il i! - Bryn Mawr College

i:
:il
:j:
f!i
\
<7
"\
,
LT:
t:'
,s
ÿ
"
q,ÿ
J
'" ÿ i
i
......
j
)
,
....
¢ÿ ÿ-,,
i,<,+.ÿ, s.. ct
,
& +=ÿ-o*, ÿ ......
ii
i
ii
i!
=:; i
ÿ A
i!i
iis
+
Lÿ¸¸
+ÿ
ii;,
I
:
ÿ ÿTÿ
\. ÿ,, ÿ,ÿ
....
\
!i,
ii:
,t
tÿ ÿ0
!:!
!i:
z-
tÿ,.ÿtÿ, ÿ'ÿiÿ
i!:
if"
ilÿ
it
ili
;
i{
i,
.P%
,
(
iÿ .ÿ
,
Nÿ
iN
ii,
<
,d¸¸
ÿ,ÿ
' ', ÿi¸
ÿ •,
7
7
,ii
i!'
j+
_
\. ÿ
....
IN
._:>.
.....
, 7-:,
3%
if:
;:7
7 ,
ilr
1
:'ÿ, ¢
f °"
"
I ,
7
ÿoÿ
.ÿz t ,7
t
....
t
ÿ,
,
i:i
S-'7:7
f6+
¢
\
'\
......
i
{ } Aÿc
llr
7,:ÿb
' 7£ ÿ> -j '<7 ÿ$
ÿ ,ÿ ,'ÿ, '-,ÿ+" J
t+..ÿ . ,;+. ÿ • .ÿ ........ ,j:>,-i
7ÿ7 ...... $ ,+ ...................... < ......
y
fi:
'\
t
\.
...... +ÿ
"
;7
"
i!
•
ii
7
. cÿ'
7-,
S;
/
:i:::
iÿ
"#.
,(ÿ,<
....
,
ÿ
S.ÿ
£
f
°ÿ
., I
dÿ
+
9
+
,!
-i
,i
,i
,ÿ
.'? ,.,f)
In[1561:= tit_, v_] := Sqrt[-Sin[2 t] / Ta.[Piv/ 2] + SqrtESin[2 t] ^2 /Tan[Piv / 2] ^2 + l]]
In[157]:= r[t, v]
0LIt[157]= Cot[T] SinE2 t] +
i
ÿTV
ÿ/1 + Cot [T] Siz[2 t]2
3TV 2
In[173}:= pl = PolarPlot[{r[t, i] , r[t, .8], r[t, .6], r[t, .4], r[t, .2]},
{%, 0, Pi/2}, PlotStyle ÿBlue];
p2 = PolarPlo%[{r[t, -l] , r[t, -.8], tit, -.6], r[t, -.4], r[t, -.2]},
{t, Pi/ 2, Pi}, PlotStyle ÿ Red];
p3 = PolarPlot[{r[t, 1] , r[%, .8], r[t, .6], r[t, .4], r[t, .2]},
{t, Pi, 3 Pi/2}, PlotStyle ÿ Blue];
p4 = PolarPlo%[{r[t, -i] , r[t, -.8], r[t, -.6], r[t, -.4], r[t, -.2]},
{t, 3Pi/2, 2 Pi}, PlotStyle ÿ Red] ;
Show [
pl,
/
!
0ut[177]=
ÿ
/
Ii
....
...............
...............
i
!i z-':::
......
Ii
--.Sÿ-"
ÿm
,
,"
.-',-ÿY'ÿ-
Yÿ'"ÿ"'
.........................
..............................
tÿ. "-" ": ÿ
......
,
:-ÿ
....
?
!1ÿ Y']i ]7 ioÿ ÿ=#=
....
ÿ
< I
ii
ii
.....
...........
...........................
"
.......
!I
"=-
ÿ DÿIm ÿ :-
i
i
i•
14
\
J
i
Y
•i
4ÿ
i
:::::i
,i
:j
@
I
. I ,y
......
?
