Groundstateoxygenholesandthemetal-insulatortransitioninthe negativechargetransferrare-earthnickelates ValentinaBisogni1,2*,SaraCatalano3,RobertJ.Green4,5,MartaGibert3,RaoulScherwitzl3,Yaobo Huang1,6,VladimirN.Strocov1,PavloZubko3,7,ShadiBalandeh4,Jean-MarcTriscone3,George Sawatzky4,5andThorstenSchmitt1# 1 ResearchDepartmentSynchrotronRadiationandNanotechnology, PaulScherrerInstitut,CH-5232VilligenPSI,Switzerland. 2 NationalSynchrotronLightSourceII,BrookhavenNationalLaboratory,Upton,NewYork11973, USA. 3 DépartementdePhysiquedelaMatièreCondensée,UniversityofGeneva,24QuaiErnestAnsermet,1211Genève4,Switzerland. 4 DepartmentofPhysicsandAstronomy,UniversityofBritishColumbia,Vancouver,British Columbia,CanadaV6T1Z1. 5 QuantumMatterInstitute,UniversityofBritishColumbia,Vancouver,BritishColumbia,Canada V6T1Z4. 6 BeijingNationalLaboratoryforCondensedMatterPhysics,andInstituteofPhysics,Chinese AcademyofSciences,Beijing100190,China. 7 LondonCentreforNanotechnologyandDepartmentofPhysicsandAstronomy,University CollegeLondon,17-19GordonStreet,LondonWC1H0HA,UnitedKingdom. *e-mail:[email protected] #e-mail:[email protected] The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here, taking a NdNiO3 thin film as a representative example, we utilize a combination of x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuumexcitationsobservedintheRIXSspectraprovidesstrongevidencefortheabundance of oxygen 2p holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestionsthatthesematerialsdonotobeya“conventional”positivecharge-transferpicture, butinsteadexhibitanegativecharge-transferenergy,inlinewithrecentmodelsinterpretingthe metaltoinsulatortransitionintermsofbonddisproportionation. The intriguing perovskite nickelates family ReNiO3 (with Re= rare-earth) {1,2,3,4} have garnered significantresearchinterestinrecentyears,duetotheremarkablepropertiestheyexhibit.These includeasharpmetaltoinsulatortransition(MIT)tunablewiththeReradius{2},unusualmagnetic order {5} and the suggestion of charge order {6} in the insulating phase. While ReNiO3 single crystalsareveryhardtosynthesize,causingearlierexperimentstobemainlyrestrictedtopowder samples,extremelyhighqualityepitaxialthinfilmscanbenowproduced.Asanadditionalasset, ReNiO3inthinfilmformcanexhibitevenricherpropertiescomparedtobulk,e.g.tunabilityofthe metal-insulatortransitionbystrain{7,8},thickness{9,10,11},orevenbyultrafastopticalexcitation of the substrate lattice degree of freedom {12}. Additionally, there has been a lot of interest in 2 nickelate-based heterostructures, motivated on one hand by theoretical predictions of possible superconductivity{13},andontheotherhandbyrecentobservationsofexchangebiaseffects{14} andmodulationoftheorbitaloccupationduetostrainandinterfaceeffects{15,16,17,18}. Theoriginoftherichphysicsbehindtheseuniquepropertiesiscomplicatedbytheusualelectron correlationproblemoftransitionmetaloxides{19}.Asaconsequence,afullunderstandingofthe mechanism driving the MIT in ReNiO3 remains elusive still today. Hampering the discovery of a universally accepted description of the MIT is the more fundamental problem of understanding theReNiO3electronicstructureandthecorrespondingNi3dorbitaloccupation. InFigure1weillustrateinaschematicrepresentationofthesingleelectronexcitationspectrahow differentelectronicconfigurationscanresultfromthetwopossibleregimesoftheeffectivecharge transferenergyΔ’(calledforsimplicitychargetransferenergythroughoutthetext).Usingformal valence rules, it is expected that the Ni atoms exhibit a 3d7 (Ni3+) character, likely in a low spin (S=1/2) configuration. This ground state (GS) is obtained in Fig. 1 (a) for Δ’ > 0. However, highvalenceNi3+systemsarerare,andalthoughmanystudiesindeedviewReNiO3as“conventional” positive charge-transfer compounds yet with the addition of a strong Ni-O covalency and consequentlyaGSconfigurationofthetypeof𝛼 ∙ |3𝑑 ! + 𝛽 ∙ |3𝑑 ! 𝐿 (whereLisanO2phole){1, 20 21 22 23 , , , }, mounting evidence suggests that the ground state disobeys conventional rules. Alternatively,anegativecharge-transfersituation{24,25},whereafinitedensitynofholesLnisselfdopedintotheO2pbandandNitakesona3d8configuration(i.e.3d8Ln),isrecentlyreceivingan increasing interest. This scenario is represented in Figure 1 (b) for Δ’ < 0. Notably, the negative charge-transferpictureisatthebaseofrecentchargeorbonddisproportionationmodeltheories 3 where,asfirstsuggestedbyMizokawa{26},thedisproportionedinsulatingstateischaracterizedby alternating Ni 3d8 (n=0) and Ni 3d8L2 (n=2) sites arranged in a lattice with a breathing-mode distortion { 27 , 28 , 29 , 30 }. These models distinctively differ from the more traditional chargedisproportionationoneswheretheNi3d7latticemovestowardsanalternationofNi3d6and3d8 sitesintheinsulatingphase{6,31,32,33,34}. To get a full understanding of the MIT and of the unique physical properties of the rare-earth nickelates,itiscrucialtoinvestigatethegroundstateelectronicstructureinthisclassofmaterials. To this purpose, we stress that while both positive and negative charge-transfer interpretations introduced above can be described as highly covalent, there are striking inherent differences betweenthetwo.Fortheformer{16,20,21,32,34},theGS𝛼 ∙ |3𝑑 ! + 𝛽 ∙ |3𝑑 ! 