EXPLORATORY WORK ON THE.PRECISION WAVELENGTH OF MEASUREMENT THE HYDROGEN LYMAN.SPECTRA by FREDERICK WILLIAM DALBY A THESIS SUBMITTED I N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS I n t h e Department of P h y s i c s .. We a c c e p t , t h i s standard t h e s i s as conforming t o the required, from candidates f o r the d e g r e e o f MASTER OF ARTS Members o f t h e D e p a r t m e n t o f Physics THE UNIVERSITY OF B R I T I S H COLUMBIA April, 1952 ABSTRACT The L u b z i n s k i . s p e c t r o g r a p h has f o c u s s e d and ultraviolet i t s p e r f o r m a n c e a s a h i g h d i s p e r s i o n vacuum instrument Light sources has been s t u d i e d . have b e e n d e s i g n e d t i o n o f t h e h y d r o g e n Lyman s e r i e s . s e r i e s has hydrogen-deuterium seven hours. of A spectrogram of the i n the has i d e n t i f i c a t i o n of the sources f o r the e x c i t a t i o n of the been hydrogen first- s p e c t r a o f c o p p e r have, b e e n c o n s t r u c t e d a n d studied. because of low experiment- T h i s s p e c t r u m c o n t a i n s a l a r g e number:of s t a n d a r d w a v e l e n g t h s , i n t h e vacuum u l t r a v i o l e t ; g r a t i n g i n t e n s i t y we were u n a b l e however, to observe lines. An e x i s t e n t d i s c r e p a n c y between c a l c u l a t e d measured, v a l u e s f o r t h e atoms h a s netic this line• Light these excita- ranging g r a t i n g order a t a d i s p e r s i o n of 1 A ° / W « Lyman a ally a line isotope structure obtained obtained permitting positive spark The f o r the been o b t a i n e d u s i n g exposure times from twenty minutes t o fifth been a c c u r a t e l y i o n i z a t i o n p o t e n t i a l of b e e n r e s o l v e d by a g e n e r a l i z e d Lamb shift. and Helium-like electromag- iv ACKNOWLEDGMENTS I am p l e a s e d t o acknowlege t h e h e l p and a d v i c e g i v e n b y D r . A . M. C r o o k e r who s u g g e s t e d To foil the problem. D r . J . B. W a r r e n , f o r t h e l o a n o f p l a t i n u m , and a g i f t o f h e a v y w a t e r , t o Mr. J . L e e s , generous h e l p w i t h glass, blowing Reesor f o r h i s a i d i n d r a f t i n g , for hiss p r o b l e m s , a n d t o Mr. T. I extend my warmest thanks. I am i n d e b t e d t o D r . G. H e r z b e r g f o r v a l u a b l e d i s c u s s i o n o f many o f t h e p r o b l e m s e n t a i l e d It was i s a pleasure t o acknowledge t h a t t h i s completed d u r i n g t h e tenure Council Bursary. i n this of a National work. work Research iii TABLE OF CONTENTS Pap;e 1 Acknowledgements Abstract i i Table of Contents List i i i of Illustrations iv Introduction 1 I. 3 Theory o f H y d r o g e n - l i k e Spectra.. (a) E a r l y Work 3 (b) W e l t o n ' s T h e o r y of the Electromagnetic S h i f t 7 I I . P r e v i o u s E x p e r i m e n t a l Work o n Lyman S e r i e s Spectra 12 (a) On t h e H y d r o g e n Lyman S e r i e s 12 (b) On O t h e r H y d r o g e n i c 15 I I I . tamb S h i f t Lyman S e r i e s 16 i n H e l i u m - l i k e Atoms 19 I V . D e s i g n o f E x p e r i m e n t a l Programme (a) E s t i m a t e o f O p t i c a l P e r f o r m a n c e of the Lubzinski Spectrograph 19 (b) S t a n d a r d W a v e l e n g t h s I n t h e Vacuum (c) V. Ultraviolet 25 Widths o f S p e c t r a l L i n e s . 31 Experimental - 33 (a) The L u b z i n s k i S p e c t r o g r a p h 33 (b) F o c u s s i n g t h e S p e c t r o g r a p h 37 (c) 41 Lyman S e r i e s (d) F i r s t Spark Spectra Spectrum o f Copper 45 V I . C o n c l u s i o n s a n d Recommendations 48 Bibliography 50 iv LIST OF ILLUSTRATIONS A. Figures I. Energy L e v e l Diagram of the Hydrogen Atom. II. to f o l l o w page 5 O p t i c s of the L u b z i n s k i S p e c t r o g r a p h . t o f o l l o w page 19 I I I . Vacuum Wavelength Standards from the R i t z Combination P r i n c i p l e I V . Spectrograph P r e s s u r e A g a i n s t t o f o l l o w page 19 Time from C e s s a t i o n of Pumping V. page 34 C i r c u i t Diagrams of Power Supply and High Frequency O s c i l l a t o r B. to f o l l o w page 4 l Tables —,,, I. Experimental Hydrogen Lyman Wavelengths A c c o r d i n g to Boyce and Rieke II. I o n i z a t i o n E n e r g i e s f o r the page 14 Ground S t a t e s of H e l i u m - l i k e Atoms I I I . L i n e a r D i s p e r s i o n and Wavelength IV. Vacuum Wavelength Standards i n the C. 17, page 21 Against D i f f r a c t i o n Angle V. page First Spark Spectrum of Copper page 30 Doppler H a l f Widths- f o r Hydrogen and Copper page 32 Plates I. Reproduction of T y p i c a l Spectragrams. to f o l l o w page 42 INTRODUCTION The. t h e o r y o f D i r a e e ( l 8 ) p r e d i c t s t h a t a_Sj_ e n e r g y l have t h e l e v e l and same.energy Retherford P± l e v e l the the o f t h e h y d r o g e n atom (he d e g e n e r a t e ) . However, Lamb and (26) have shown e x p e r i m e n t a l l y t h a t t h e r e i s a n -1 energy difference o f a b o u t 0.03 Bethe. ( 1 4 ) , has. d e d u c e d f r o m cm between these t h e new. quantum an e q u a t i o n w h i c h p r e d i c t s an upward s h i f t relative this t o the P l e v e l s . shift cm f o r the A agreement w i t h t h e . e x p e r i m e n t a l . v a l u e . / *" 5j. , a shift line a t 1216 A°. wavelength of t h i s o r d e r t o be o f 0.004 A I t was L a line able to t e s t I t was available 0 (1) To i n good:, F o r the ground w i t h an a c c u r a c y the state, corresponds Bethe the o f 0.001 A° in prediction. L u b z l n s k i vacuum only spetrograph such e x c e s s i v e l y l o n g exposure times experimental study level, our p u r p o s e t o measure the theory f o r t h e h y d r o g e n Lyman precieionviWorkoonttheLL^mansseries, Our Jx levels soon d i s c o v e r e d t h a t the b l a z e of the grating.for necessitated Bethe o f 0.264 cm"""*- i s p r e d i c t e d , w h i c h to a wavelength s h i f t a electrodynamics, in a l lS A c c o r d i n g to the amounts t o 0.03 levels. that w o u l d be I m p r a c t i c a l . programme t h e n became: focus the s p e c t r o g r a p h a c c u r a t e l y and to I t s performance w i t h the e x i s t i n g g r a t i n g i n o r d e r to f a c i l i t a t e u t i l i z a t i o n when t h e improved g r a t i n g (2) To develop a suitable source f o r the arrived. excitation of the h y d r o g e n Lyman s e r i e s (3) involved To attempt A solve the fundamental problem i n a l l p r e c i s i o n w a v e l e n g t h measurements i n vacuum u l t r a - r v i o l e t of to spectra^ spectral region s u i t a b l e wavelength d e t a i l e d account of i . e . the the development standards, the results of t h i s programme is presented. An i n t e r e s t i n g d i s c r e p a n c y between measured and calculated was encountered. be ionization potentials I t i s shown t h a t readily resolved by considering of h e l i u m - l i k e t h i s discrepancy a modified atomscan Bethe equation.. We the commence w i t h a n theory of elementary magnetic semi-quantitative treatment the the h y d r o g e n - l i k e atoms i n c l u d i n g shift, a l work on o u t l i n e , of f o l l o w e d by Lyman s e r i e s of history Walton's the electro- a review of p r e v i o u s spectra* of experiment- If".' THEORY OF (a) 3 - HYDROGEN-LIKE. SPECTRA, E a r l y - Work. The problem of the o f t h e h y d r o g e n atom has i n t e r p r e t a t i o n of the p l a y e d an a l m o s t . u n i q u e t h e d e v e l o p m e n t o f t h e new quantum.mechanics. spectra role From t i m e , o f B a l m e r , c o n t i n u a l major, a d v a n c e s were made either i n v e n t i n g more r e f i n e d t h e o r i e s t o a c c o u n t experimental elaborate o f new data, on t h e . one experimental thought other. t h a t t h i s p r o c e s s had range of p r e c i s e e x p e r i m e n t a l f o r by the t h e o r y of D i r a c . work by Lamb and R e t h e r f o r d Until recently exhausted itself.. expressed h i n 1885 * by the great accounted experimental (26) wartime exploiting and subsequent (14), have shown showed, t h a t t h e w a v e l e n g t h s . simple hydrogen empirical formula: . where b i s . a n e m p i r i c a l l y This, formula A been However, r e c e n t ( >\ ) o f a l l t h e t h e n known l i n e s a t t r i b u t e d , t o c o u l d be new i n the Dirac: t h e o r y . (13) Balmer for i t . had dataseemed well t h e o r e t i c a l work, e s p e c i a l l y by. B e t h e deficiencies by to observe p r e d i c t i o n s developments i n microwave t e c h n i q u e , real the hand, o r d e v i s i n g more- techniques t h e o r i e s on t h e in d e r i v e d c o n s t a n t and n = 3, p r e d i c t e d , the. w a v e l e n g t h s o f t h e o b s e r v e d with errors.of less than one p a r t i n one thousand. 4, ... lines? Michelson and Morley in ( J I ) s o o n showed t h a t t h e f i r s t t h e s e r i e s . ( H ) was a therefore 4 line i n r e a l i t y a c l o s e d o u b l e t ..and t h a t the Balmer f o r m u l a c o u l d n o t be s t r i c t l y correct. I t was n e v e r t h e l e s s a n i m p o r t a n t , s t i m u l u s f o r f u r t h e r work. The first s u c c e s s f u l t h e o r e t i c a l treatment of t h e h y d r o g e n atom problem.was; r e p o r t e d by B o h r (15) 1913. By c o m b i n i n g Rutherford's idea (34) of a n u c l e a r atom w i t h t h e quantum c o n d i t i o n s o f P l a n c k a n d (19), in Einstein B o h r was a b l e t o show t h a t , o n l y . d i s c r e t e , e n e r g y l e v e l s were p o s s i b l e a n d g i v e n by f h e formula:.7 2 E(n) = - ... hcR (1-2) n The number to n. of " o r b i t s " p o s s i b l e f o r ea,ch e n e r g y T h u s f o r n —. 