Engineering Electromagnetic Fields

University of Missan
College of Engineering
Electrical Engineering
Department
1st Semester Year
2013-2014
2nd Lesson Stage
Engineering Electromagnetic Fields
Subject: Coulomb's Law and Electric
Field Intensity
Lecture No. 4
Dr. Ahmed Thamer Radhi
2013 - 2014
Electromagnetic Fields
Coulomb's Law and Electric Field Intensity
Lecture No.4
Lesson Year 1 st Semester:2013-2014
Stage
2 nd Year
Subject
Charge Density
Lecture No.
4
Lecturer
Dr. Ahmed Thamer
University of Missan
College of Engineering
Electrical Engineering Dept.
Engineering
Electromagnetics Fields
3- Various Charge Distributions
++ +++
+++++++++
+ + + 𝛒𝛒S + + +
+++++++
Surface Charge
𝛒𝛒L
++++++++
Line Charge
Q
point Charge
ο‚§ Line charge density (
C
m
)
ο‚§ Surface charge density (
ο‚§ Volume charge density (
Q = ∫ ρ L dL
+ +++
+ 𝛒𝛒V
Volume Charge
R
C
m2
C
m3
)
)
Q = ∬ ρ S dS
R
Q = ∭ ρ V dV
R
Notes that:
Q
β€’ ρL = where (L) is any given line length or circumference
β€’ ρS =
β€’ ρV =
L
Q
A
Q
V
where (A) is any given area such as area of circle or sphere
where (V) is any given volume such as volume of sphere
Q
Since, �E⃗ = K
R2
aοΏ½βƒ— R
R
So by replacing Q in above equations with line charge density, surface charge density, and
volume charge density, we get:
οΏ½βƒ— = ∫ K ρL𝑑𝑑L
E
aοΏ½βƒ— R
2
οΏ½βƒ— = ∬
E
R
K ρsds
 οΏ½Eβƒ— = ∭
R
aοΏ½βƒ— R
R2
K ρvdv
R2
R
aοΏ½βƒ— R
R
4- Field Due to Continuous Volume Charge Distribution
C
Volume charge density is measured in Coulomb per cubic meter ( 3 ). The total charge
m
within some finite volume is obtained by integrating throughout that volume as:
Dr. Ahmed Thamer
Q = ∫Vol 𝑑𝑑Q = ∫Vol ρV dv
Coulomb's Law and Electric Field Intensity
Page 1
Electromagnetic Fields
Coulomb's Law and Electric Field Intensity
Lecture No.4
Example 4.1: Find the total charge inside each of the volumes indicated as:
(a) ρ V = 10 ze-0.1x sinπœ‹πœ‹y; -1≀ x ≀2; 0≀ y ≀1; 3≀ z ≀3.6
(b) ρ V = 4xyz; 0≀ ρ ≀2; 0≀ Π€ ≀ πœ‹πœ‹/2; 0 ≀ z ≀3
(c) ρ V = 3 πœ‹πœ‹ sinΞΈ cos2Π€/[2r2(r2+1)]; universe