𝐿 canbemodeledas a Ni 3d7 impurity hybridizing with a full O 2p band. Here the primary low energy charge fluctuations which couple to the GS in first order are the ones from the O 2p to the Ni 3d7 impurity,mixinginsomeNi3d8Landhigherordercharacterintothewavefunction.However,for the negative charge-transfer case {19, 25, 26, 27, 28, 29, 30}, all Ni sites assume a 3d8 state with on averagen=2holesinthesixoxygenscoordinatingacentralNiion.Thiscaseismoreaptlymodeled by a Ni 3d8 impurity hybridizing with a partially filled O 2p band. The electronic structure and consequently the character of the gap are vastly different in the two scenarios:𝛼 ∙ |3𝑑 ! + 𝛽 ∙ |3𝑑 ! 𝐿 withaO2p–Ni3dlikegapor3d8LnwithaO2p–O2plikegap[refertoFigure1(a)and(b) respectively]. It is thus crucial to determine which scenario actually applies to the rare-earth nickelates,inordertofurtherunderstandandpossiblytunetheirfascinatingproperties. 4 Here,wecombinetwoX-rayspectroscopies,namelyx-rayabsorption(XAS)andresonantinelastic x-rayscattering(RIXS)attheNiL3-edge,toresolveiftheelectronicstructureofReNiO3followsa positiveornegativecharge-transferpicture.WhiletheXASresultsaresimilartothosepreviously reported, the first ever measurements of high resolution RIXS provide crucial insights into the natureoftheexcitationspresent.Theunusualcoexistenceofboundandcontinuumcontributions acrossthenarrowNiL3resonanceandthespecificnatureoftheorbitalexcitations,allowsusto verify that the electronic ground state contains abundant O 2p holes and that the Ni sites are indeed best described as 3d8Ln, rather than a low spin Ni 3d7, showing that the rare-earth nickelates are indeed self-doped, negative charge-transfer materials. Further, the RIXS spectra exhibitaclearsuppressionofthelow-energyelectron-holepaircontinuumintheinsulatingphase, providingnotonlyafingerprintoftheopeningoftheinsulatinggapatT<TMIbutalsoexperimental evidence of the dominant O 2p-character for the states across EF, as expected for a negative charge-transfersystem. Results Bulk-likeNdNiO3thinfilm.Severalhigh-qualityNdNiO3thinfilmsgrownonavarietyofsubstrates wereinvestigated.Epitaxialfilmswerepreparedbyoff-axisradiofrequencymagnetronsputtering {8, 9, 35 , 36 } and were fully characterized by x-ray diffraction measurements, atomic force microscopy,transportandsoftx-rayscatteringmeasurements.Inthefollowing,wewillfocuson 30nmthickNdNiO3filmgrownon(110)-orientedNdGdO3substrateundertensilestrainconditions (+1.6% of strain) as a representative example of bulk ReNiO3 in general. In this case, coupled 5 metal-insulator and paramagnetic-to-antiferromagnetic transitions have been found at T~150 K, consistentwiththecorrespondingbulkcompound{1}. Bound and Continuum excitations across Ni L3 resonance. XAS and RIXS measurements were carriedoutbyexcitingattheNiL3-edge,correspondingtothe2p3/2-->3delectronictransitionat around~852eV.TheXASspectrahavebeenacquiredinthepartialfluorescenceyieldmode(PFY), byintegratingtheRIXSspectraforeachincomingphotonenergy,toinsurethebulksensitivity. Figure 2 (a)-(c) presents an overview of XAS and RIXS data for the 30 nm thick NdNiO3 film, measuredatboth300K(metallicphase,redcolor)andat15K(insulatingphase,bluecolor).The NiL2,3XASshowninFig.2(a)isingoodagreementwithpreviouslypublisheddataonNdNiO3{20, 21 37 38 39 , , , }.At15K,theNi-L3regionoftheXAS(from850eVto860eV),ischaracterizedbytwo clear structures — a sharp peak at 852.4 eV (A) and a broader peak at 854.3 eV (B) — both of whicharepresentinotherrare-earthnickelatesaswell{1, 16, 20, 24}.At300Kbothpeaksarestill recognizable,however,theirseparationislessevident. Aseriesofhigh-resolutionRIXSspectrahavebeenrecordedacrosstheNi-L3resonanceinstepsof 0.1eV,asshownintheintensitycolourmapsofFig.2(b)-(c).Eachspectrumobtainedforaspecific incidentphotonenergyhνinmeasurestheintensitiesoftheemittedphotonsasafunctionofthe energy loss hν= hνin-hνout, where hνout is the outgoing photon energy. RIXS is able to simultaneously probe excitations of diverse nature, e.g. lattice, magnetic, orbital and charge excitations{40,41}.Inaddition,onecandistinguishwithRIXSbetweenlocalised,boundexcitations anddelocalisedexcitationsinvolvingcontinua.Forlocalisedelectronicexcitations,theRIXSsignal appearsatafixedenergylosshνwhilescanningtheincidentenergyhνinacrossacorresponding 