1 o n l y a c i r c u l a r w h e r e a s f o r n = 2 one c i r c u l a r were p e r m i t t e d , that etcetera. the r e l a t i v i s t i c o r b i t was was permitted and,one e l l i p t i c a l S o m m e r f e l d (37) equal orbit I n 1916 showed v a r i a t i o n o f mass w i t h v e l o c i t y l e d to. s m a l l e n e r g y d i f f e r e n c e s between o r b i t s quantum number, n , . a n d t h e . t h e o r y e x p l a i n e d a l l t h e known experimental r e s u l t s o f t h e same - Including the doublet s p l i t t i n g of Michelson-Morley•. However, t h e B o h r t h e o r y was n o t adequate. completely No s a t i s f a c t o r y m e t h o d f o r t r e a t i n g atoms more t h a n one . . e l e c t r o n c o u l d be d e v i s e d ; . f u r t h e r i e s were e n c o u n t e r e d i n deducing with difficult- the r u l e s f o r l i n e Intensities 5 - - the s o - c a l l e d s e l e c t i o n . r u l e s . These difficult- i e s were surmounted i n 1926 by the new wave mechanical > theory of Schrttdinger m a t r i x mechanics (35) ( o r the e q u i v a l e n t (22)) based upon s p e c u l a t i o n s The p o s s i b l e energy levels, of d e B r o g l i e . E , and the s t a t e f u n c t i o n s , Y , which r e p l a c e the Bohr o r b i t , eigenvalue Heisenberg c o u l d be deduced from the equation HY - EY . . . (1-3) where H Is. a s u i t a b l e . H a m i l t o n i a n . o p e r a t o r . Rules were g i v e n f o r deducing the a p p r o p r i a t e form of H from analogues... classical A f t e r the new mechanics had been m o d i f i e d by the i n t r o d u c t i o n o f r e l a t i v i t y mass v a r i a t i o n effects, and the s p i n o r b i t i n t e r a c t i o n of Uhlenbeck and Goudsmit (39) r e s u l t s were o b t a i n e d f o r the hydrogen energy equivalent t o those o f Sommerfeld. function, levels The e l e c t r o n wave Y , was a f u n c t i o n of the p r i n c i p a l quantum number, n , the o r b i t a l quantum.number, JL , whose p o s s i b l e v a l u e s are n , ( n - 1 ) , a possible m=>e, (n-2) . . . 0 Bohr orbit., a magnetic U-2), ... 0,-1, (-e-1), each c o r r e s p o n d i n g t o quantum number . . . -JL, and f i n a l l y a s p i n quantum number S whose p o s s i b l e v a l u e s a r e +1/2 and -l/2. The d i s c r e t e energy s t a t e s which a r e deduced from the Schrtidinger e q u a t i o n a r e (7) S(n.,Q = _ RZ£ he n' where a = 2 n e / c h 2 constant, + rP 4n j + 1/2 ( o r 1/137) i s the f i n e • • • (1-4) structure Z and R a r e : t h e a p p r o p r i a t e charge and Rydberg Bethe ! B, 1 1 t D irac FIGURE I, ENERGY LEVEL DIAGRAM F O R ATOM. To f o l l o w page 5 THE HYDROGEN constant, respectively, 6 - f o r t h e atom c o n s i d e r e d , a n d J i s t h e t o t a l a n g u l a r momentum whose p o s s i b l e v a l u e s a r e X + and A its l / 2 except value just i s 1/2. f o r S states, The f i r s t term ( s t a t e s w i t h i = 0 ) , when of equation term g i v e s t h e combined spin-relativity p which i s , f o r hydrogen, an order o f a first. An important prediction and that s t a t e s of d i f f e r e n t ^ t h e 2*$x a n d 2 * ^ Figure Lyman s e r i e s . called levels t o the ground The p r i n c i p a l theory in 2 ?JL 1 states, , but i d e n t i c a l level that degenerate. scheme f o r The l i n e s arising state are c a l l e d the line shown i n t h e f i g u r e i s Q s h o u l d be a d o u b l e t whose called n ( L ) a n d a c c o r d i n g t o t h e wave intensities are Indicated. and smaller than the . i n h y d r o g e n - l i k e atoms be I g i v e s t h e energy t h e Lyman a l i n e mechanical correction Thus t h e t h e o r y p r e d i c t s hydrogen on the Schrtidlnger t h e o r y . transitions The consequence o f t h i s . e q u a t i o n . i s the j have t h e same e n e r g y . from (1-4) i s the f a m i l i a r n o n - r e l a t i v i s t i c ; B o h r expression. second 1/2 The l i n e s theoretical ending t h e Balmer s e r i e s , on t h e 2 S i 1 a r e n o t shown the diagram. The relativistic quantum, t h e o r y o f D i r a c ..(18) w h i c h a u t o m a t i c a l l y endowed.the e l e c t r o n w i t h spin a n g u l a r momentum, i s c o n s i d e r e d a more s a t i s f a c t o r y than the o l d SchrBdinger theory. it t h a t f o r t h e h y d r o g e n atom p r o b l e m i s sufficient t o note However, f o r o u r theory purposes D i r a c s theory g i v e s the same r e s u l t ^ as the SchrBdinger 1 theory. For hydrogen-like atoms,.the energy l e v e l s are a g a i n g i v e n by e q u a t i o n ( 1 - 4 ) , and i n p a r t i c u l a r the 2*"Si.and. 2 . P i l e v e l s are degenerate. From 1887 t o 1940 soma.thirty--two o p t i c a l studies (27) careful were made of the h y p e r f i n e of the Balmer a l i n e . . structure The . s l i g h t d i s c r e p a n c y , which seemed to be i n d i c a t e d , between the Dirac. theory and most of t h i s work c o u l d be r e s o l v e d by r a i s i n g the 2 ' " S i level about 0.03 c m " r e l a t i v e to the 2 1947 1 x level. In Lamb..: and R e t h e r f o r d (26) by o b s e r v i n g t r a n s i t i o n s between fine s t r u c t u r e l e v e l s using.new microwave techniques found.that indeed the S l e v e l was s h i f t e d upwards. Bethe t h e n deduced from the quantum e l e c t r o d y n a m i c s (14) the expected magnitude of such a s h i f t . account, of t h i s Bethe s h i f t , A simplified d u e . t o Welton (40), will now be p r e s e n t e d . (b) Welton*s Theory of the E l e c t r o m a g n e t i c Shift The quantum theory of r a d i a t i o n p r e d i c t s an infinite e l e c t r o n mass and hence an i n f i n i t e a s s o c i a t e d w i t h t h i s mass. As such q u a n t i t i e s not observable t h i s . r e s u l t must be I n c o r r e c t • # energy are.clearly Bethe The. p r e c i s e r e s u l t of the D i r a c theory leads _to e q u a t i o n (1-4) when expanded In.powers of a t o a . Successive terms are n e g l i g i b l y s m a l l . 2 suggested finite, that the i n f i n i t e by a s u b t r a c t i o n procedure. be p e r f o r m e d result and mass, be r e n o r m a l i z e d , "correctly" the theory I f this renormalization leads to the f e l i c i t o u s of zero electromagnetic.energy a small, displacement o f energy or. made f o r a free levels electron f o r a bound electron. Welton's the p h y s i c a l o r i g i n for in s e m i - c l a s s i c a l theory of this a bound e l e c t r o n . vacua, displacement, of energy E K levels Consider a quantized e l e c t r i c as a F o u r i e r expansion E -- l_ (40) i l l u s t r a t e s i n terms o f plane e field, waves^ ... ( 1 - 5 ) k —» , where i s the. a m p l i t u d e and c i r c u l a r of. the. wave w i t h *c i vector k energy i s not zero, f o r a quantized, r a d i a t i o n . f i e l d , f o r there are the so-called those f o r a.simple energy frequency propagation The l o w e s t zero p o i n t e n e r g i e s harmonic oscillator. similar to The z e r o p o i n t a s s o c i a t e d . w i t h e a c h F o u r i e r component so t h a t t h e a m p l i t u d e £ (r+l]>)-i-^t)~E r T < where M-M£j c a n be d e t e r m i n e d = J*£ 1£K\ C . T^v is T ^ ^ by t h e e q u a t i o n H-IVCSJ = ~jp^s i s t h e number.of r a d i a t i o n whose wave v e c t o r s l i e i n ^ k . # We an 3 ... ( i _ 6 ) oscillators Hence d-7) employ t h e c o n v e n t i o n t h a t t h e . summation be c o n s i d e r e d i n t e g r a l f o r n o n - i n t e g e r k. - 9 - These f l u c t u a t i n g e l e c t r i c - f i e l d s p o s i t i o n of an electron w i l l the nucleus, e l e c t r o n over a n o t be so tend to spread s m a l l volume. the Such an s t r o n g l y a t t r a c t e d c l when c l o s e t o thus r a i s i n g . i n energy a n g u l a r momentum.relative to those the s t a t e s of s t a t e s of zero higher a n g u l a r momentum i n w h i c h t h e e l e c t r o n has. a s m a l l bility of b e i n g found Now from let.us where t h e fluctuations. contributes The the nucleus. t r y t o . e s t i m a t e the such f l u c t u a t i o n s . . electron, and near L e t r + d r be second term kinetic change i n a r i s e s from energy ignored. of the V s m a l l we (? ^)= The time term + average value of the second contribution. there Since dr The term ... i s zero ; i_ ) ( 8 and c o n t r i b u t i o n of the is *v-- tC^)U. v v l To electron assume t h e r e f o r e makes no last zero p o i n t F o r a bound s t a t e vc?j C ^ * ) V ( ? J +it^-*)V?; + - + the oscillations e x i s t s an e f f e c t upon the . p o t e n t i a l energy. is energy the p o s i t i o n of t o t h e - e l e c t r o m a g n e t i c mass o f t h e c a n t h e r e f o r e be proba- calculate ... _ (1 9) c^Mi, r e c a l l —i ^ or and <Ly - €. E - - e f o r the r e s u l t a n t E fc Vf- »-/-w*n .... (1-10) - V I * <- V ^ c / / e . The limits integral effect ^ k-^ a n d from of the k 10 2 [A l which are - 4 fe fe inserted ... to prevent the d i v e r g i n g . w i l l , b e . discussed, later.. zero p o i n t f l u c t u a t i o n s (1-11) The is.then - (1 When t h i s , i s a v e r a g e d energy shift over a quantum s t a t e ¥ the l only the S structure constant The ••• (1 W states are and nuclear (a i s the the same a s c a l c u l a t e d and v a l u e : f o r kjj c o u l d be 13) fine charge.) Bethe e q u a t i o n o b t a i n e d from t h a t k]_ c o u l d be reasonable shifted, Z the quantum . . e l e c t r o d y n a m i c s , was except resulting is i« (^)/* PM$) so.that 12) non-r-relativistic equation a guessed. (1-13) physically Bethe f o u n d for hydrogen k The x = 17.8R upper, l i m i t ' Is^ was taken ... e q u a l t o mc/h expectation that a r e l a t i v i s t i c convergence f o r l i g h t energy.of was the (1-14) because of c a l c u l a t i o n would l e a d quantum e n e r g i e s e x c e e d i n g . t h e electron. The the logarithm appearing to rest above a c c o r d i n g l y , f o r hydrogen log ~ or l o g 1 7 ^Q h c R or 7.63 ... (1-15) 11 Relativistic - calculations(27) have been subse- quently c a r r i e d out t o second o r d e r p e r t u r b a t i o n y i e l d i n g results equivalent t o those obtained here, w i t h i n the accuracy r e q u i r e d f o r o p t i c a l , spectroscopy. Whe n. hydro geni c - wave- f u n o t i o n s . a r e i n t o e q u a t i o n (1-13) the r e s u l t a n t shift is sub at 1 t u t ed explicitly dE = ^ h c l o g ( ^ ) ^ f o r the S s t a t e s . stant ... Other s t a t e s a r e u n a f f e c t e d . (1-16) The c o n - k^ f o r helium t u r n s out to be f o u r times t h a t f o r hydrogen (1-14) and v a r i e s slowly f o r s u c c e s s i v e hydrogenlc atoms• The p o s i t i o n s of the S l e v e l s p r e d i c t e d by e q u a t i o n Figure.I. for.hydrogen (1-16) are shown c r o s s h a t c h e d . i n As i s i n d i c a t e d / . i n . t h e f i g u r e , 2 " " f x energy levels x ^ a n d a r e s h i f t e d upward by 0.265 cm""'' and 0.03 c m " r e s p e c t i v e l y . 