R
R
R
Solution: (a) Cartesian coordinate:
Q = ∭ ρV dxdydz
Q = ∭ 10 zeβˆ’0.1x sinπœ‹πœ‹y dxdydz
3.6
1
2
Q = 10 [ ∫z=3 z 𝑑𝑑z ∫y=0 sinπœ‹πœ‹y 𝑑𝑑y ∫x=βˆ’1 eβˆ’0.1x 𝑑𝑑x ]
z2
Q = 10 [ ]3.6
3 [
2
βˆ’π‘π‘π‘π‘π‘π‘π‘π‘ y
e βˆ’0.1x
]10 [
πœ‹πœ‹
βˆ’0.1
]2βˆ’1 = 36.1 C
(b) Cylindrical coordinate:
Q = ∭ ρV ρ 𝑑𝑑𝑑𝑑dβˆ…dz
Since, ρ V = 4xyz, we have x= ρ cosЀ; y= ρ sinЀ, and z=z; then,
ρ V = 4 z ρ2 cosЀ sinЀ
Hence, Q = ∭ 4 z ρ2 cosΠ€ sinΠ€ ρ 𝑑𝑑𝑑𝑑dβˆ…dz = ∭ 4 z ρ3 cosΠ€ sinΠ€ 𝑑𝑑𝑑𝑑dβˆ…dz
R
R
Q=
2
4[∫ρ=0 ρ3
Q=4
ρ4
[ ]20
4
[
Ο€
2
3
𝑑𝑑𝑑𝑑 ∫Ѐ=0 cosΠ€ sinΠ€ π‘‘π‘‘βˆ… ∫z=0 z 𝑑𝑑z]
sin 2 Π€
2
(c) Spherical coordinate:
Ο€
2
z2
]0 [ ]30 = 36 C
2
Q = ∭ 3πœ‹πœ‹sinΞΈ cos 2 Π€/[2r 2 (r 2 + 1)] r2 sinθ𝑑𝑑r𝑑𝑑θdΠ€
Q=
Q=
Q=
Q=
Hint:
ο‚§ ∫
𝑑𝑑𝑑𝑑
x2+ a2
=
π‘₯π‘₯π‘₯π‘₯π‘₯π‘₯
1
a
3Ο€
2
3Ο€
2
3Ο€
∞
2πœ‹πœ‹
𝑑𝑑r ∫θ=0 sin2 ΞΈ 𝑑𝑑θ ∫Ѐ=0 cos2 Π€ 𝑑𝑑Ѐ]
r 2 +1
1
[ tanβˆ’1 (r)]∞
0 * [ΞΈ βˆ’
Ο€
1
1
2
* * * Ο€ * * 2Ο€
2
2
3(Ο€)4
8
πœ‹πœ‹
1
[∫r=0
2
= 36.5 C
2
sin 2ΞΈ Ο€
]0
2
1
* [ΞΈ +
2
sin 2ΞΈ 2Ο€
]0
2
x
tanβˆ’1 ( ) + c
βˆ’1
a
ο‚§ ∫ 2 2 3 = 2 2 1/2 + c
(x + a )
(x + a )
𝑑𝑑𝑑𝑑
π‘₯π‘₯
ο‚§ ∫ 2 2 3/2 = 2 2 2 1/2 + c
(x + a )
a (x + a )
1
ο‚§ sin 2x = (1-cos2x)
P
2
2
1
ο‚§ cos x = (1+cos2x)
2
ο‚§ sin2x = 2 sinx cosx
Dr. Ahmed Thamer
Coulomb's Law and Electric Field Intensity
Page 2
Electromagnetic Fields
Coulomb's Law and Electric Field Intensity
Lecture No.4
5- Field of a Line Charge
Let us assume a straight line charge extending a long z-axis in cylindrical coordinate
οΏ½βƒ— at any
system from - ∞ to ∞ as shown in Fig. 4.1. We desire the electric field intensity E
and every point resulting from a uniform line charge density ρL .
Figure 4.1
Symmetry should be always considered first in order to determine two specific factors:
 With which coordinates the field does not vary.
 Which components of the field are not present.
Now, which components are present? Each incremental length of line charge acts as a point
charge and produces an incremental contribution to the electric field intensity which is directed
away from the bit of charge.