6 resonance (Raman-like behaviour). Conversely, for delocalised electronic excitations involving continua,theRIXSsignalhasaconstanthνoutandthereforepresentsalinearlydispersingenergy lossasafunctionofincidentenergy(fluorescence-likebehaviour){40,41,42,43}. FromtheRIXSmapsoftheNdNiO3thinfilminFig.2(b)-(c)onedirectlyobservesaclear,strong Raman-like response at around 1 eV of energy loss when tuning hνin to the XAS peak A. These atomic-like dd-orbital excitations, which are sensitive to the local ligand field symmetry, behave similarlytothoseobservedinotheroxidematerialsliketheprototypicalNi3d8systemNiO{44}.A fluorescence-like contribution resonates instead at the XAS peak B, contrary to the Raman-like responsedominatedbymultipleteffectsobservedinNiOatthecorrespondingNiL3XASshoulder {44}.Alreadybylookingatthecolourmap,thisfluorescence-likespectralsignatureisclearlyvisible allacrosstheNiL3edgeandalwayswithalinearlydispersingbehaviour,assuggestedbythered dotted line overimposed to the data. Interestingly, the fluorescence intensity distribution in the NdNiO3 RIXS map has also a strong temperature dependence: while at 300 K it merges continuously with the dd-excitations [see Fig. 2 (b)], at 15 K a dip in intensity is created correspondingtotheincidentphotonenergyC,hνin=853eV[seeFig.2(c),dashedgreyline]. To gain more insight into the origin of the observed Raman- and fluorescence-like spectral response, we closely examine the individual RIXS spectra and we perform a fitting analysis to extractthegeneralbehaviourofthemainspectralcomponents.AsshowninFigure3(a),theraw RIXSspectrumisdecomposedintothreedifferentcontributions(seeSupplementaryInformation {45}Sec.AfordetailsabouttheGaussianfit).Referringtothephotonenergyhνin=A,weidentify fromthecorrespondingRIXSspectrum:i)localizeddd-orbitalexcitationsextendingfrom1eVto3 7 eV (black line), ii) a broad background centered around 4 eV (CT, green line), and iii) a residual spectral weight (Fl, red line) peaking at 0.7 eV between the elastic line and the dominating ddprofile. Remarkably,atthisphotonenergyeventhefinemultipletstructureofthedd-excitationsisingood agreement with that of NiO {44}, suggesting immediately that NdNiO3 has an unusual Ni 3d8-like S=1 local electronic structure similar to NiO. Figure 4 furthermore endorses this concept, displayingthecomparisonbetweentheRIXSdataandclustermodelcalculationsperformedfora Ni3d7GS(greyline,modelparameterstakenfrom{39})andacrystalfieldcalculationoftheddexcitationsforaNi3d8GS(blackline,modelparametersfromNiO{46};seealsoSec.Cat{45}).The dd-excitationsobtainedfortheNi3d7casestronglydifferfromthepresentNdNiO3datanotonly in the peak energy positions displaced to higher energies, but also in the intensity distribution profile,thusrulingoutaNi3d7GSscenario.Thedd-excitationscalculatedfortheNiOinNi3d8 configurationinsteadpresentaremarkablygoodcorrespondencewiththepresentdata,verifying thed8-likecharacterofNiinthiscompound:suchafindingisthefirstkeyresultofourstudyand directly poses the question if NdNiO3 deviates from a “conventional” positive charge transfer picturebasedonaNi3d7GSinfavourofanegativecharge-transferscenariobasedonaNi3d8GS, asillustratedinFig.1(b).Finally,wenotethatintheinsulatingphaseanextradd-peakemerges from the experimental data at ~ 0.75 eV, which is not captured by the Ni 3d8 calculation. We speculatethatthiscontributioncouldbecausedbysymmetrybreakingphenomena(relatedtothe presence of different Ni sites in the insulating phase). However, more advanced and detailed calculationshavetobedevelopedtoreproducethisfinding. 8 Referring now to hνin=B incident photon energy, the three contributions identified above for hνin=A—dd,CTandFl—canbestilldistinguishedinthecorrespondingRIXSspectrum.However, comparing the two spectra in Figure 3 (a) we observe a shift in energy for the CT- and Flcontributions, contrary to the dd-excitations which are fixed in energy loss, and a strong redistributionofspectralweightbetweenthethreespectralcomponents. Inordertodisentanglelocalizedvs.delocalizedcharacteroftheRIXSexcitations,weextendinFig. 