1 the l This shifts the H Balmer s e r i e s by about 0.01 A ° , and the L each a a l i n e of the l i n e o f the Lyman s e r i e s by about 0.004 A / t o l o n g e r wavelengths* 0 those p r e d i c t e d by the D i r a c theory. than XTI, PREVIOUS EXPERIMENTAL WORK ON LYMAN SERIES SPECTRA (a) On t h e H y d r o g e n Lyman S e r l e s It predict t h a t Lg f o r h y d r o g e n be a d o u b l e t 0.367 cm" by has been .seen,that, t h e o r e t i c a l considerations of separation whose c e n t r e o f g r a v i t y l i e s a t 1216...664 A ° 1 the unmodified o r a t 1216.664 A Dirac theory according t o the Bethe.theory of electromagnetic The Lyman.a l i n e doublet observed. structure of this Further sufficiently shift. placed, such confidence the Dirac equation Indeed, u n t i l is a a recently been observors commonly c a l c u l a t e d Lyman lines Because, s u c h . g r e a t i n the t h e o r e t i c a l l y c a l c u l a t e d considerable experimental encountered i n precision,measurement Lyman l i n e s , has never i n the. w a v e l e n g t h s c a l c u l a t e d f r o m that very was p l a c e d wavelengths,rand shift. v e r i f i c a t i o n of .the. were u s e d a s w a v e l e n g t h s t a n d a r d s . confidence 0 i t s wavelength has.never been measured a c c u r a t e l y t o permit electromagnetic + 0.004 A 0 t h e p u b l i s h e d work o n t h i s difficulty of the hydrogen subject I s meagre. I n t h e s p e c t r a l r e g i o n o f t h e hydrogen.Lyman line, indeed f r o m a b o u t 1900 A ° t o b e l o w 10 A , a i r , 0 q u a r t z , and g e l a t i n a r e opaque. the a quartz o p t i c s b y t h e more, t r a n s p a r e n t s p e c i a l l y prepared spectrograph and thus Schumann (4) b y r e p l a c i n g was a b l e photographic to register fluorite, using plate., and. e v a c u a t i n g h i s s p e c t r a t o a b o u t 1250 A ° c r e a t e d vacuum u l t r a v i o l e t spectroscopy. As f l u o r i t e becomes a l m o s t opaque . i n t h e h y d r o g e n Lyman a 13 region, as Schumann p r o b a b l y the.refractive was d i d . not observe index of f l u o r i t e i n this spectral unknown n o . w a v e l e n g t h measurements were Lyman . ( 2 8 ) , who.was t h e f i r s t fluorite by t h i s . line,. 1914 A t o r e p l a c e , the. grating, Lp a t 1026 and 0 A°. His w a v e l e n g t h measurements were b a s e d . u p o n . t h e g e o m e t r y his instrument a n d were a c c u r a t e t o p e r h a p s 1 1922 In i n the f i r s t imeter, g r a t i n g s p e c t r o g r a p h w i t h two = a 1215.68 ± 0.03 Takamine a n d minute a observed the A first 0 (38), Suga Lyman s e r i e s o u t and Rao intensity anomalies (inelastic) and Budami t o the t w e n t i e t h orders respectively, a t t r i b u t e d to c o l l i s i o n s o f the w i t h f o r e i g n .gas m o l e c u l e s (32), and discovered second., k i n d .( a n d atoms). the. method...of o v e r l a p p i n g o r d e r s , w a v e l e n g t h s were measured t o about 0.02 B a l l a r d and of cent- exposures.. with the fifteenth By 0 he e s t a b l i s h e d L who A . f o u r o r d e r s of a f i f t y c o i n c i d e n c e o f the. f o u r t h o r d e r L o r d e r Hp of J.. J . Hopf leld...(.24.) o b s e r v e d . t h e . h y d r o g e n Lyman s p e c t r u m By region possible. prism, by a c o n c a v e R o w l a n d d i f f r a c t i o n d i s c o v e r e d LQ a t 1216 Further t h e hydrogen and first order also observed A . 0 White (12) deuterium obtained Lyman . s e r i e s l i n e s , i n t h e o f a t h r e e metre, g r a t i n g . i n the second spectrograms order. The Values L l i n e s , were a of A A , the - 14 - w a v e l e n g t h i n t e r v a l f o r t h e h y d r o g e n i s o t o p e s , were mined u s i n g i r o n arc:: l i n e deter- standards, i n second o r d e r spectra a n d . c a l c u l a t e d hydrogen wavelengths i n the first. T h e r e was theory. n a t u r a l l y r a t h e r g o o d agreement, w i t h t h e P r o b a b l y the, most ..accurate e x i s t i n g , m e a s u r e m e n t s o n - t h e h y d r o g e n Lyman w a v e l e n g t h s - a r e t h o s e o f Boyce Rieke (17). U s i n g a t w o metre grating, ; and wavelengths of t h e h y d r o g e n Lyman l i n e s were determined..by c o m p a r i s o n i n higher grating orders against T h e i r r e s u l t s are,,summarized first.order i n Table I . iron The differences between the. m e a s u r e d wavelengths and the D i r a c results a r e compared w i t h the s h i f t theory. Some s h i f t indicated.. can e a s i l y rather lines. theoretical p r e d i c t e d b y t h e Bethe,. t o w a r d s t h e B e t h e r e s u l t . s e e m s t o be However, a s t h i s . m e t h o d o f o v e r l a p p i n g lead to considerable error orders such evidence i s inconclusive. . - TABLE. I E x p e r i m e n t a l . H y d r o g e n Lyman W a v e l e n g t h s t o Boyce a n d R i e k e Experimental A° Dirac Theory A° 1215.666 1215.664 1025.725 1025.717 972.538 Experimental - Calculated IO" 3 A 0 Accordlnp; Bethe Shift 10~ ~A° 3 +3.9 + 8.. +3.5 972.532 + 6 +3.1 949.740 949.739 + 1 +3.0 939.792 939.799 - 7 +2.-.9 +10 +16.4 - (b) On Other Hydrogen!c Hydrogen-like observed 0 f o r He VIII(6). lines measurements Calculated of Lyman because spectral - Lyman S e r i e s III,, L l I I I , However, in this 15 series spectra, have Be IV, B V, of the scarcity region (306 A 0 to w a v e l e n g t h were u s u a l l y wavelengths f o r these C lines VI, 19 K of been VII, and standard A°), precision impossible. were u s e d as standards. For careful orders measurement up calculated agrees L i III, Edlen to the from well with calculated by of the (6) Dirac the Mack Is (6). p o i n t e d out wavelength of t w e l f t h show the has it'to theory by the Lyman a red about electromagnetic that of 20 shift lines the cm" . value This 1 of in 19 cm" 1 - 16 III. LAMB SHIFT I N HELlUM-LIKE ATOMS A c c u r a t e work o n t h e s p e c t r a o f atoms w i t h He I , m o s t l y , b y t h e Swedish s c h o o l , permit iso-electronic. experimental d e t e r m i n a t i o n o f t h e p o s i t i o n o f the ground energy o f t h e s e atoms... Atomic Energy The These e x p e r i m e n t a l v a l u e s t a k e n Tables (6) a r e l i s t e d calculated.results a r e t h o s e o f E r i k s s o n (20) who p o l a r i z a t i o n corrections.. results a r e throughout g i v e n - a noteworthy point of view." It two e l e m e n t s ^ circumstance from Although expected shift c a n be r e a d i l y made. f u n c t i o n s .so t h a t a r e made 4 EC?-) The the t h e o r e t i c a l c a l c u l a t i o n s , have We a p p r o x i m a t e equation the by h y d r o g e n i c wave- ( 1 - 1 3 ) becomes when n u m e r i c a l explicit = Lamb s h i f t s i n Helium-like f o r s u c h atoms a n e s t i m a t e , o f t h e ground s t a t e h e l i u m - l i k e wavefunctions f ctors l i m i t s of f o rthe S levels quantum e l e c t r o d y m a m i c not y e t been performed a the discrepancy i s i n t e r e s t i n g t o ask i f such a d i s c r e p a n c y may be r e s o l v e d b y a Lamb s h i f t atoms. - "the g r e a t e r than t h e exper- considerably greater than the experimental error used a n d mas-s- (11) h a s n o t e d Tyren i m e n t a l ones, and f o r t h e l a s t is from i n Column 3 T a b l e I I . a modified Hylleras formula with r e l a t i v i t y theoretical states (O-AJT) • c a l c u l a t e d from Column 5 o f T a b l e II. # 0 V I I and F V I I I . and A l X I I . ' . . . (3-1) this, formula: a r e g i v e n i n The r a t h e r g o o d . a g r e e m e n t o f d a t a We h a v e a d d e d new r e s u l t s o f Mg X I i n the l a s t 17 - two columns of Table I I , In view of the large e x p e r i m e n t a l . e r r o r s and the c r u d i t y of our t h e o r e t i c a l treatment, suggests s t r o n g l y that a. Lamb s h i f t After is operative. c o m p l e t i o n of the above c o n s i d e r a t i o n s was d i s c o v e r e d t h a t it s u b s t a n t i a l l y the sameargument had been p r e v i o u s l y employed by E r i k s s o n TABLE (21) II I o n i z a t i o n E n e r g i e s f o r the 1 ' S Ground S t a t e s of H e l i u m - l i k e , Atoms. 0 Atom . Calculated cms , Experimental],Calculated Lamb,Shift -Experimental ' cms"" cmd" cms . 3 He I 198319 198305115 + 14 + 2 Li II 610092 610079+25 + 13 + 19 Be I I I 1241308 1241225.1100 + 83 + 60 B IV 2092151 20919601200 + 191 + 150 C V 3162759 31624501300 + 309 + 300 N VI 4453336 44528001500 + 536 + 570 0 VII 5964057 59630001600 +1057 + 960 V I I I 7695209 76934001800 +1809 +15^0 F Ne IX not yet observed Na X not yet observed Mg XI 14213753 1420920012500 +4553 +4850 A l XII 16829563 1682500013000 +4563 +6700 I t may be which s u f f i c i e n t l y obtained, observed those the is 18 concluded - that t h e few.atoms f o r a c c u r a t e , e x p e r i m e n t a l d a t a have, b e e n i . e . L l I I I and some H e l i u m - l i k e atoms, S ground state, s h i f t s agree, q u i t e w e l l c a l c u l a t e d f r o m .the Bethe.. e q u a t i o n . ( 1 - 1 . 