No element of charge produce as Π€ component of electric intensity, (EΠ€ is zero). However, each
element does produce an Er and Ez component, but the contribution to Ez by elements of charge
which are equal distance above and below the point at which we are determining the field will
cancel. We therefore have found that we have only an (Eρ )component and it is varies only with
(r), now to find this component:
We choose a point P(0, y,0) on the y-axis at which to determine the field. This is a perfectly
general point in view of the lack of variation of the field with Π€ and z we have:
�E⃗ =
Q
aοΏ½βƒ— R
4πϡo R 2
R
dQ = ρL dL = ρL dz'
οΏ½βƒ— = k 𝑑𝑑Q
dE
2
R
aοΏ½βƒ— R = k
rβƒ—= yaοΏ½βƒ— y = ρa�⃗ρ
r⃗′ = z' �a⃗ z
R
R
ρ L 𝑑𝑑𝑑𝑑 β€²
R2
aοΏ½βƒ— R
R
R
Dr. Ahmed Thamer
Coulomb's Law and Electric Field Intensity
Page 3
Electromagnetic Fields
Coulomb's Law and Electric Field Intensity
Lecture No.4
οΏ½βƒ—=rβƒ—- rβƒ—β€²= ρa�⃗ρ - z' aοΏ½βƒ— z
R
οΏ½βƒ—οΏ½= √ ρ 2 + z'2
οΏ½R
R
P
ρa�⃗ρ βˆ’ zβ€² aοΏ½βƒ—z
�a⃗ R =
√ ρ2 + zβ€² 2
ρ L 𝑑𝑑𝑑𝑑 β€² (ρa�⃗ρ βˆ’ z β€² aοΏ½βƒ—z)
R
οΏ½βƒ— = k
dE
3/2
( ρ2 + zβ€² 2)
οΏ½βƒ— z =0, then, dE
οΏ½βƒ— = k
Due to symmetry, dE
ρ L 𝑑𝑑𝑑𝑑 β€² ρa�⃗ρ
R
3/2
( ρ2 + zβ€² 2)
Since only the Eρ component is present, we may simplify: dE𝜌𝜌 = k
For infinite line charge (i.e βˆ’βˆž ≀ L ≀ ∞);
ρL ρ
E𝜌𝜌 =
4πϡo
R
E𝜌𝜌 =
R
E𝜌𝜌 =
R
Or, �E⃗ =
ρL ρ
4πϡo
ρL
2πϡo ρ
ρL
2πϡo ρ
∞
βˆ«βˆ’βˆž
2
*
ρ2
𝑑𝑑𝑑𝑑 β€²
3/2
( ρ2 + zβ€² 2)
=
ρL ρ
4πϡo
[
R
𝑧𝑧′
1/2
ρ2( ρ2 + zβ€² 2)
ρ L ρ 𝑑𝑑𝑑𝑑 β€²
3/2
( ρ2 + zβ€² 2)
]∞
βˆ’βˆž
a�⃗ρ
οΏ½βƒ— . We might have used the angle ΞΈ as our
There are many other ways of obtainingE
variable of integration, from Fig.4.1 z'= ρcotθ and dz' = - ρcsc2 θ dθ. Since R= ρcscθ, our
integral becomes, simply,
ρ L 𝑑𝑑𝑑𝑑 β€²
dE𝜌𝜌 =
R
E𝜌𝜌 =
R
E𝜌𝜌 =
R
οΏ½βƒ— =
Or, E
sinΞΈ= -
4πϡo R 2
0
ρ
- L
sinΞΈ
∫
Ο€
4πϡo ρ
ρL
2πϡo ρ
ρL
2πϡo ρ
ρ L sin ΞΈ 𝑑𝑑θ
4πϡo ρ
𝑑𝑑θ= -
ρL
4πϡo ρ
[cosΞΈ]0Ο€
a�⃗ρ
As an example, let us consider an infinite line charge parallel to the z-axis at x=6, y=8,
οΏ½βƒ— at the general field point P(x, y, z). We replace ρ in above equation
Fig.4.2. We wish to find E
by the radial distance between the line charge and point P, R=√(x-6)2 + (y-8)2, and let a�⃗ρ be aοΏ½βƒ—R .