3(b)-(e)thefittinganalysistoalltheRIXSspectrabetween852eVand858eVincidentphoton energiesandwetrackforeachcontributiontheintegratedintensity[Fig.3(b)-(c)]andthepeak energy dispersion [Fig. 3 (d)-(e)] {45}. While the dd-excitations (black dots) have a Raman-like behaviour throughout the energy range and clearly resonate at hνin=A, the other two contributions (CT in green and Fl in red dots) resonate instead at hνin=B [see Fig. 3 (b), 15 K]. Interestingly, and contrary to the similarity in their resonant behaviour, the CT- and the Flcontributions present different peak energy dispersions as a function of the incident photon energy [Figure 3 (d)]. The broad CT-peak (FWHM ~ 6 eV) displays a behaviour characteristic of well-knowncharge-transferexcitationsbetweenthecentralNisiteandthesurroundingoxygens: constant energy loss (~ 4 eV) up to the resonant energy hνin=B, and a fluorescence-like linear dispersion at higher incident photon energies. The Fl-peak (FWHM ∼1 eV), instead, linearly disperses vs. incident photon energy across the full Ni-L3 resonance: as introduced above, this behaviour is a clear fingerprint for a delocalized excitation involving continua. Overall, these findingsarecommontobothlowandhightemperaturedatasets.However,inthemetallicstate [see Fig. 3 (c) and (e), 300 K] the intensity of both CT- and Fl-peaks is enhanced at hνin=C: the resultingextraweightintheintegratedRIXSintensityprofile[Fig.3(c),bluedots]mimicsthefilling 9 of the valley observed in the XAS spectrum at 300 K, and explains the absence of a dip in the intensitydistributionoftheRIXSmap[seeFig.2(b)]atthesameincidentenergy. Additionally,weexaminetheFl-excitationsmorecloselyinFigure5,wherewefocusonthelow energylossrange(<1.5eV)ofthehigh-statisticsRIXSspectraobtainedattheNiL3pre-peakregion, starting1eVbeforepeakA.InFig.5(a)weobservechangesinthedd-excitationsbetween300K and 15 K (across the MIT) likely due in part to local rearrangements of the NiO6 octahedra. Moreover, a sizeable spectral weight continuum around 0.2 - 0.5 eV [see Fig. 5 (a), inside the ellipse-area]ispresentonlyat300Kinthemetallicphase,asbetterdisplayedbytheRIXScolour mapsfor300Kand15K[seeFig.5(b)and(c)respectively]. Andersonimpuritymodel.TounderstandtheoriginofthevariousRIXSexcitationsandtheirlink totheelectronicstructure,onecanemployanAndersonimpuritymodel(AIM)interpretation(see Sec.Dat{45}).WhiletheschematicsinFig.1(a-b)showthesingleparticleremovalandaddition excitations for different charge-transfer scenarios, RIXS actually measures charge neutral excitations, which are well represented in a configuration interaction-based AIM. These charge neutralexcitationsareshownschematicallyinFig.6(a)forthenegativecharge-transfercaseΔ’<0 and the positive charge-transfer case Δ’ >0 (NiO like) of a Ni 3d8 impurity. As previously mentioned,fortheΔ’>0case,theonlychargefluctuationspossibleintheAIMarefromthefullO 2pbandtotheNiimpuritylevel.Whileconservingthetotalcharge,thesefluctuationsgiverisetoa Ni 3d9L band corresponding to charge-transfer excitations [shown in green in Fig. 6 (a) for NiO]. However, for the Δ’ <0 case [recall Fig. 1 (b)], the presence of a self-doped, partially filled O 2p densityofstates(DOS)extendingacrosstheFermilevelopensadditionalpathwaysfortheneutral 10 charge fluctuations. Electrons can either hop: i) from the O 2p valence band to the O 2p conduction band leaving the Ni impurity occupation unchanged, yielding a characteristic low energy electron-hole pair continuum of “m” excitations d8vmcm marked in red [v is a hole in the valencebandandcanelectronintheconductionband,asshowninthesmallO2pDOSinsetof Fig.6(a)];ii)toandfromtheNiimpuritylevel,fromtheO2pvalencebandandtowardtheO2p conduction band, respectively, causing the impurity occupation to change by plus or minus one and yielding a charge-transfer like continuum of excitations at higher energy. Eventually these charge transfer excitations can be dressed by associated electron-hole pair excitations, vmcm, resulting in d9vm+1cm or d7vmcm+1 bands of excitations (green band). We stress that the here introduced low energy electron-hole pair excitations can be obtained only for the Δ’ <0 case, wheretheO2pDOScrossesEF. TheeffectsofthesetwoimpuritymodelsonRIXSaredetailedinFigs6(b).ThecaseofNiOcanbe solvednumericallyincludingthefullcorrelationswithinthe3dshell,andweshowthecalculated RIXSmapinFig6(b).ComparingthistotheschematicNiOconfigurationsinFig.6(a),weseethat there are Raman-like dd-excitations below 4 eV, corresponding to reorganized Ni 3d8 orbital occupations,andacharge-transferbandatdistinctivelyhigherenergylosseswhichisRaman-like forlowerincidentphotonenergiesuptoca.855eV,beforedispersinglikefluorescenceforhigher photonenergies.However,astheschematicinFig.6(a)suggests,thecharge-transferexcitations donotextenddowntolowenergylossesfortheNiOcase(Δ’ >0).Togainfurtherinsightintothe NdNiO3experimentaldata,theextractedCT-andFl-dispersioncurvesofFig.3(d)areoverlaidon thecalculatedRIXSmapinFig.6(b).Indeed,theNdNiO3CT-excitations(opengreendots)showa similar behaviour as the NiO CT ones (solid green line). The NdNiO3 Fl-excitations, instead, with 11 their distinctive fluorescence-like dispersion differ from any of the NiO excitations. Interestingly, the identified Fl-contribution propagating down to very low energy losses is compatible instead withtheelectron-holepaircontinuumexcitationsd8vmcmcomingfromthebroadO2pband:this