6 ) * with j e x p e r i m e n t a l d a t a on the. h y d r o g e n atom g r o u n d too u n c e r t a i n to permit theoretical the However, state verification. IV. DESIGN. OF EXPERIMENTAL PROGRAMME To d e t e r m i n e t h e p o s i t i o n , of: t h e 1 5_<_ x energy state o f t h e h y d r o g e n atom r e l a t i v e t o t h e 2 state, necessitates series lines. The the x m e a s u r e m e n t . o f t h e w a v e l e n g t h s o f Lyman elegant, microwave Retherford, which f i r s t level, ground established i s not a p p l i c a b l e t e c h n i q u e s of. Lamb a n d the s h i f t . i n the 2 t o the ground s t a t e . Bethe p r e d i c t i o n t o w i t h i n even t h i r t y To v e r i f y per..cent requires a n a b s o l u t e w a v e l e n g t h measurement o f a c c u r a c y o f one p a r t i n a m i l l i o n ( t o 0.001 A°)> . A l t h o u g h the. a t t a i n - ment o f s u c h a c c u r a c y p r e s e n t s no d i f f i c u l t y i n the visible spectrum and near u l t r a - v i o l e t regions of the where p o w e r f u l i n t e r f e r o m e t r i c ^ methods a r e a v a i l a b l e , in t h e vacuum u l t r a - v i o l e t encountered.. The two f o r m i d a b l e problems are most m a j o r p r o b l e m s , -the n e e d a vacuum s p e c t r o g r a p h o f a d e q u a t e development will (a) now of a s u i t a b l e be c o n s i d e r e d r e s o l v i n g power a n d source of s t a n d a r d i n some of the wavelengths, detail. E s t i m a t e of O p t i c a l Performance of the Lubzlnski Spectrograph The spectroscopy laboratory B r i t i s h Columbia two metre at the U n i v e r s i t y i s fortunate, i n possessing the spectrograph. of Lubzinski The m e c h a n i c a l c o n s t r u c t i o n and rx •, "# Note, however, t h a t t h e L a m b . s h i f t i n t h e 2 level, w h i c h c o r r e s p o n d s t o a w a v e l e n g t h s h i f t o f 0.01 A ° i n a component o f t h e B a l m e r a l i n e , - two a n d a h a l f t i m e s a s l a r g e as the s h i f t i n the L , was n e v e r c l e a r l y established optically. 5p& a * FIGURE II OPTICS OF THE LUBZINSKI FIGURE HI VACUUM WAVELENGTH RITZ SPECTROMETER STANDARDS FROM COMBINATION PRINCIPLE To f o l l o w page 19 - 20 performance described of t h i s (5). We i n s t r u m e n t ' h a v e been shall o p t i c a l performance in now discuss previously i t s e x p e c t e d optimum when u s e d w i t h o u r S l e g b a h n o r d e r t o answer t h e f o l l o w i n g (1) Can - t h e 0.368 cm" 1 grating questions: doublet structure of L be a resolved? (2) Can t h e w a v e l e n g t h o f t h e c e n t r e o f g r a v i t y at 1216 A be m e a s u r e d 0 the e x p e c t e d Lamb Our discussion w i l l sufficiently shift? show t h a t the f i r s t q u e s t i o n must be affirmative. o p t i c a l mounting, i s i n d i c a t e d . i n F i g u r e I I . from the s l i t S i n c i d e n t u p o n t h e two metre Slegbahn g r a t i n g G a t a n a n g l e o f a b o u t .20° a f t e r diffraction is focussed upon the p l a t e h o l d e r P to P . The a n g l e o f 1 d i f f r a c t i o n 0 ranges from 85° at P to 40° a t P . This 1 g r a t i n g mounting I s . q u i t e u n i q u e . b e i n g ..the. o n l y mounting u t i l i z i n g negative orders. S t e h n a n d E d l e n (30) have, shown, t h a t sion increases without l i m i t (8 20°). severe l i m i t a t i o n s a p p r o a c h i n g P may performance be of t h i s theory of p h y s i c a l existent Mack, a l t h o u g h t h e ..disper- as © i n c r e a s e s to 90°, a t the same t i m e t h e r e s o l v i n g power a p p r o a c h e s rather Q of the L u b z i n s k i Spectrograph The Light L accurately to detect a n s w e r e d . i n t h e n e g a t i v e and. t h e s e c o n d I n t h e (1)"Optics of zero. on t h e use o f t h e Hence region e x p e c t e d . ..For a r o u g h e s t i m a t e o f t h e s p e c t r o g r a p h mounting optics gives first order --21 - h \ z. d(*t^ & - <**~s i ) where in i s the wavelength d i f f r a c t e d grating order grating line with d = So P 1 spacing. (1/576) 1 G e F o r the L u b z i n s k i spectrograph grating T A 0 = 17360 A 0 = 20° that . KA v a r i e s f r o m a b o u t 4800 A ° a t P t o 11500 A Thus t h e h y d r o g e n Lyman a l i n e at. 1216 A observed only (2) through an angle n; i i s t h e i n c i d e n t a n g l e a n d d t h e the Siegbahn i ... ( 4 - 1 ) i n grating- orders 0 0 at c a n be exceeding the f o u r t h . L i n e a r ^ D i s p e r s i o n o f the: S p e c t r o g r a p h The graph, i s g i v e n h linear d i s p e r s i o n of the Lubzinski by linear ^ ••• TT'~ where r i s t h e R o w l a n d c i r c l e r a d i u s along spectro- the p l a t e holder. and. S Table. I I I . g i v e s the.distance the r e s u l t a n t d i s p e r s i o n f o r various u s e f u l angles of diffraction. TABLE .III L i n e a r D i s p e r s i o n and Wavelength A g a i n s t Diffraction (A°) (A°/mm) 40° 5220 6.7 50° 7360 5.6 60° $100 4.3 70° 10400 2.9 80° 11200 1.5 Angle - As the p o s i t i o n of a sharp to one micron, be (n = 0.001 5 x 1216 A . a A ) - spectral line observed i n the i t s w a v e l e n g t h may 0 I f orders 0 employed the be i f L 22 as h i g h . a s the c a n be fifth be determined order, measured to seventh could be w a v e l e n g t h o f t h i s h y d r o g e n Lyman l i n e could d e t e r m i n e d t o 0.0007 A ° . (3) Resolving The g r a t i n g of Power t h e o r e t i c a l r e s o l v i n g power,R, o f a N l i n e s , employed i n the n* * 1 order 1 i s given R = n N For the ... by (4-3) Slegbahn g r a t i n g R = n The diffraction (576 (81 mm) lines/mm) = 46700 minimum w a v e l e n g t h s e p a r a t i o n t h a t may be n resolved Is then Thus t h i s minimum w a v e l e n g t h s e p a r a t i o n f o r t h e Lyman a l i n e . w o u l d and 0.002 A ° be 0.003 A ° f o r s i x t h order.. for fifth The i n such h i g h violet appreciably theoretical spectra practical resolving power a c t u a l l y , a c h i e v e d s p e c t r a w o u l d be order hydrogen order vacuum smaller than ultrathese values. Further, the above c o n s i d e r a t i o n s a p p l y the r e s o l v i n g power o f t h e for the the spectrographs grating. Lubzinski spectrograph plate. The i s the The real only limitation r e s o l v i n g power most f i n e to grained of plates - sensitive 50 lines 23 to f a rultraviolet per millimetre. As radiation can resolve only the dispersion of the spectro- graph i s about. 1 A ° / m m plate r e s o l u t i o n corresponds.to of 0.02 vation Lyman (4) A°. Lyman lines, this a wavelength r e s o l u t i o n separation f o r the o f 0.006 A obser- i n the.hydrogen 0 line. Optimum Grating As surface and S l i t the concave the ordinary are. e n c o u n t e r e d . important of f o r the hydrogen Such r e s o l u t i o n i s inadequate of the doublet a - Width grating optical These i s ruled aberrations aberrations or diffraction spherical f o r s u c h a. s u r f a c e Seoomee'e s p e c i a l l y f o r g r a t i n g mountings with incidence on a rather and l i m i t large the useful angles grating width. Mack, grating width Stehn, and E d l e r f o r maximum (30) have r e s o l v i n g power * A R. shown t h a t w 0 p.j. the i s given by 3 .... ( 4 - 5 ) where R i s the grating radius. graph this raction of 40° optimum, w i d t h v a r i e s angle 80°. o f 4 0 ° t o 4.9 Siegbahn Mack, cms. f o r a d i f f r a c t i o n diffraction grating width Stehm and E d l e r i s not, l i k e extra spectro- from..8.3 c m s . f o r a A3 a l l o u r work u t i l i z e d the f u l l length For the Lubzinski width, o f 8.1 further angle angles cms. was state positively diff- near employed. "Extra harmful". - 24 The s l i t to permit width attainment s h o u l d he s u f f i c i e n t l y of the f u l l without excessive loss (30) i n light g r a t i n g r e s o l v i n g power , intensity. I t c a n be shown/that t h e w i d t h S g i v e n by t h e f o l l o w i n g satisfies this it slit width f o r 1200 A o u r s p e c t r o g r a p h i s about f i v e i s found tolerable usually ... (4-6) • Hence t h e " i d e a l " orderof that slit equation criterion. a RA S = narrow 0 microns. imperfections, i n the l i n e width i n the f i f t h Practically image, make t h e l a r g e r than, t h i s . t h e o r e t i c a l v a l u e a n d the best width is. d e t e r m i n e d We may c o n c l u d e from optimum o p t i c a l p e r f o r m a n c e this experimentally. d i s c u s s i o n of the of the Lubzinski spectrograph that (1) t h e d o u b l e t structure o f t h e h y d r o g e n Lyman a l i n e c a n n o t be r e s o l v e d w i t h t h e e x i s t i n g (2) a n d t h e m o s t : a c c u r a t e wavelength instrument. measurements t h e o r e t i c a l l y p o s s i b l e with the spectrograph permit d e t e r m i n a t i o n o f t h e hydrogen ground s t a t e only t h i r t y per cent. Lamb s h i f t t o •(b) S t a n d a r d W a v e l e n g t h s 25 - I n t h e Vacuum The most d i f f i c u l t problem Ultraviolet involved a b s o l u t e w a v e l e n g t h measurements i n t h i s is the choice encountered standards. i n vacuum.spectroscopy ment o f l i g h t studied, of s u i t a b l e spectral Most o t h e r region problems - s u c h as. t h e d e v e l o p - s o u r c e s f o r t h e e x c i t a t i o n o f s p e c t r a t o be or the d e s i g n of i n s t r u m e n t s o f power a n d d i s p e r s i o n - c a n be r e a d i l y experienced i n precision spectroscopist adequate r e s o l v e d by of s u f f i c i e n t resolving an ingenuity. the p r o b l e m of s t a n d a r d w a v e l e n g t h s below 2000 A ° Yet remains largely unsolved. F o u r methods o f m e e t i n g t h i s p r o b l e m o f w a v e l e n g t h s t a n d a r d s may be considered: (1) By e m p l o y i n g c a l c u l a t e d w a v e l e n g t h s o f h y d r o g e n i c o r h e l i u m - l i k e atoms f o r w h i c h t h e t h e o r y i s rather well established. (2) By t h e u s e (3) By reference interferometer. s u p e r i m p o s i n g t h e unknown sp;:ectra u p o n known lines (4) F i