Thus,
�E⃗ =
ρL
2πϡo √(xβˆ’6)2 + (yβˆ’8)2
Where �a⃗R =
�E⃗ =
Dr. Ahmed Thamer
(xβˆ’6)aοΏ½βƒ—x + (π‘¦π‘¦βˆ’8)aοΏ½βƒ—y
aοΏ½βƒ—R
√(xβˆ’6)2 + (yβˆ’8)2
ρL
2πϡo
(
(xβˆ’6)aοΏ½βƒ—x + (π‘¦π‘¦βˆ’8)aοΏ½βƒ—y
(xβˆ’6)2 + (yβˆ’8)2
)
Figure 4.2
Coulomb's Law and Electric Field Intensity
Page 4
Electromagnetic Fields
Coulomb's Law and Electric Field Intensity
Lecture No.4
Example 4.2: A uniform line charge, ρ L = 25nC/m, lies on the line x=-3, z=4, in free space.
οΏ½βƒ— in Cartesian components at: (a) the origin (b) point P (2, 15, 3)
Find E
(c) Q (ρ =4, Ѐ=60o, z=2)
Solution:
ρL
(a) ρ L in the direction of y, by replace ρ and a�⃗ρ in οΏ½Eβƒ— =
a�⃗ρ by R and aοΏ½βƒ—R ,
R
R
R
respectively, then:
ρL
οΏ½βƒ— =
E
Z
ρL
aοΏ½βƒ—R
2πϡo R
οΏ½Rβƒ—=3aοΏ½βƒ—x βˆ’ 4aοΏ½βƒ—z
οΏ½βƒ—οΏ½=√32 + (-4)2=√25=5
οΏ½R
�a⃗R =
3aοΏ½βƒ—x βˆ’4aοΏ½βƒ—z
5
X
Z
ρL
οΏ½Rβƒ—=5aοΏ½βƒ—x βˆ’ aοΏ½βƒ—z
οΏ½βƒ—οΏ½=√52 + (-1)2=√26
οΏ½R
√26
-X
οΏ½βƒ—
R
(0, 0, 0)
(b) P(2, 15, 3)
5aοΏ½βƒ—x βˆ’aοΏ½βƒ—z
(-3, 0, 4)
Y
βˆ’9
25βˆ—10
3aοΏ½βƒ— βˆ’4aοΏ½βƒ—
οΏ½βƒ— =
E
( x z)
βˆ’12
βˆ—5
5
2βˆ—3.14βˆ—8.854βˆ—10
οΏ½βƒ—= 53.9aοΏ½βƒ—x βˆ’ 71.9aοΏ½βƒ—z (V/m)
E
�a⃗R =
2πϡo ρ
(-3,15, 4)
(2,15, 3)
βˆ’9
25βˆ—10
5aοΏ½βƒ— βˆ’aοΏ½βƒ—
�E⃗ =
( x z)
βˆ’12
βˆ—βˆš26
√26
2βˆ—3.14βˆ—8.854βˆ—10
οΏ½Eβƒ—= 86.4aοΏ½βƒ—x βˆ’ 17.3aοΏ½βƒ—z (V/m)
οΏ½
Y
X
(c) x= ρ cosЀ=4cos60 =2
y= ρ sinЀ=4cos60o =3.46
z=2
Hence, Q(2, 3.46, 2)
o
R
R
οΏ½Rβƒ—=5aοΏ½βƒ—x βˆ’ οΏ½οΏ½οΏ½οΏ½βƒ—
2az
2
οΏ½βƒ—οΏ½=√5 + (-2)2=√29
οΏ½R
�a⃗R =
οΏ½βƒ— =
E
Dr. Ahmed Thamer
5aοΏ½βƒ—x βˆ’2aοΏ½βƒ—z
√29
25βˆ—10 βˆ’9
2βˆ—3.14βˆ—8.854βˆ—10 βˆ’12 βˆ—βˆš29
(
οΏ½οΏ½οΏ½οΏ½βƒ—z
5aοΏ½βƒ—x βˆ’2a
√29
) = 77.5aοΏ½βƒ—x βˆ’ 31aοΏ½βƒ—z (V/m)
Coulomb's Law and Electric Field Intensity
Page 5
Electromagnetic Fields
Coulomb's Law and Electric Field Intensity
Lecture No.4
6- Field of a Sheet Charge
Another basic charge configuration is the infinite sheet of charge having a uniform
density of ρS C/m2. Let us place a sheet of charge in y-z plane and again consider
symmetry as shown in Fig. 4.3. We see first that the field cannot vary with y or with z.