/#
.-'{/ÿ
:E,C
i
CIC
7
,i
i
i i
:i
J
i 77 !i:
:
I!
ii
ii
•
In[1ÿ]:= Sum[Sum[4 ((-l)^n -I) ((-i)^m -i) Sin[nPi/ 2] Sin[mPi/2] 2 Sinh[PiSqrt[n^2 +m^2] /2] /
(Pi^2 nmSinh[PiSqrtEn^2 +m^2]]), {n, i, i00}], {m, i, i00}] // N
Out[183]= 0.333333
rn[184]:= Sum[Sum[4 ((-i)^n -1) ((-I)^m -I) Sin[nPi/2] SinEmPi/2] 2 Sinh[PiSqrt[nÿ2 +m^2] /2] /
(Pi^2nmSinhEPiSqrt[n^2+m^2]]), {n, 1, i}], {m, i, I}] // N
Out[184]= 0.347546
In[186]:= Sum[Sum[4 ((-i)^n -1) ((-1)^m -1) Sin[nPi/2] Sin[mPi/2] 2 Sinh[PiSqrt[n^2 +m^2] /2] /
(Pi^2nmSinh[PiSqrt[n^2+mÿ2]]), {n, i, 3}], {m, 1, 3}] // N
u1{1861= 0.332958
In[187]:= Sum[Sum[4 ((-1)^n -1) ((-1)ÿm -I) Sin[nPi/2] Sin[mPi/2] 2 Sinh[PiSqr%[nA2 ÷m^2] /2] /
(Piÿ2 nmSinh[PiSqrt[n^2 +m^2] ]) , {n, I, 5}] , {m, i, 5}] // N
0ut[187]= 0.333345
[
i!
11
,ii
• Q
-- L=_=.
i
:i
+i
!
i
7
!
,i
!]
i
f
i
]
0
i!i
t
tÿ--ÿ
7<ÿ _ÿ ('ÿ
QV
f7
7
Jflÿ:
ÿ
C°
ÿ
1
'
i <x
ÿ
f
4,..
i
I
..... 0ÿ_,,
ii:
(> " i,
\
k
\
otÿ[3 ,' ',=
• \
i!:
ill
\
)
•
......
....................
i
ÿ
......
................
ÿ,-,
......
.
ÿ
,ÿ
.
ÿ:ÿ
Co,.
ÿ'
-i
:
,. Uÿ
Ii
............-- p I
-'
.....
j
"
,ÿ
. fÿ- ÿ
(-ÿ
ÿ
(ÿ
.........
'
i
,- ÿ--
k
=z-Wÿ
....................
...ÿiÿ
- ÿ-: ÿ
........
i
.......
...........
}
ÿ,ÿ
f
z
.....
"-,
I
77ÿo
.............
M
ÿ
.....
....
W..
F
ÿ
.........
ÿ;.ÿ :<ÿ 'x
(ÿ 7
.......
....
j
....
.........
=4
::711
f
i¸
•
i
,ii
i
r
X
i
"ÿ
"t
I Xo
7
,i
!!
c_.,,..._
=
ii
J
--
<- i> ÿ- -L
% i
X,
t
I
]i
%
Ji
I,
I
i
)
,ii
:ii
i!i
I
:i!
7
:ii
r, \
P
j
)
' ÿ. !ÿ.,ÿ i
+. ,,
]:!
: i
t.
)
:i
\
i'i
,t
}
{,!
?
O
ÿ"U'"
iii ÿ
,;ÿ Y
,i!
U
L
i:i
!!:
i7'
€
j,
4
t
i
7
i
}
!;
7
> \
" 7"U
} '.i
"
'--i
/ °',, :'
(I .... <,,/ÿ,
Iÿ'
+< t i
' '
.-
,?¢<
L
?
i
....
.....
:'7;, !
i:, s
-4ÿ ÿF ÿ +
\ t';,,
,
"E )
,
k!'
iÿ'ÿLÿ ÿ
l:i
-,
71,¸ÿ
)' : .-'
.ÿ
17:
!
:
i+j
.j
L ÿ
t 1.sÿ ;i \ i
i
....
,
[
\
g ,;
?
A
S
.i
V
!,
i'
'., "E :>
i
"m
L'f
°
ee
¢
:
•
i :
.o.
I
]
,
!
I j-
(.i,
i;
:: X
+
•
i
I
I
r
J :
-" -,. L -
....
( ÿ
'
i!l
ii!
iii
..
j
i7ii¸
J
- <-ÿ :,
;
=
ti .'ÿ<'
+j
d + ; : • ÿ
" _;,
<>,l
;\ i
9 ÿ
': . i¸¸
I
f
.. (,ÿ-sÿÿ
÷.
:il
. 1ÿ.
x
!i"
J
'i
I
7
'-- "q.ÿ¢
:!
'!i
!i:
q"