review. Selection of the “best” antibody for each application requires high quality data, recorded using high information content technologies, such as SPR Ligler FS. Perspective on optical biosensors and integrated sensor systems. Anal Chem. 2009 Jan 15;81(2):519-26. Review Luong JH, Male KB, Glennon JD. (2008). Biosensor technology: technology push versus market pull. Biotechnol Adv. Sep-Oct;26(5):492-500. Review Multi-analyte surface plasmon resonance biosensing. Homola J, Vaisocherová H, Dostálek J, Piliarik M. Methods. 2005 Sep;37(1):26-36. Epub 2005 Sep 30. Review. The SPR transducer incorporates a thin metal film which supports a special mode of electromagnetic field—a surface plasmon polariton (SPP)—sometimes referred as to a surface plasma wave. The SPP propagates along the surface of the metal film and the intensity of its electromagnetic field exponentially decays from the metal surface into the adjacent medium. The most commonly used metal is gold due to its chemical stability. A change in the refractive index due to the binding of analyte molecules to biomolecular recognition elements immobilized on the metal surface results in a change in the propagation constant of the SPP. Surface plasmon resonance biosensors take advantage of this phenomenon and measure changes in the propagation constant of the SPP to determine changes in the amount of bound analyte and subsequently the concentration of analyte in a sample. Changes in the propagation constant of the SPP are determined by measuring one of the characteristics of the light wave that excites the SPP. On the basis of the characteristic of the light wave which is measured, SPR sensors are classified as sensors with angular, wavelength, intensity, phase, and polarization modulations. Surface plasmon resonance sensors for detection of chemical and biological species. Homola J. Chem Rev. 2008 Feb;108(2):462-93. Epub 2008 Jan 30. Review. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Hoa XD, Kirk AG, Tabrizian M. Biosens Bioelectron. 2007 Sep 30;23(2):151-60. Epub 2007 Jul 20. Review. Multi-analyte surface plasmon resonance biosensing. Homola J, Vaisocherová H, Dostálek J, Piliarik M. Methods. 2005 Sep;37(1):26-36. Epub 2005 Sep 30. Review. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Boozer C, Kim G, Cong S, Guan H, Londergan T. Curr Opin Biotechnol. 2006 Aug;17(4):400-5. Epub 2006 Jul 11. Review. The two compartment model External compartment A0 Internal compartiment Asurf Lfree Surface AL ktransp A0 ka Asurf + Lfree ktransp AL kd ktransp : mass transport coefficient In Biacore 3 D2 x fl km = 0.98 x H2 x W x 0.3 x L D = analyte diffusion constant H, W, L = flow cell height, width, length fl = volumetric flow Caractérisation quantitative de l’interaction - Influence de l’environnement sur kon, koff cofacteurs ou d’additifs…) (pH, température, présence de Dejaegere A, Choulier L, Lafont V, De Genst E & Altschuh D. (2005) Variations in AntigenAntibody Association Kinetics as a Function of pH and Salt Concentration: A QSAR and Molecular Modeling Study. Biochemistry 44: 14409-14418 RU 60 RU 100 pH 6, 20°C, 50 mM NaCl pH 6, 20°C, 500 mM NaCl 52 80 44 36 60 28 40 12 Response Response 20 4 -4 20 0 -12 -50 2 0 50 100 Time 150 200 250 s -50 0 50 100 Time 150 200 250 s
© Copyright 2026 Paperzz