n a l l y , the of a .reflection..echelon i n lower g r a t i n g by t h e u s e orders. of wavelengths d e t e r m i n e d f r o m " R i t z combination p r i n c i p l e " . The f i r s t method w h i c h i s o f t e n t h e o n l y available method o f e s t a b l i s h i n g s t a n d a r d wavelengths has been u s e d extensively. The a c c u r a c y o f t h e (17, 11) determined wavelengths, i s l i m i t e d experimentally o n l y by t h e r a n g e o f validity 26 of the theory employed. method i s inadequate Clearly, however, this f o r our Lyman s e r i e s problem. F o r an i d e a l g r a t i n g i n p e r f e c t focus comparison # between s p e c t r a i n d i f f e r e n t exceedingly accurate. grating orders should be However, as.no g r a t i n g i s i d e a l and as s m a l l i m p e r f e c t i o n s , i n focus are c e r t a i n l y , present this method of o v e r l a p p i n g orders i s subject t o unknown e r r o r s , (cf. Boyce of Wu (41) (16)) F o r t h i s r e a s o n the proposed experiment and the measurements,previously Boyce and Rieke sufficiently (17) are s u s p e c t . presented, T h i s method i s standards a to the discarded. The only work r e p o r t e d on the use of a echelon f o r not r e l i a b l e to permit d e t e r m i n a t i o n of L accuracy r e q u i r e d and was t h e r e f o r e by reflection i n t e r f e r o m e t r i c d e t e r m i n a t i o n of wavelength i n the vacuum u l t r a v i o l e t i s t h a t of MacAdam (29), who p u b l i s h e d a p r e l i m i n a r y account of some but no r e s u l t s . experiments A s r t h e r e f l e c t i o n echelon i s the only instrument of v e r y . h i g h r e s o l u t i o n which can be employed i n the vacuum u l t r a v i o l e t there would be considerable interest i n i t s f u r t h e r development f o r use i n t h i s region.. However, such work would be t e c h n i c a l l y difficult. Tolansky (10) has d i s c u s s e d some of problems which are encountered. spectral very the The maximum e r r o r s p e r m i t t e d f o r the o p t i c a l surface are o n e - e i g h t i e t h of a wavelength. # I f the g r a t i n g be I l l u m i n a t e d e x a c t l y the same way f o r both r e f e r e n c e and unknown spectra-; This is usually achieved by simultaneous exposure of both s p e c t r a . - 27 If t h e i n s t r u m e n t be b u i l t up u s i n g s a y g r e e n light, these wavelength same e r r o r s amount t o o n e - f i f t e e n t h o f a for M000 A°. worse a s t h e w a v e l e n g t h shows t h a t produced mercury Thus t h e f r i n g e s become decreases. t o achieve an analysis Tolansky steadily further of the fringe; system r e q u i r e s t a k i n g a p l a t e w i t h a f o r e i g n gas i n t h e s p e c t r o g r a p h whose p r e s s u r e be m a i n t a i n e d b e t t e r t h a n one t e n t h o f a m i l l i m e t r e p r o b l e m s a r e much more d i f f i c u l t encountered i n more o r t h o d o x constant.to of mercury. Such of s o l u t i o n than those spectroscopy. r e f l e c t i o n e c h e l o n s ;?of s u f f i c i e n t l y A l s o . as. high quality for vacuum s p e c t r o s c o p y a r e n o t y e t a v a i l a b l e t h i s method o f e s t a b l i s h i n g s t a n d a r d w a v e l e n g t h s was d i s c a r d e d . The here. f i n a l ..possibility .If t h e e n e r g y a r e so p l a c e d t h a t i n the v i s i b l e i s t h e one w h i c h was a d o p t e d l e v e l s A, C, a n d B ( s e e F i g u r e I I I ) t r a n s i t i o n s A—*C a n d C—>B a r e o b s e r v e d where t h e i r a s s o c i a t e d w a v e l e n g t h c a n be v e r y a c c u r a t e l y measured t h e n t h e c o n s i d e r a b l y lower wavelength a s s o c i a t e d w i t h A—>B c a n be d e d u c e d f r o m t h e " R l t z combination principle". The e n e r g y difference b e t w e e n A a n d B i s s i m p l y t h e sum o f t h e o t h e r two d i f f e r ences. F o r example, i f A— >C, a n d C—>-B e a c h l i e a t about 2500 A ° (40000 c m ) a n d c a n be m e a s u r e d t o 0.001 A - 1 ( O i 0 1 6 c m " ) t h e n . t h e A-*B w i l l 1 and o c c u r a t 1250 A c a n be c a l c u l a t e d w i t h a n a c c u r a c y (O.O32 c m " ) . 1 o f about G 0 (80,000 c m " ) 1 0.0005 A ° - 28 - A t p r e s e n t , t h e s p e c t r a o f v e r y few atoms have been of studied sufficiently such standards. Those standards i n the r e g i o n be c o n s i d e r e d . The few atoms, f r o m w h i c h M200 A energy l e v e l were f o u n d v e r y h e l p f u l He e x t e n s i v e l y f o p e r m i t wide use may 0 wavelength be d e d u c e d , will d i a g r a m s ....of G r o t r i a n now (2) i n the s e a r c h f o r such atoms. II The w a v e l e n g t h a s s o c i a t e d w i t h t h e J - f o r once 4*"Dx—-v 2 P n e a r 1215 A , values. Balmer 0 This ionized transition Helium, w h i c h . s h o u l d o c c u r can. be a c c u r a t e l y c a l c u l a t e d f r o m known t e r m line series. i s the analogue As h e l i u m c c a n be tube i n gaseous form, o f Hp i n the introduced hydrogen into and a s o n l y a v e r y s h o r t a discharge extrapolation Would be n e c e s s a r y f o r t h e c a l c u l a t i o n o f t h e w a v e l e n g t h o f L , a this 1215 However, t h i s A s t a n d a r d would 0 line i s very d i f f i c u l t p r o b a b l y n e v e r been o b s e r v e d . extensive be most c o n v e n i e n t . search f o r this, to excite Herzberg ^1215 A 0 (25) line c a n a l s o be series h a s made a n third spectrum of c a l c u l a t e d f r o m known t e r m v a l u e s . member, w h i c h l i e s at. observed w i t h r a t h e r at i n the. f i r s t X1402 A , 0 has been..only l o n g exposure times; A1268 A ' W o u l d be v e r y much l e s s 0 has without success. The w a v e l e n g t h s . o f t h e s e c o n d . a n d of the p r i n c i p a l and The memberss mercury The second weakly third intense than the member - second and has not yet been 29 - observed^ CO The r o t a t i o n a l s t r u c t u r e of the e l e c t r o n i c of t h i s diatomic molecule might be used standards. The t r a n s i t i o n n B ' E + as.wavelength — , which has been observed i n e m i s s i o n and a b s o r p t i o n can be from known term v a l u e s expensive (3). band.-systemsaof calculated However, as other v e r y t h i s molecule would o v e r - l a p these known l i n e s c a u s i n g severe e x p e r i m e n t a l and as at present the accuracy low we have not yet b|nds difficulty of these standards i s s t u d i e d t h i s method rather experimentally. Cu I I Shenstone (36) as a r e s u l t of h i s exhaustive study of the a p e c t r a of once i o n i z e d Copper, has been able to. c a l c u l a t e and f i f t y the wavelengths of more than one hundred l i n e s between 2000 A° and 685 A ° . T h e i r accuracy i s b e l i e v e d to v a r y from about 0.003 A° at 1700 A 0 l e s s , than 0.001 A° at 800 A ° . the wavelengths of those their intensities Table IV p r e s e n t s to l i n e s i n the r e g i o n o f hydrogen L , on an a r b i t r a r y s c a l e , f l and t h e i r p r o b a b l e errors. A l t h o u g h these copper l i n e s are somewhat t o e x c i t e they have c e r t a i n l y been observed difficult (25, 3 6 ) . # Herzberg (23) has not been a b l e to e x c i t e t h i s " l i n e i n emission. He i s now a t t e m p t i n g o b s e r v a t i o n i n a b s o r p t i o n . - R O TABLE IV Vacuum Wavelength Standards Wavelengths (A°) i n the F i r s t Spark Specta Copper.. . Intensities _ _ _ _ _ Probable E r r o r (10-3 AQ) .1299.26? 10 2 1298.394 15 2 1297.549 2 2 1281.458 8 4 1275.570 30 2 1274.463 3 2 1266*308 10 1 1265.504 15 1 I25O.045 10 2 5 2 1241.961 2 1 1219.332 1 2 1214.553 1 2 1185.899 2 2 1109.742 1 2 1106.446 3 2 1088.393 20 2 1248.790 • Careful-vacuum i n t e r f e r o n s try. .of the v i s i b l e would reduce the above p r o b a b l e . e r r o r s . t h a t these Cu II wavelength line.. It parent seems the best hope of lines clear satisfactory-/ s t a n d a r d s . i n the r e g i o n of the hydrogen Lyman a Therefore, i m e n t a l study these l i n e s offer of lines. our programme Includes a c a r e f u l of l i g h t exper- sources f o r the p r o d u c t i o n of - 31 - (c) Widths of S p e c t r a l L i n e s No factors radiation i s p e r f e c t l y monochromatic* most, commonly p r o d u c i n g f i n i t e lines.are - intrinsic S t a r k and Zeeman b r o a d e n i n g , finally the Doppler width. discussed here. If the s e l f - r e v e r s a l width, For the c o n d i t i o n s ( c f . Tolansky intrinsic atom a t r e s t w o u l d e m i t radiation by and w i l l be and experiments the only (10)) w i d t h be neglected, an light. An the observor would i s displaced to higher frequencies ti v where This Now of our s t r i c t l y monochromatic atom m o v i n g w i t h a v e l o c i t y v t o w a r d s emit r a d i a t i o n which spectral r a d i a t i o n width,, p r e s s u r e b r o a d e n i n g , D o p p l e r w i d t h i s much t h e l a r g e s t effect breadth of The i s s i m p l y a consequence of the f a m i l i a r . Doppler t h e atoms o f a gas move w i t h a M a x w e l l i a n distribution. which Effect. velocity Hence t h e r a d i a t i o n r e s u l t i n g f r o m atoms, i f a t r e s t would emit m o n o c h r o m a t i c . r a d i a t i o n of f r e q u e n c y v , w i l l .byyvirtue, of t h i s M a x w e l l i a n d i s t r i b u t i o n have f i n i t e resultant equation line (4-7) width. The velocity h a l f w i d t h of i s simply d e r i v e d from k i n e t i c the theory and as (4-8) where T i s t h e t e m p e r a t u r e a n d R i s t h e gas constant. o f t h e gas o f a t o m i c w e i g h t m I f V be m e a s u r e d i n wave numbers - 32.we nave Jiv The (p-fi) = Doppler h a l f spectral lines if" T [ ....(4-9) w i d t h s d e r i v e d from, e q u a t i o n (4-9) f o r of hydrogen r e g i o n a t temperatures temperature.