Hence only E x is present, and this component is a function of(x) alone. Let us use the
field of the infinite line charge by dividing infinite sheet into differential-width strips.
Once such strip is shown in Fig. 4.3, the line charge density, or charge per unit length, is
( ρL = ρS dy', and the distance from this line charge to our general point P on the x-axis is
R=√x2 + y'2.
Figure 4.3
The contribution to E x at point P from this differential-width strip is:
οΏ½βƒ— = ρ L aοΏ½βƒ—R (line charge), then;
We have E
2πϡo R
ρ S 𝑑𝑑yβ€²
dE x =
2πϡo √x2 + yβ€² 2
cosΞΈ =
Adding the effects of all the strips,
∞
E x =βˆ«βˆ’βˆž
Ex =
Ex =
ρS
2πϡo
ρS
2Ο΅o
ρ S x 𝑑𝑑yβ€²
2πϡo (x2 + y β€² 2)
*Ο€
=
ρS
ρ S 𝑑𝑑yβ€²
2πϡo √x2 + yβ€² 2
2πϡo
∞
x 𝑑𝑑yβ€²
.(
π‘₯π‘₯
√x2 + yβ€² 2
ρ
)=
ρ S x 𝑑𝑑yβ€²
2πϡo (x2 + y β€² 2)
yβ€²
S
[tanβˆ’1 ( )]∞
βˆ«βˆ’βˆž (x2 + y β€² 2) = 2πϡ
x βˆ’βˆž
o
If the point P were chosen on the negative x-axis, then,
Ex
Dr. Ahmed Thamer
Coulomb's Law and Electric Field Intensity
Page 6
Electromagnetic Fields
Coulomb's Law and Electric Field Intensity
Lecture No.4
Example 4.3: Three uniform sheets of charge are located in free space as follow:
οΏ½βƒ— at the points:
2πœ‡πœ‡C/m2 at x=-3, -5 πœ‡πœ‡C/m2 at x=1, and 4 πœ‡πœ‡C/m2 at x=5. Determine E
(a) (0, 0, 0)
(b) (2.5, -1.6, 4.7)
(c) (8, -2, -5)
(d) (-3.1, 0, 3.1)
𝛒𝛒S1= 2𝝁𝝁C/m2
Z
-X
βˆ’πšπšοΏ½βƒ—π±π±
X= - 3.1
X= - 3
πšπšοΏ½βƒ—π±π±
𝛒𝛒S2= - 5𝝁𝝁𝐂𝐂/𝐦𝐦𝟐𝟐
𝛒𝛒S3= πŸ’πŸ’πŸ’πŸ’π‚π‚/𝐦𝐦𝟐𝟐
βˆ’πšπšοΏ½βƒ—π±π±
X= 1
πšπšοΏ½βƒ—π±π±
βˆ’πšπšοΏ½βƒ—π±π±
Y
X= 0
X= 2.5
X= 5
πšπšοΏ½βƒ—π±π±
X= 8
X
Solution: (a) Since the position of plates in x-axis,
οΏ½βƒ— depended on (x) in each point.