findingisthesecondkeyresultofourstudyandnaturallyoccursforthenegativecharge-transfer case(Δ’<0)asrepresentedintheAIMschematicofFig.6(a)(redband). Discussion Themainfindingsofthepresenteddataanalysisandinterpretationareasfollows:i)localisedddexcitations sharply resonate at the XAS peak A and with a lineshape consistent with a Ni 3d8 configurationsimilarlytoNiO;ii)delocalisedFl-excitationsmostlyresonateattheXASpeakBand areinterpretedaselectron-holepairexcitationsacrosstheO2pbandcutbyEF[Fig.1(b),green contours];iii)spectralweightreductionoftheelectron-holepairexcitationsclosetozeroenergy loss[seeFig.5(b-c)]suggeststheopeningofanO-Oinsulatinggap[refertoschemeinFig.1(b)]at lowtemperature,inlinewithpreviouslyreportedopticalconductivitystudies{47,48}andsimilarly as in more recent ARPES data {49} revealing a spectral weight transfer from near EF to higher bindingenergiesacrosstheMIT. ThiscollectionofresultsclearlyidentifiesNdNiO3asanegativeΔ’ charge-transfermaterial,witha localNi3d8configuration,apredominantO2pcharacteracrosstheFermilevelandaconsequent GSofmainly3d8Ln.ThispictureiscompatiblewiththescenarioproposedbyMizokawa{26},also discussed as “bond disproportionation model” in recent theoretical approaches {27, 28, 29, 30,50}, whichseesanexpanded3d8Nisite(n=0,S=1)andacollapsed3d8L2Nisite(n=2,S=0)alternatingin theinsulatingphasewiththefollowingspinorder↑ 0 ↓ 0 andanhomogeneous3d8L(n=1)GSin 12 themetallicphase.Asunderlinedinpreviousworks{28,29},thismodelisinagreementwithseveral breakthroughexperimentalfindings:i)(1/201/2)antiferromagneticBraggpeakintheinsulating phase {5}; ii) charge ordering {6}, which in this model is distributed among both Ni and O sites insteadoftheonlyNisites;iii)absenceoforbitalorder{34};iv)evidenceofstrongNi-Ocovalence intheGS{4,20,21}. Furthermore, the different resonant behaviour extracted in this study for the localised and delocalised RIXS excitations suggest that the two distinct XAS peaks marked at low temperature mostlyresultfromthetwodifferentcomponentsoftheGS,beingXASpeakAmostlyassociated with a Ni 3d8 configuration, and XAS peak B with the delocalised ground state Ni 3d8L2 configuration. This is in line with the energy dependence of the (1/2 0 1/2) peak resonating at hνin=A{31,37},hereassignedtothemagneticallyactiveS=1site. Inconclusion,bycombiningNi-L3XASandRIXSmeasurementswestudiedtheelectronicground state properties of ReNiO3, in order to discriminate the electronic structure between a negative charge-transferandapositivecharge-transferscenario.Byanalysingthefirsteverhigh-resolution NiL3RIXSdataobtainedforReNiO3,weidentifiedthecoexistenceofbound,localisedexcitations and strong continuum excitations in both the XAS and the RIXS spectra, in contrast to earlier absorptionstudieswhichassumedprimarilycharge-transfermultipleteffectsintheXAS.Further, wedisentangledthecontinuumfeaturesintheRIXSspectraintocharge-transferandfluorescence excitations,showingthelattertoariseduetothepresenceofagroundstatecontainingholesin theoxygen2pband.Electron-holepairexcitationsfromoxygen2pstatesacrosstheFermilevel havebeenidentifieddowntozeroenergyloss,mimickingtheopeningofagapforT<TMI.Allthese 13 experimental observations provide a clear indication of an O 2p hole-rich ground state with Ni 3d8Lnelectronicconfigurationasthemaincomponent,asexpectedforanegativecharge-transfer system. This GS configuration lends support to the treatment of the ReNiO3 as a S=1 Kondo or AndersonlatticeproblemwithaNi3d8Ln(n=1)metallicgroundstate,andrealizingtheMITbya bonddisproportionationleadingtotwoNisiteenvironments:Ni3d8(n=0,S=1)andNi3d8L2(n=2, S=0),differinginthehybridizationwiththeO2pholestatesyetleavingthechargeatthenickel sitesalmostequal.Whilethisresultisvitalfortheunderstandingoftherareearthnickelatefamily perse,thecombinedXASandRIXSapproachdemonstratedhereopenstheopportunitytoclassify the electronic structure for other cases of very small or negative charge-transfer gaps Δ’, which could be common to other materials with unconventionally high formal oxidation states (as for example the sulfides, selenides and tellurides, and many high oxidation state compounds in general). Methods Experimental details. X-ray absorption (XAS) and high-resolution Resonant Inelastic X-ray Scattering(RIXS)measurementshavebeenperformedattheADRESSbeamlineoftheSwissLight Source {51}, Paul Scherrer Institute. The sample has been oriented in grazing incidence, with the incomingphotonbeamimpingingat15degreeswithrespecttothesamplesurface.Thescattering planefortheRIXSmeasurementswascoincidingwiththecrystallographicac-plane(orbc-plane, equivalently). All the data displayed here have been measured for incoming photons polarized paralleltothea(b)axis(alsoreferredtoasσpolarization,perpendiculartothescatteringplane). FortheRIXSmeasurementsweusedtheSAXESspectrometer{52}preparedwithascatteringangle 