(30° t-HJ. and copper i n the of l i q u i d nitrogen 1200 of copper (1083° C) a r e p r e s e n t e d i n T a b l e V. TABLE V D o p p l e r H a l f Widths, f o r Hydrogen, a n d Half. Width (°C) Copper i n cm"" 1 Cu H -210 0.06 0.47 30 0.13 1.0 0.28 2.2 1083 Even a t the temperature of l i q u i d nitrogen the.. D o p p l e r h a l f w i d t h o f t h e Lyman a h y d r o g e n (0.47 cm" ) 1 structure would line p r o b a b l y mask t h e e x p e c t e d d o u b l e t (0.36 cm"" ) • 1 0 (r210° C ) , room C ) , and the m e l t i n g p o i n t Temperature.,, A V. All quartz, 33 - EXPERIMENTAL t h e common o p t i c a l m a t e r i a l s , etc.), a n d most, gases,*; ( n o t a b l y a i r ) , a r e opaque t o r a d i a t i o n i n t h e s p e c t r a l r e g i o n below Further, because, of. t h e s t r o n g a b s o r p t i o n a l l conventional to A The s p e c t r o s c o p y of t h e i r emulsion, insensitive of t h i s r e g i o n 2000 A , c a l l e d vacuum u l t r a v i o l e t , s p e c t r o s c o p y , 0 below requires e l i m i n a t i o n o f a l l s u c h opaque m a t e r i a l f r o m t h e spectrograph.light path. the ordinary ible techniques However, i n a l l o t h e r of spectroscopy Boyce (16)., t r e a t i s e s b y Bomke helpful information t h e vacuum (a) The on t h e t e c h n i q u e s (4), and (6) a l l c o n t a i n very of spectroscopy i n ultravioleti Lubzinski.Spectrograph A d e t a i l e d account of t h i s The r e v i e w o u t l i n e d (1) a n d Lyman i n Sawyer's t e x t respects i n the more-access- s p e c t r a l regions, are applicable,. the r e l e v a n t chapter spectrograph hg,ve a l r e a d y of the mechanical c o n s t r u c t i o n has been g i v e n by L u b z i n s k i examined, t h e m a i n f e a t u r e s system o f t h i s , instrument p e r f o r m a n c e of. t h e r e m a i n i n g described. (5)• We of the o p t i c a l a n d have, e s p e c i a l l y . . . n o t e d t h e u n i q u e mounting, w h i c h u t i l i z e s be A 2000 A ° . p h o t o g r a p h i c , . m a t e r i a l s aree a l s o such radiation.. the by (glass, negative critical orders. The components w i l l now Vacuum A large o i l . d i f f u s i o n pump b a c k e d Kenney pump s e r v e s t o e v a c u a t e f o r t y minutes.. The. p r e s s u r e by a mechanical t h e s p e c t r o g r a p h i n about i s recorded on a B i r a n i . guage. The u l t i m a t e p r e s s u r e , w h i c h i s . l i m i t e d b y the. natural leak of the spectrograph, d e s o r p t i o n o f gases, and t h e w a t e r c o o l i n g employed, w i t h .the. d i f f u s i o n pump, i s about.one micron.of factor mercury. The. I m p o r t a n c e o f t h e s e c o n d i s illustrated, i n Figure IV. FIGURE.IV ^ S p e c t r o g r a p h . P r e s s u r e . A g a i n s t Time. From C e s s a t i o n o f Pumping o U o > w ft; lo Iv It c a n be s e e n t h a t the rate Jo % 9 of p r e s s u r e r i s e upon c e s s a t i o n o f pumping d e c r e a s e s w i t h t o t a l e l a p s e d pumping t i m e . phenomenon was a t t r i b u t e d t o water vapour a d s o r p t i o n I n t h e porous, i r o n a n d i r o n o x i d e spectrograph housing. " R i n s i n g " the spectrograph w i t h hydrogen o r helium reduced This greatly t h e time r e q u i r e d f o r d e g a s s i n g . I n a l l exposures a continuous flow.of circulating - 35 gas from the. d i s c h a r g e through the s p e c t r o g r a p h s l i t maintained.. The r e s u l t a n t c o n d i t i o n s was about f i v e was spectrograph p r e s s u r e under such microns, r e s u l t i n g i n negligible a b s o r p t i o n f o r the s p e c t r a l r e g i o n of the hydrogen Lyman series (cf. Hopfield (24)). The G r a t i n g The g r a t i n g employed (#257655) was r u l e d at Physical Institute by Slegbahn. i n Uppsala on a r u l i n g engine the designed 576 l i n e s p e r m i l l i m e t r e were r u l e d over an 81 m i l l i m e t r e w i d t h of the two metre g r a t i n g a l u m i n l z e d blank. The l e n g t h of the r u l i n g s was 48 m i l l i m e t r e s . g r a t i n g was a p p r a i s e d by Mr. David. R i c h a r d s o n (33) Bausch.and Lomb and we r e p o r t his. f i n d i n g s . "(1) This of He s t a t e s : Weak Lyman ghosts, from t o o l bounce. (2) Rowland ghosts ••approximately 0.2$ i n f i r s t (3) E r r o r of r u n not order. serious. (4) Target p a t t e r n .quite strong. (5) S a t t e l i t e s seen near parent l i n e i n f i r s t and second o r d e r s . (6) R e s o l v i n g power good (estimate 15% of theoretical value i n t h i r d o r d e r ) . (7) Energy d i s t r i b u t i o n v e r y good - there b e i n g f i v e as much l i g h t the i n the f i r s t order on one s i d e as on other. (8) Diamond set down very h a r d and bounced. evidence Little, of diamond wear. , (9) We b e l i e v e times:; the g r a t i n g to be q u i t e acceptable." - Most o f t h e be diffracted (c.f. i n the (4) .and items normal f o r the diffracted observed. from this g r a t i n g tends general, . d i r e c t i o n of the (7) above) - 20° from to central the i n t h i s , s p e c t r o g r a p h , (c . f . image. grating can i n a g r e a t waste of l i g h t r a t h e r l o n g exposure the F i g u r e .II) t h r o u g h a n g l e s g r e a t e r t h a n 40° This results consequently - L u b z i n s k i s p e c t r o g r a p h . , However, w i t h mounting employed light light 36 only be and times. MechanlcalThe g r a t i n g mounting, p l a t e h o l d e r , and mechanism w h i c h L u b z i n s k i h a s all design proved the f o c u s s i n g of the g r a t i n g . e r e d i n any of the exposures (5) described i n d e t a i l f u n c t i o n quite adequately. f e a t u r e s of t h e i r slit Many o f t h e excellent a great convenience No in. d i f f u i c u l t y . was encount- w i t h v^bratlionsiiofi the optical components. A slit width o f 30 m i c r o n s , give best d e f i n i t i o n with reasonable w h i c h was exposure e m p l o y e d f o r most o f t h e s p e c t r o g r a m s . theoretical slit w i d t h was (The found times, to was optimum p r e v i o u s l y shown t o be 5 microns). R e g i s t r a t i o n of the All Ilford Q-2, Spectra t h e vacuum s p e c t r a were r e c o r d e d on a mexllum g r a i n , T h e . p l a t e s were d e v e l o p e d • about 68° F. and rather high sensitivity i n Kodak D-19 then f i x e d commercial plate. f o r f o u r minutes a t i n Kodak.F-5 s o l u t i o n and - washed. two 37 - For these p l a t e s of very t h i n , emulsion processes treated, take these c o n t r a s t , and less than a minute each. p l a t e s were f o u n d low to give s p e c t r a of T h e y were p r o c e s s e d i n the same manner as- t h e p a r t i c u l a r l y w i t h the grating, the and as., i t s d i a m e t e r blank. F u r t h e r the plates. 103ar-0 p l a t e s , p l a t e s metre r a d i u s Lubzinski The tangent to the grating, centre the r a d i u s of c u r v a t u r e slit which of the g r a t i n g should..be a c c u r a t e l y p a r a l l e l The spectrograph system i s then will now be r a d i u s of c u r v a t u r e R of ± observations limited diffraction said, to to be The. method o f a c h i e v i n g t h i s f o c u s f o r t h e determined 199*55 cms concave the diffracted...spectrum should grating irulings. focussed. was slit l i e on a c i r c l e 1. Q,-2 Spectrograph I n a l l mountings of the the employed. of the p l a t e h o l d e r . (b) F o c u s s i n g t h e has region p l a t e s were w o u l d b r e a k a f t e r b e i n g f o r c e d t o t h e one both good fog. e i t h e r Kodak 103a-0 o r Kodak. I X F - 3 curve last When so For r e c o r d i n g s p e c t r a i n the v i s i b l e Occasionally, the by a F o u c a u l t > k n i f e 0.1 cms., s h a r e d by o n l y by as two described. the.Slegbahn.grating edge method the average of e l e v e n observors. The (9) t o independent accuracy the u n c e r t a i n t y i n measurements.of w i t h a.good s t e e l rule. be was distance 2. A Zeiss precise level 38 (#5672) k i n d l y l e n t u s by:the of the U n i v e r s i t y of British C i v i l . Engineering.Department C o l u m b i a was,employed to set the centre centre o f t h e g r a t i n g , and t h e m i d p o i n t holder from P to P was, d i s c o v e r e d placed 1 that (see F i g u r e the.plate I I ) i n the. same plane.. about. 0.34 h o r i z o n t a l .plane t h r o u g h t h e s l i t . was of the It the mechanical c o n s t r u c t i o n n e c e s s a r i l y the grating. centre Rowland, c i r c l e of t h e . s l i t , therefore s l o p i n g upward from t h e s l i t cms.... above t h e The p l a n e of the not h o r i z o n t a l , but r a t h e r to the plate . holder. 3» The g r a t i n g o r i e n t a t i o n was, f i x e d b y visually f o c u s s i n g ^ a . d i f f r a c t e d i r o n , a r c .spectrum u p o n t h e p l a t e ..holder. T h i s ..defines .the .Rowland c i r c l e . - a perpendicular to the midpoint circle o f t h e g r a t i n g and o f r a d i u s 199.55/2 cms. 4. To p o s i t i o n . t h e -slit-grating distance slit..upon..this Rowland.circle was. a d j u s t e d g r a t i n g - c e n t r a l , image.distance.. was,.determined w i t h until a good s t e e l t a p e and. a d e p t h the s t e e l tape to the focus image, a s d e t e r m i n e d u s i n g a F o u c a u l t method p l a c e d one m i l l i m e t r e 5. focus to the The s l i t - g r a t i n g The g r a t i n g - c e n t r a l image, d i s t a n c e , was ment w i t h equal the. s l i t the distance guage. deduced by measureof the c e n t r a l k n i f e , edge. u p o n t h e Rowland c i r c l e This within accuracy. P l a c i n g the p l a t e h o l d e r ensures that i t also w i l l i n the p o s i t i o n of be o n t h e R o w l a n d best circle. 