∴ we determine E
Point (0, 0, 0), and normal on plates is (±πšπšβƒ—𝐱𝐱 )
X
�⃗𝛒𝛒 S1 + E
�⃗𝛒𝛒 S2 + E
�⃗𝛒𝛒 S3 =
οΏ½βƒ— T = E
E
R
R
R
R
βˆ’6
ρS 1
2Ο΅o
βˆ’5βˆ—10 βˆ’6
πšπšοΏ½βƒ—π±π±
+
ρS 2
2Ο΅o
(- πšπšβƒ—π±π± ) +
βˆ’6
ρS 3
2Ο΅o
(- πšπšβƒ—π±π± )
4βˆ—10
οΏ½βƒ— T = 2βˆ—10 βˆ’12 πšπšοΏ½βƒ—π±π± +
(- πšπšβƒ—π±π± ) +
(- πšπšβƒ—π±π± )
E
βˆ’12
2βˆ—8.85βˆ—10
2βˆ—8.85βˆ—10
2βˆ—8.85βˆ—10 βˆ’12
οΏ½Eβƒ— T = 169.4 πšπšοΏ½βƒ—π±π± (KV/m)
R
R
(b) Point (2.5, -1.6, 4.7)
X
βˆ’6
βˆ’6
οΏ½Eβƒ— T = 2βˆ—10 βˆ’12 πšπšοΏ½βƒ—π±π± + βˆ’5βˆ—10 βˆ’12
2βˆ—8.85βˆ—10
2βˆ—8.85βˆ—10
οΏ½βƒ— T = - 395 πšπšοΏ½βƒ—π±π± (KV/m)
E
R
R
Dr. Ahmed Thamer
πšπšοΏ½βƒ—π±π±
+
4βˆ—10 βˆ’6
2βˆ—8.85βˆ—10 βˆ’12
(- πšπšβƒ—π±π± )
Coulomb's Law and Electric Field Intensity
Page 7
Electromagnetic Fields
Coulomb's Law and Electric Field Intensity
Lecture No.4
(c) Point (8, -2, -5)
X
βˆ’6
βˆ’6
οΏ½Eβƒ— T = 2βˆ—10 βˆ’12 πšπšοΏ½βƒ—π±π± + βˆ’5βˆ—10 βˆ’12
2βˆ—8.85βˆ—10
2βˆ—8.85βˆ—10
οΏ½Eβƒ— T = 56.5 πšπšοΏ½βƒ—π±π± (KV/m)
R
R
πšπšοΏ½βƒ—π±π±
+
4βˆ—10 βˆ’6
2βˆ—8.85βˆ—10 βˆ’12
πšπšοΏ½βƒ—π±π±
(d) Point (-3.1, 0, 3.1)
X
βˆ’6
βˆ’6
βˆ’6
οΏ½βƒ— T = 2βˆ—10 βˆ’12 (- πšπšοΏ½βƒ—π±π±) + βˆ’5βˆ—10 βˆ’12 (- πšπšβƒ—π±π± ) + 4βˆ—10 βˆ’12 (- πšπšβƒ—π±π± )
E
2βˆ—8.85βˆ—10
2βˆ—8.85βˆ—10
2βˆ—8.85βˆ—10
οΏ½Eβƒ— T = - 56.5 πšπšοΏ½βƒ—π±π± (KV/m)
R
R
Example 4.4: Two infinite uniform sheets of charge, each with charge density 𝛒𝛒 S , are located at
οΏ½βƒ— everywhere.