14 of130degreesandatotalenergyresolutionof110meV.Thespectrometerwassetinthehighefficiency configuration, using the 1500 lines/mm VLS spherical grating. This set-up allowed acquiringaround600-800photonsatthemaximaoftheprominentspectralstructuresalreadyin1 min.Therecordedscatteredphotonswerenotfilteredbytheoutgoingpolarization. Acknowledgements:ThisworkwasperformedattheADRESSbeamlineoftheSwissLightSource at the Paul Scherrer Institut, Switzerland. Part of this research has been funded by the Swiss NationalScienceFoundationthroughitsNationalCentreofCompetenceinResearchMaNEPand theSinergianetworkMottPhysicsBeyondtheHeisenberg(MPBH)model.Theresearchleadingto these results has received funding from the European Community's Seventh Framework Programme(FP7/2007-2013)underGrantAgreementNr.290605(COFUND:PSI-FELLOW)andERC GrantAgreementNr.319286(Q-MAC).Moreover,thisworkhasreceivedsupportthroughfunding from the Canadian funding agencies NSERC, CRC, and the Max Planck/UBC center for Quantum Materials. AuthorsContribution:V.B.,S.C.,M.G.,R.S.,G.S.,J.-M.T.andT.S.plannedtheproject.S.C,M.G.,R. S.,P.Z.andJ.-M.T.grewandcharacterizedthethinfilmsamples.V.B.,S.C.,R.S.,Y.H.,V.S.andT.S. carried out the experiment. V.B. and T.S. analysed the data. R.G., S.B. and G.S. carried out the theoretical calculations. V.B., R.G., G.S. and T.S. wrote the paper with contributions from all authors. Author Information: The authors declare no competing financial interests. Correspondence and requestsshouldbeaddressedtoV.B.([email protected])andT.S.([email protected]). 15 References: 1 Medarde, M. L. Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys.Cond.Matt.9,1679-1707(1997). 2 Torrance,J.B.,Lacorre,P.,Nazzal,A.I.,Ansaldo,E.J.,&Niedermayer,Ch.Systematicstudyofinsulator- metaltransitionsinperovskitesRNi03(R=Pr,Nd,Sm,Eu)duetoclosingofcharge-transfergap.Phys.Rev.B 45,8209-8212(1992). 3 Catalan,G.Progressinperovskitenickelateresearch.PhaseTransitions:AMultinationalJournal,81:7-8, 729-749(2008). 4 Jaramillo, R., Ha, S. D., Silevitch, D. M., & Ramanathan, S. Origins of bad-metal conductivity and the insulator–metaltransitionintherare-earthnickelates.Nat.Phys.10,304-307(2014). 5 Garcia-Munoz,J.L.,Rodriguez-Carvajal,J.,&Lacorre,P.SuddenAppearanceofanUnusualSpinDensity WaveattheMetal-InsulatorTransitioninthePerovskitesRNiO3(R=Pr,Nd).Eur.Phys.Lett.20,241-247 (1992). 6 Alonso, J. A. et al. Charge Disproportionation in RNiO3 Perovskites: Simultaneous Metal-Insulator and StructuralTransitioninYNiO3.Phys.Rev.Lett.82,3871-3874(1999). 7 Liu,J.etal.HeterointerfaceengineeredelectronicandmagneticphasesofNdNiO3thinfilms.Nat.Comm. 3714(2013). 8 Catalano,S.etal.ElectronictransitionsinstrainedSmNiO3thinfilms.App.Phys.Lett.Materials2,116110 (2014). 9 Scherwitzl,R.etal.Electric-FieldControloftheMetal-InsulatorTransitioninUltrathinNdNiO3Films.Adv. Mat.22,5517-5520(2010). 10 Scherwitzl, R. et al. Metal-Insulator Transition in Ultrathin LaNiO3 Films. Phys. Rev. Lett. 106, 246403 (2011). 11 Son, J. et al. Low-dimensional Mott material: Transport in ultrathin epitaxial LaNiO 3 films. App. Phys. Lett.96,062114(2010). 12 Caviglia,A.D.etal.UltrafastStrainEngineeringinComplexOxideHeterostructures.Phys.Rev.Lett.108, 136801(2012). 13 Chaloupka,J.&Khaliullin,G.OrbitalOrderandPossibleSuperconductivityinLaNiO3/LaMO3Superlattices. Phys.Rev.Lett.100,016404(2008). 14 Gibert, M., Zubko, P., Scherwitzl, R., Iniguez, J. & Triscone, J.-M. Exchange bias in LaNiO3/LaMnO3 superlattices.Nat.Mat.11,195-198(2012). 16 15 Chakhalian,J.etal.AsymmetricOrbital-LatticeInteractionsinUltrathinCorrelatedOxideFilms.Phys.Rev. Lett.107,116805(2011). 16 Wu, M. et al. Strain and composition dependence of orbital polarization in nickel oxide superlattices. Phys.Rev.B88,125124(2013). 17 Benckiser,E.etal.Orbitalreflectometryofoxideheterostructures.Nat.Mat.10,189-193(2011). 18 Disa,A.S.etal.OrbitalEngineeringinSymmetry-BreakingPolarHeterostructures. Phys. Rev. Lett.114, 026801(2015). 19 Zaanen, J., Sawatzky, G. A., & Allen, J. W. Band gaps and electronic structure of transition-metal compounds.Phys.Rev.Lett.55,418(1985). 20 Medarde, M. L. et al. RNi03 perovskites (R = Pr, Nd): Nickel valence and the metal-insulator transition investigatedbyx-ray-absorptionspectroscopy.Phys.Rev.B46,14975-14984(1992). 21 Mizokawa, T. et al. Electronic structure of PrNi03 studied by photoemission and x-ray-absorption spectroscopy:Bandgapandorbitalordering.Phys.Rev.B52,13865-13873(1995). 22 Abbate,M.etal.Electronicstructureandmetal-insulatortransitioninLaNiO3-d.Phys.Rev.B65,155101 (2002). 23 Horiba,K.etal.ElectronicstructureofLaNiO3−x:Aninsitusoftx-rayphotoemissionandabsorptionstudy. Phys.Rev.B76,155104(2007). 