39 T h i s a d j u s t m e n t was first - made, v i s u a l l y u s i n g s c o p e whose f o c a l p l a n e , c o u l d be of the. p l a t e h o l d e r . graphically using one an The 1(a) plate holder t o the The focus p o s i t i o n of b e s t centre spectrum. from the This f o c u s s i n g of changing the plate. badly out minimize the A large gratings. reproduction. Wandering, o f t h e o p t i c s may. w e l l hence . the arc, change to on appear c a r e f u l , alignment, of d u p l i c a t i o n of t r i a l in line profile spectral lines Frequent easily the exposures served to difficulty. conventional e l e c t r o d e s was a i r a t a few to give f i n e diatomic convenient i n focussing. millimeters pressure, ampere p r o d u c e d v e r y However, w i t h type G e i s s l e r tube with constructed spectra which are very currents b r i g h t s p e c t r a o f NO, reasonable required precluded gratings in the not.commonly e m p l o y e d a l i g n m e n t .of t h e a r c p o s i t i o n and exposure c o r r e s p o n d e d to t h a t of s p e c t r a are of focus. plates. inches c o n c l u s i o n f o l l o w s more T h i s causes, t h e about Rowland r a d i u s b e t w e e n e x p o s u r e s . the. g r a t i n g i l l u m i n a t i o n and in Exposures of of a t y p i c a l t r i a l o r i g i n a l p l a t e t h a n from the Iron arc that made, p h o t o - moved a b o u t 0.01 was a direction parallel the spectrum. shows a r e p r o d u c t i o n (H-73)•• The by made c o i n c i d e n t w i t h f i n a l , a d j u s t m e n t , was i r o n arc micro- minute g i v e w e l l developed s p e c t r a upon I I F - 3 Plate the a slit the use widths the N, 2 aluminum band When of and run one Ng . long exposure of this, source i n f o c u s s i n g + times the - 40 6. Finally "parallel to t h e . s l i t , was the a c c o m p l i s h e d by sharp l i n e s , detected by viewing of the while the rotated; until.. very grating milinga. spectrum placed.behind Parallelism - This accurately operation t h r o u g h a microscope an the slit small slit w h i c h was and.grating was iron slowly arc rotated. r u l i n g s , ensures fine e r r o r s o f f p a r a l l e l i s m are astigmatic a d j u s t m e n t was. f o u n d to. be easily b r o a d e n i n g . ... This...visual, more s e n s i t i v e t h a n p h o t o g r a p h i c methods. T h i s , .completes, t h e region. As this--ensures vacuum u l t r a v i o l e t spectra f o c u s s i n g f o r the rather accurate r e g i o n and a l s o as focussing for long, performed. time consuming. example, a f t e r , f i x i n g , the. g r a t i n g o r i e n t a t i o n a n d slit-grating discover the further l i n e s was.not T h i s f o c u s s i n g problem, c a n . b e v e r y For d i s t a n c e 'by.-«steps. (3) and. (4) one insufficient.mechanical.freedom plate holder by step (5). steps process (4) a n d . ( 5 ) . several to e f f e c t focussing slight t h e n a r e p e t i t i o n of I t i s e a s i l y p o s s i b l e to repeat times. the might This necessitates a change, i n g r a t i n g o r i e n t a t i o n and the exposure times f o r i n the. vacuum. r e g i o n were r a t h e r f o c u s s i n g u s i n g vacuum u l t r a v i o l e t visible this - 41 ( c ) Lyman S e r i e s S p e c t r a Two methods o f o b t a i n i n g s p e c t r a i n t h e r e g i o n of Hydrogen L tube.could a were c o n s i d e r e d . be"coupled directly o p t i c a l material, i n the l i g h t fluoride, isolate very Either t o the spectrograph path or f l u o r i t e , windows a n d c o n d e n s i n g the spectrograph the discharge t o absorb \ 1200 A o p t i c a l . r e g i o n near the only other transparent m a t e r i a l i n t h i s and l i t h i u m 0 c o l o u r s v e r y b a d l y u n d e r the. e l e c t r o n i c gaseous d i s c h a r g e , using direct discharge valve. oil region, dis- bombardment i n (16)) t h e f i r s t method hydrogen through ( o r h e l i u m ) g a s was i n t r o d u c e d a smalllMathew's needle type into leak C o n t i n u o u s e v a c u a t i o n by a Hyvac pump s e r v e d t o maintain slit fluoride, c o u p l i n g was e m p l o y e d . The the ( c f . Boyce As even t h e rather strongly i n the a or lithium l e n s c o u l d be u s e d t o f r o m the. d i s c h a r g e . best fluorite.commences w i t h no low p r e s s u r e s . The g a s w h i c h e s c a p e d through the i n t o .the s p e c t r o g r a p h was e l i m i n a t e d b y t h e l a r g e d i f f u s i o n pump. c o u l d be r e a l i z e d I n t h i s way a g r e a t i n the discharge g r a p h p r e s s u r e was a l w a y s v e r y range o f p r e s s u r e s tube, w h i l e low (about the. s p e c t r o - f i v e microns o f mercury). The cms., s p e c t r a were e x c i t e d i n a p y r e x i n l e n g t h and about three high frequency energy. cms.in diameter tube forty by e x t e r n a l The c i r c u i t . d i a g r a m o f t h e - p o w e r s u p p l y a n d t h e o s c i l l a t o r w h i c h were e m p l o y e d a r e g i v e n i n 200O V A. 2000 VOLT POWER SUPPLY ET RADIO FREQUENCY OSCILLATOR FIGURE IL To f o l l o w page 41 ( F i g u r e V. up 42 - V o l t a g e s u p t o two t h o u s a n d t o one ampere were u s e d . o s c i l l a t o r was f o u n d v o l t s with, c u r r e n t s The o u t p u t frequency of the t o he f i f t e e n m e g a c y c l e s , , w i t h a s t r o n g harmonic a t t h i r t y megacycles. I n a l l exposures t h e e l e c t r o d e s were p l a c e d a t t h e e x t r e m i t i e s o f t h e d i s charge tube. The d i s c h a r g e was a l w a y s c o n c e n t r a t e d between these e l e c t r o d e s . All of the plate Thus, near t h e p l a t e s were e x p o s e d I n t h e f i r s t h o l d e r where v a r i e s from L , spectra, i n the regions A 2000 A ° , a n d 1. h\ section 4800 A ° t o 6 2 0 0 . A ° . X 1200 A ° , A 1500 A ° , A 3200 A ° were a l l o v e r l a p p e d . E x c i t a t i o n . . . o f Tank H y d r o g e n By energy, spectrum exciting a bright pink tank hydrogen w i t h the h i g h d i s c h a r g e was o b t a i n e d . c o n s i s t e d o f s t r o n g Balmer l i n e s frequency The v i s i b l e and v e r y much weaker h y d r o g e n b a n d s p e c t r a . Although v a r i e d very relative the c h a r a c t e r i s t i c s slowly with pressure some t e n d e n c y development o f the atomic s p e c t r a was o b s e r v e d a t lower were t h e r e f o r e employed (about of the.discharge f o rbetter to the molecular pressures. Low p r e s s u r e s 100 m i c r o n s ) . I n c r e a s i n g the v o l t a g e on the o s c i l l a t o r the b r i g h t n e s s of the source. characteristics No o t h e r e f f e c t u p o n t h e o f t h e d i s c h a r g e was o b s e r v e d r a n g e 500 t o 2000 v o l t s . increases i n the voltage Plate 1(a) Iron Arc Spectra used i n Focussing.. (H-73) E a c h e x p o s e d f o r40 s e c . P l a t e h o l d e r moved a b o u t 0.01 i n c h e s b e t w e e n e a c h e x p o s u r e . *< I. III I I Plate 1(b) H y d r o g e n E x c i t e d i n H i g h F r e q u e n c y D i s c h a r g e . (H-78) Most o f t h e l i n e s a r i s e from t h e band spectrum of t h e hydrogen m o l e c u l e . Plate 1(c) Trace o f Hydrogen i n High Frequency Plate 1(d) T r a c e o f Hydrogen a n d Heavy Water E x c i t e d i n Excess of Helium i n High Frequency Discharge. The o b s e r v e d i s o t o p e s h i f t p e r m i t s p o s i t i v e i d e n t i f i c a t i o n o f t h e h y d r o g e n Lyman a l i n e . To Excited I n Excess of Helium D i s c h a r g e . (H-88) follow page 42 - 43 Plate w h i c h was o f 1600 1(b) i s a r e p r o d u c t i o n of p l a t e exposed f o r f o u r hours a t an volts. Most o f t h e r o t a t i o n a l molecular broad line hydrogen L specjjra. n e a r a i n the f i f t h line positive The and the order. very work o n t h e voltage the p l a t e a r e A.1506 A ° . The hydrogen feeble attributed Because o f t h e . v e r y lines relative to to high this.supposed identification.was. impossible. l o n g e x p o s u r e s w h i c h were r e q u i r e d , strong overlapping molecular efficient oscillator marked on t h e r e p r o d u c t i o n was i n t e n s i t y of the m o l e c u l a r atomic l i n e s on H-78 Lyman, s e r i e s l i n e s made a c c u r a t e impossible.. method o f e x c i t i n g t h e C l e a r l y a. more Lyman s e r i e s lines was necessary. A the condensed discharge, of the tank hydrogen i n G e i s s l e r type d i s c h a r g e t u b e was v i s u a l ..spectroscope. pressures was complete range of available.outside extinction, s e r s f r o m 0 t o 1/2 the atomic Over the examined w i t h F j l i n e s over no improvement and with a hydrogen conden- i n brightness t h a t of the h i g h frequency in discharge observed. • 2. E x c i t a t i o n o f Tank H e l i u m When h e l i u m was e x c i t e d i n the h i g h d i s c h a r g e a v e r y m a r k e d improvement was frequency observed. The # We have b e e n u n a b l e t o f i n d a p u b l i s h e d a n a l y s i s o f t h e s e . l i n e s . . A c a r e f u l study of t h i s spectrum might w e l l prove rewarding. - 44 h y d r o g e n band, s p e c t r a were v i r t u a l l y line a t t r i b u t e d to L times of l e s s into a c o u l d be e a s i l y than an hour. fEurther, impurity very bright No h y d r o g e n w a s . i n t r o d u c e d i n t h e h e l i u m were s u f f i c i e n t L a i s marked. with Plate.1(b) directly attributed H-88 The line, should.be a b o v e w h i c h was excited with spectral line could be i d e n t i f i c a t i o n o f t h e e m i t t i n g atom became p o s s i b l e drops o f heavy water a p l a t e was to the helium obtained; of b o t h the hydrogen and spectra.... The...observed I s o t o p e s h i f t p e r m i t t e d identification.of reproduces p l a t e t o note t h a t the L a line. Plate 1(d) w h i c h was. exposed, f o r f o r t y doublet, isotope structure the, d e u t e r i u m L Q i s marked. i s much s h a r p e r t h a n t h e discussion o f t h e D o p p l e r w i d t h , t h e h y d r o g e n . l i n e B h o u l d be time's a s b r o a d a s t h e d e u t e r i u m -The low light minutes. It is. interesting c o r r e s p o n d i n g hydrogen, l i n e . ' A c c o r d i n g t o o u r permit compared t o LQ w i t h r e a s o n a b l e , e x p o s u r e t i m e a supply, l i n e positive minutes. This plate that a d i s t i n c t By a d d i t i o n o f a few deuterium produce i n . a f o u r hour, e x p o s u r e . . How positive to 1(c) i s a r e p r o d u c t i o n of p l a t e exposed f o r about f i f t y attributed.to hydrogen or spectra. Plate w h i c h was the o b s e r v e d with-..exposure the d i s c h a r g e - traces, of e i t h e r water vapour hydrogen The absent. 