x= ±1 as shown. Determine E
R
Solution: a) x<-1
�E⃗ = �E⃗ 1 + �E⃗ 2 =
R
βˆ’Ο S
�E⃗ =
Ο΅o
b) -1<x<1
R
𝐚𝐚
⃗𝐱𝐱
R
�E⃗ = �E⃗ 1 + �E⃗ 2 =
ρS
�E⃗ =
Ο΅o
R
𝐚𝐚
⃗𝐱𝐱
(- πšπšβƒ—π±π± ) +
ρS
2Ο΅o
Z
(- πšπšβƒ—π±π± )
𝛒𝛒S
βˆ’πšπšοΏ½βƒ—π±π±
-X
X= - 1
c) x>1
R
2Ο΅o
(V/m)
οΏ½βƒ— 1 + E
οΏ½βƒ— 2 =
οΏ½βƒ— = E
E
R
ρS
ρS
2Ο΅o
ρS
2Ο΅o
(V/m)
(- πšπšβƒ—π±π± ) +
𝐚𝐚
⃗𝐱𝐱
+
ρS
2Ο΅o
ρS
2Ο΅o
πšπšοΏ½βƒ—π±π±
πšπšοΏ½βƒ—π±π±
𝛒𝛒S
=0
πšπšοΏ½βƒ—π±π±
βˆ’πšπšοΏ½βƒ—π±π±
πšπšοΏ½βƒ—π±π±
Y
X= 1
X
4- Streamlines and Sketches of Fields
οΏ½βƒ— is represented by lines from the charge which are everywhere tangent
The direction of E
to �E⃗. These lines are usually called streamlines, although other terms such as flux lines
and direction lines are also used. In the case of the two-dimensional fields in Cartesian
coordinates, the equation of the streamline is obtained by solving the differential
equation as:
Ey
Ex
Dr. Ahmed Thamer
=
𝑑𝑑 y
𝑑𝑑 x
Coulomb's Law and Electric Field Intensity
Page 8
Electromagnetic Fields
οΏ½βƒ— =
E
Let
x
x2 + y2
aοΏ½βƒ—x +
y
Coulomb's Law and Electric Field Intensity
x2 + y2
aοΏ½βƒ—y
Thus we form the differential equation,
Therefore, lny = lnx + C 1
or,
𝑑𝑑 y
𝑑𝑑 x
=
Ey
Ex
=
y
x
or,
lny = lnx + lnC
𝑑𝑑 y
y
Lecture No.4
𝑑𝑑 x
=
x
From which the equations of the streamlines are obtained, y = Cx
If we want to find the equation of one particular streamline, say that one passing through
P(-2, 7, 10). Here, 7 = C(-2), and C = - 3.5, so that:
y = - 3.5 x
Each streamline is associated with a specific value of C.
The equations of streamlines may also be obtained directly in cylindrical or spherical
coordinates as:
 Cylindrical coordinates:
 Spherical coordinates:
Eρ
EΠ€
Er
EΞΈ
Ey
 Cartesian coordinates:
Ex
Home Work:
=
=
=
𝑑𝑑 ρ
ρ𝑑𝑑 Π€
𝑑𝑑 r
r𝑑𝑑 ΞΈ
𝑑𝑑 y
𝑑𝑑 x
Q 4.1: Calculate the total charge within each of the indicated volumes:
1
(a) 0.1 ≀ |x| , |y| , |z| ≀ 0.2 ; ρ V = 3 3 3
R
x y z
(b) 0 ≀ ρ ≀ 0.1 , 0 ≀ Π€ ≀ Ο€ , 2 ≀ 𝑧𝑧 ≀ 4 ; ρ V = ρ 2 z2 sin0.6Π€
(c) Universe; ρ V =
R
e βˆ’2r
R
P
r2
Q 4.2: Infinite uniform line charges of 5nC/m lie along the (positive and negative) x and y axes
in free space. Find �E⃗ at: (a) P A (0, 0, 4); (b) P B (0, 3, 4)
Q 4.3: Three infinite uniform sheets of charge are located in free space as follows: 3nC/m2 at
οΏ½βƒ— at the points: (a) P A (2, 5, -5);
z = - 4, 6nC/m2 at z = 1, and -8nC/m2 at z = 4. Find E
(c) P C (-1, -5, 2);
(d) P D (-2, 4, 5)
(b) P B (4, 2, -3);
Q 4.4: Find the equation of that streamline that passes through the point P(1, 4, -2) in the field:
βˆ’8x
4x 2
a�⃗x + 2 �a⃗y
(b) �E⃗ = 2e5x[y(5x+1) a�⃗x + x a�⃗y ]
(a) �E⃗ =
y
y
Q 4.5: The region in which 4 ≀ r ≀ 5, 0 ≀ ΞΈ ≀ 25o, and 0.9Ο€ ≀ Π€ ≀ 1.1Ο€, contains the volume
1
charge density ρ V = 10(r-4)(r-5) sinθsin Ѐ. Outside that region ρ V = 0. Find the charge
2
within the region.
R
Dr. Ahmed Thamer
R
Coulomb's Law and Electric Field Intensity
Page 9