24 Mizokawa,T.etal.OriginoftheBandGapintheNegativeCharge-Transfer-EnergyCompoundNaCuO2. Phys.Rev.Lett.67,1638(1991). 25 Khomskii, D. I. Unusual valence, negative charge-transfer gaps and self-doping in transition-metal compounds.LithuanianJ.Phys.37,65(1997). 26 Mizokawa,T.,Khomskii,D.I.,&Sawatzky,G.A.Spinandchargeorderinginself-dopedMottinsulators. Phys.Rev.B61,11263–11266(2000). 27 Park, H. et al. Site-Selective Mott Transition in Rare-Earth-Element Nickelates. Phys. Rev. Lett. 109, 156402(2012). 28 Lau, B. et al. Theory of the Magnetic and Metal-Insulator Transitions in RNiO3 Bulk and Layered Structures.Phys.Rev.Lett.110,126404(2013). 29 Johnston,S.,Mukherjee,A.,Elfimov,I.,Berciu,M.&Sawatzky,G.A.ChargeDisproportionationwithout Charge-transfer in the Rare-Earth-Element Nickelates as a Possible Mechanism for the Metal-Insulator Transition.Phys.Rev.Lett.112,106404(2014). 17 30 Subedi, A., Peil, O. E., and Georges, A. Low-energy description of the metal-insulator transition in the rare-earthnickelates.Phys.Rev.B91,075128(2015). 31 Scagnoli,V.etal.Roleofmagneticandorbitalorderingatthemetal-insulatortransitioninNdNiO3.Phys. Rev.B73,100409(2006). 32 Mazin, I. I. et al. Charge Ordering as Alternative to Jahn-Teller Distortion. Phys. Rev. Lett. 98, 176406 (2007). 33 Medarde,M.L.etal.ChargedisproportionationinRNiO3perovskites(R=rareearth)fromhigh-resolution x-rayabsorptionspectroscopy.Phys.Rev.B80,245105(2009). 34 Staub, U. et al. Direct Observation of Charge Order in an Epitaxial NdNiO3 Film. Phys. Rev. Lett. 88, 126402(2002). 35 Scherwitzl,R.,Zubko,P.,Lichtensteiger,C.,&Triscone,J.–M.Electric-fieldtuningofthemetal-insulator transitioninultrathinfilmsofLaNiO3.App.Phys.Lett.95,222114(2009). 36 Catalano,S.etal.TailoringtheelectronictransitionsofNdNiO3filmsthrough(111)pcorientedinterfaces. Appl.Phys.Lett.Mat.3,062506(2015). 37 Bodenthin, Y. et al. Magnetic and electronic properties of RNiO3 (R = Pr, Nd, Eu, Ho and Y) perovskites studiedbyresonantsoftx-raymagneticpowderdiffraction.J.Phys.:Condens.Matter23,036002(2011). 38 Liu,J.etal.,Metal-InsulatorTransitionandOrbitalReconstructioninMott-TypeQuantumWellsMadeof NdNiO3.Phys.Rev.Lett109,107402(2012). 39 Freeland,J.W.,vanVeenendaal,M.andChakhalian,J.“Evolutionofelectronicstructureacrosstherare earthRNiO3series”.J.Electron.Spectrosc.Relat.Phenom.208,56(2016). 40 Kotani,A.,&Shin,S.Resonantinelasticx-rayscatteringspectraforelectronsinsolids.Rev.Mod.Phys.73, 203(2001). 41 Ament,L.J.P.,vanVeenendaal,M.,Devereaux,T.P.,Hill,J.P.,&vandenBrink,J.Resonantinelasticx-ray scatteringstudiesofelementaryexcitations.Rev.Mod.Phys.83,705(2011). 42 Schmitt,T.etal.ElectronicstructurestudiesofV6O13bysoftx-rayemissionspectroscopy:Band-likeand excitonicvanadiumstates.Phys.Rev.B69,125103(2004). 43 Zhou, K.J. et al. Localized and delocalized Ti 3dcarriers in LaAlO3/SrTiO3 superlattices revealed by resonantinelasticx-rayscattering.Phys.Rev.B83,201402(R)(2011). 44 Ghiringhelli,G.etal.ObservationofTwoNondispersiveMagneticExcitationsinNiObyResonantInelastic Soft-X-RayScattering.Phys.Rev.Lett.102,027401(2009). 45 SeeSupplementaryInformationatURL[]. 18 46 Ghiringhelli,G.etal.NiOasatestcaseforhighresolutionresonantinelasticsoftx-rayscattering.J.Phys.: Condens.Matter17,5397(2005). 47 Katsufuji,T.etal.Opticalspectroscopyofthemetal-insulatortransitioninNdNiO3.Phys.Rev.B51,4830 (1994). 48 Stewart, M. K., Liu, J., Kareev, M., Chakhalian, J. and Basov, D. N. Mott Physics near the Insulator-To- MetalTransitioninNdNiO3.Phys.Rev.Lett.107,176401(2011). 49 Dhaka, R. S., et al. Tuning the metal-insulator transition in NdNiO3 heterostructures via Fermi surface instabilityandspinfluctuations.Phys.Rev.B92,035127(2015). 50 Ko,W.-H.,Jiang,H.-C.,Rau,J.G.,&Balents,L.OrderingandcriticalityinanunderscreenedKondochain. Phys.Rev.B87,205107(2013). 51 Strocov, V. N. et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 17, 631 (2010). 52 Ghiringhelli,G.etal.SAXES,ahighresolutionspectrometerforresonantx-rayemissioninthe400–1600 eVenergyrange.Rev.Sci.Instrum.77,113108(2006). 19 FigureLegends: Figure1|Singleelectronexcitationspectraintermsofchargeremovalandchargeadditionfor differentregimesofeffectivecharge-transferΔ’.Thissketchintroducesconventionalparameters used to describe charge dynamics in transition metal oxide (TMO) compounds with formal 3d7 filling:1)chargetransferenergyΔ:energycostfortransferringanelectron/holefromtheLband totheNi3dband(withrespecttothebandcenterofmass);2)HubbardU:energycostneededto remove an electron from the occupied 3d band and to add it to the unoccupied 3d band; 3) effective charge-transfer energy Δ’: key-parameter to distinguish between the two different regimes discussed here. Δ’ is defined by the equation in the figure, starting from Δ. This figure identifiesthegroundstate(GS)andthegapcharacterobtainedinthetwoΔ’regimes:a,Δ’>0.In conventional positive charge transfer compounds the lowest energy removal states are ligandbased, and the lowest energy addition states are transition metal based, leading to a charge transferderivedenergygap(O2p–Ni3dlike)anda3d7GS.b,Δ’<0.Innegativechargetransfer compounds,oneholeperNiisdopedintotheligandband,givingadensityofligandholesn,Ln. The GS is here 3d8Ln. The red-dashed contour bands are a cartoon-like demonstration of the openingofthegapinthemainlyO2pcontinuumresultinginthemetaltoinsulatortransition.In thiscase,thelowestenergyremovalandadditionstatesarebothligand-based,leadingtoanO2p –O2plikegap.Undernocircumstancescanthistypeofgapresultfromconfigurationa,unless active doping is considered. Note that this figure neglects Ni – O hybridization, to provide clear distinctionbetweentheregimes. Figure2|OverviewofXASandRIXSmeasurementsfora30nmNdNiO3filmonNdGdO3.a,Ni L3,2XASmeasuredinPFYmodeat300K(metallicphase)inredandat15K(insulatingphase)in blue.RefertoSec.Bof{45}forXASintotalelectronyieldmode.b(c),RIXSintensitymapmeasured acrosstheNiL3edgeat300K(15K).ThewhitesolidlinedisplaystheXASmeasuredatthesame temperature.ThelettersA,B,Cmarkthethreedifferentincidentenergiesmentionedinthetext, whiledd,CTandFlrefertoRIXSexcitationsofdifferentcharacter,alsodiscussedinthetext.The grey dashed line indicates the incident energy giving the most pronounced changes in the RIXS mapandintheXASacrosstheMIT.Thereddottedlineprovidesaguidetotheeyeforthelinearly energydispersingFlfeature. Figure3|RIXSdataanalysisacrosstheMIT.a,RIXSlinespectra(greyopen-dotline)measuredat hνin=Aandhνin=Bat15K.ThethinsolidlinesrefertoGaussianfitsofdd-excitations(black),theCT excitation(green)andtheFlexcitation(red).Thebluedashedlinereferstothesumofthethree fittingcontributions,plustheelasticlineat0eV.b(c),Integratedintensityofthefitdd-,CT-and Fl-excitationstogetherwiththetotalintegratedintensityat15K(300K).Thegreyarrowmarksthe incident energy giving the most pronounced changes in the RIXS integrated intensity across the MIT. d (e), Peak energy dispersion for the CT- and Fl-excitation at 15 K (300K). The same colour codeasin(a)isusedthroughoutthefigure. Figure 4 | Comparison between experimental and calculated dd-excitations.Data:RIXSspectra atT=15K(bluecircles)andatT=300K(redcircles),hνin=A,LVpolarization.Calculation:crystalfield RIXScalculationforaNi3d8GSbasedonNiOparameters{46}(blackline);clustercalculationfora Ni3d7GSusingtheparametersinRef.{39}(greyline).Pleasenotethattheelasticlineshavebeen removed from the calculated spectra to better display the differences at the low energies. The 21 experimental dd-line shape is well reproduced by the Ni 3d8 cluster calculation, supporting the negative charge transfer scenario for ReNiO3. The good matching between data and calculation showsthat:1)thereisnoinversionofcrystalfieldinReNiO3comparedtoNiO,inagreementwith Ref.{25}fordominatingCoulombinteraction;2)beingtheNi-OdistanceshorterinReNiO3thanin NiO,thenegativechargetransferenergymayleadtoareductionoftheexpectedt2g-egsplitting. Figure 5 | Low energy electron-hole pair continuum in the RIXS spectra. a, RIXS line spectra measuredforincidentenergiesgoingfromhνin=A-1eVuptohνin=A-0.2eVinstepsof0.1eVat15 K (blue) and 300 K (red). Each spectrum has been acquired for 5 minutes. The grey ellipse highlightstheenergylossregionwheretheelectron-holepaircontinuumismoreprominent.b(c), Magnificationofthelowenergylossregion(<0.9eV)oftheRIXSmapwithalogarithmicintensity scale at 300 K (15 K). The spectra have been normalized to the dd-area in order to have comparable background signal in the low energy loss region. The red ellipses underline the electron-hole pair continuum present at 300 K (b) and the intensity gap in the same energy windowat15K(c). Figure6|AndersonimpuritymodelinterpretationoftheRIXSandXASspectra.a,AIMschematic forchargeneutralRIXSexcitations.TheconfigurationsoftheAIMareverydifferentforΔ’ <0(left, NdNiO3) and Δ’> 0 (right, NiO) 3d8 compounds. CT-like excitations are obtained in both cases (green bands), while Fl-like excitations (red band) are found only for Δ’ < 0 and correspond to electron-hole pair excitations as shown in the O 2p DOS inset. b, Calculated RIXS map for the positive charge-transfer compound NiO, using the AIM. The NdNiO3 CT- and Fl-excitations dispersion curves from Fig. 3 (d) are overlaid for comparison (green and red open dots, 22 respectively), as well as the NiO CT-excitation dispersion (green solid line). Horizontal coloured lines make the connection between the RIXS excitations and the assigned interpretation in the AIMschematicofFigurea. 23 FIGURE1 FIGURE2 25 FIGURE3 FIGURE4 26 FIGURE5 FIGURE6 27
© Copyright 2026 Paperzz