1.41 line. i n t e n s i t y from, t h e g r a t i n g d i d n o t o b s e r v a t i o n o f h i g h e r members o f t h e h y d r o g e n Lyman < - 45 series. No effort was - made t o c o o l . t h e d i s c h a r g e t u b e h e n c e decrease., t h e h y d r o g e n : D o p p l e r teoudlening.. When measurements o f w a v e l e n g t h s o o f these with accurate.standards l i q u i d a i r c o o l i n g w o u l d much reduce the (d) F i r s t line by Shenstone spectrum (36). Copper has.been v e r y thoroughly s t u d i e d A c c o r d i n g t o S h e n s t o n e ..it. I t . . - f u t i l e endeavor to o b t a i n the metal complete spectrum atom by means o f a s p a r k . a l o n e . was. f i n a l l y chosen into tungsten wires. l o n g and was I t was cathode. Was about usually half 1 cm. filled w i t h copper was s u p p l i e d u s u a l l y w i t h a 700 volt was controlled.by resistances. The ampere a n d helium. As 200 hundreds of copper visible. At the and. 5. foil. same t i m e generator the of the but current and when c o l d a n d pressure, the helium spark cm. Some The filled operates spectrum cathode the d i s c h a r g e changes green, a r c and tube volts., and the m e l t i n g p o i n t of copper, becomes, a b r i l l i a n t D.C. 3 mm. the temperature metal thin e x c i t a t i o n helium.is necessary. w i t h c i r c u l a t i n g h e l i u m a t about and whose the c o n d u c t i n g gas, the complete mainly which made o f i n diameter for one source follows: o b s e r v a t i o n s were made w i t h n e o n a s on about The o r d e r t o get r a p i d e v a p o r a t i o n of the the discharge, t h e h o l l o w to of a o n c e . i o n i z e d by. t h i s w o r k e r was. a S c h u l e r t u b e c h a r a c t e r i s t i c s were d e s c r i b e d a s "In c a n be made widths. S p a r k Spectrum o f This lines and is reaches, completely l i n e s f a d i n g and l i n e s a p p e a r i n g . i n the the p o t e n t i a l rises t o 500 or - 46 600 v o l t s , the c u r r e n t d r o p p i n g t o perhaps 0.4 amperes. When the tube, i s ..in t h i s c o n d i t i o n the e x t e r n a l r e s i s t a n c e . . can be v a r i e d over a wide range without any great, e f f e c t on the c u r r e n t . A still.further i n t e n s i f i c a t i o n of the dopper l i n e s can.be produced by l o w e r i n g the helium pressure." As no t u n g s t e n o r molybdenum was a v a i l a b l e when t h i s work was begun an.attempt.was made.to e x c i t e t h i s copper spark spectrum The f i r s t i n other type s o u r c e s . source s t u d i e d was.a more c o n v e n t i o n a l hollow cathode type, d i s c h a r g e ( c f . Tolansky (10)0'» the aluminum^, water..cooled cathode ^werepplaced of copper. Into thin f o i l s Because of the l a r g e mass of aluminum employed, and because of the water c o o l i n g and. f i n a l l y ..because the m e l t i n g p o i n t of aluminum was. much lower than t h a t of copper, i t was found i m p o s s i b l e t o r e a c h the c o n d i t i o n which Shenstone the copper. d e s c r i b e s as. o c c u r r i n g upon m e l t i n g of The spectrum of helium predominated. The next source was i d e n t i c a l w i t h the S c h u l e r tube of Shenstone except t h a t fatherofthan tungsten^, i r o n $ was used as a.cathode. When the I r o n cathode was h a l f f i l l e d w i t h copper f o i l a n d . e x c i t e d i n helium the b r i g h t green d i s c h a r g e i n d i c a t i v e of copper spark spectra. # The m e l t i n g p o i n t s . o f tungsten, platinum, i r o n , copper and aluminum a r e 3387oC, 1773°C, 1527°C, 1083°C, and 660°C r e s p e c t i v e l y . 47 c o u l d be o b t a i n e d . . However, a t t h e same t i m e , s t r o n g i r o n a r c and spark of t h e copper gain their - s p e c t r a , e x c i t e d made lines, very d i f f i c u l t . the very observation The i r o n s p e c t r a l i n t e n s i t y a t t h e e x p e n s e o f t h e copper.. lines This s o u r c e was n o t . c o n s i d e r e d a d e q u a t e f o r . t h e e x c i t a t i o n o f vacuum u l t r a v i o l e t As type copper spark spectra. some p l a t i n u m ^ f o i l source u s i n g such a cathode was a v a i l a b l e , a S h e n s t o n e was c o n s t r u c t e d . Platinum has, a m e l t i n g p o i n t a b o u t 700°C h i g h e r t h a n t h a t o f so we e x p e c t e d , t h a t , t h e less s p e c t r a , o f p l a t i n u m w o u l d be much intense than that of copper. however, t h a t t h e p l a t i n u m strong spectrum. spectrum I t was. d i s c o v e r e d , sputtered very badly The e x c i t a t i o n o f t h e c o p p e r was n e g l i g i b l e . atom. # See f o o t n o t e o n p r e v i o u s giving a spark No change i n t h e c o n d i t i o n s o f the.discharge effected better r e l a t i v e copper copper page e x c i t a t i o n of the - 48 V I . CONCLUSIONS AND The RECOMMENDATIONS p r o b l e m u n d e r t a k e n , was l e n g t h of the hydrogen a c c u r a c y o f 0.001 Lyman a l i n e t o m e a s u r e t h e wavewith an.absolute A . 0 Some p r o g r e s s h a s b e e n made t o w a r d s this problem... The. h y d r o g e n a n d d e u t e r i u m Lyman a have been o b t a i n e d i n the f i f t h p e r s i o n s of 1 A°/mm. This - i f reliable G We i s sufficient standards, which.are is Principle". standards.. The experimentally. t h e new light available. a c c u r a c y and c a l c u l a t e d from the " R i t z copper spark spectrum However we d i s p e r s i o n to t h e o n l y method o f of s u f f i c i e n t to use wavelengths dis- t o the r e q u i r e d a c c u r a c y s t a n d a r d s were have shown, t h a t lines grating order with e n a b l e measurement ,of w a v e l e n g t h (0.001 A ) s o l u t i o n of obtaining reliability, Combination should supply such were u n a b l e t o p r o d u c e When t h e t u n g s t e n f o i l these arrives, lines and i f g r a t i n g h a s . t h e p r o p e r t y of good u t i l i s a t i o n near M 2 0 0 A ° , the Shenstone has been d e s c r i b e d exposures under hollow cathode should give the d e s i r e d two The m a j o r spectra of wMfeh with hours. experimental.difficulty encountered i n t h i s work a r o s e f r o m t h e l o n g e x p o s u r e s w h i c h were;found necessary. for good p l a t e s Exposures o f one of the hydrogen L Q t o two h o u r s were line. Commonly, w i t h o t h e r vacuum s p e c t r o g r a p h s , e x p o s u r e s o f a s many required minutes were a d e q u a t e (17, 24, ordered which w i l l 3 6 ) . . A new g r a t i n g has been have a m o d i f i e d g r o o v e f o r m t o t r a t e r a d i a t i o n i n the d i r e c t i o n of the plate.holder where I t c a n be u t i l i z e d . Such a g r a t i n g exposure tenfold. times better than concen- should reduce When t h e c o p p e r s p a r k s t a n d a r d l i n e s . h a v e obtained with t h i s new o n t h e Lyman l i n e s e m i t t e d by a l i q u i d discharge should prove worthwhile. required w i l l will grating,.accurate n o t be e a s i l y remain very been measurements, air. cooled deuterium However, t h e a c c u r a c y a c h i e v e d and t h e experiment challenging. --50 - Bibliography A . Handbooks, Monographs..' T e x t b o o k s . 1. H. Bomke, V a k u u m s p e k t r o s k o p i e , 2. W. Grotrian, Atomen u n d ( J . W. 3. 4. A r b o r , 1944). Von Drei Valenzelektronen, 1946). S p e c t r a of Diatomic Molecules, (Van Nostrand, 1951). T. Lyman, The S p e c t r o s c o p y o f the Extreme (Longmans, G r e e n a n d 5. J . Lubzinski, 6. C. E . Moore, A t o m i c M.A. Richtmyer, Co., London, Ultraviolet, 1914). T h e s i s ( B r i t i s h Columbia, Bureau of Standards, 7. F. K. Edwards,. Ann D a r s t e l l u n g Der S p e k t r e n Edwards, A n n A r b o r , York, ( J . W. Ionen. m i t E i n , Zwei u n d G. H e r z b e r g , New Graphische Tables Energy Levels, V o l . 1, 1950). (National 1949). a n d E . H. Kennard, I n t r o d u c t i o n to M o d e m P h y s i c s , ( M c . G r a w H i l l , New-York, 1947). r 8. R. A. Sawyer, E x p e r i m e n t a l S p e c t r o s c o p y , New York, 1944). g..John Strong, Procedures (Prentice-Hall, 10. S. T o l a n s k y , London, 11. F. New i n Experimental Physics, York, 1949). High R e s o l u t i o n Spectroscopy, (Methuen, 1947). Tyren, No. 1, (Prentice-Hall, Nova. A c t a Reg. (1940). Soc. S c i . Ups.,Ser.4, Vol.12, - 51 B. References to I n d i v i d u a l Papers 4J3_, 941, 12. S. S. B a l l a r d , and H. E. White, Phys. Rev., 13. Balmer, Ann.d. Physik, 25, 80, (1885). 14. H. A. Bethe, Phys. Rev., J_2, 339, 15. N. Bohr, P h i l . . Mag., 26, 1, 16. J . C. Boyce, Rev. Mod. (1947). (1913). Phys., 13., 1, (1941). 17. J . C. Boyce, and C. A. Rieke, Phys.. Rev., 47, 653, 18. P. A. M. D i r a c , P r o c . Roy. S o c , A117. 610, 19. A E i n s t e i n , Ann. d. Physik, 17,, 132, (1928). 762., 21. H. A. S. E r i k s s o n , Nature, l 6 l , 393, (1948). 22. W. Heisenberg, Z e i t s . f . Physik, 22, 879, G. Herzberg, p r i v a t e (1935). (1905).. 20. H. A. S. E t i k s s o n , Zeits.. f . Physik, 10Q, 23. (1933). (1938). (1925). communicatlonL. 24. J . J . H o p f i e l d , Phys. Rev., 20, 573, 2 5 . P. G. Kruger, Phys. Rev., 3J>, 855, (1922). (1930). 26. W. E . Lamb J r . , and R. G. R e t h e r f o r d , Phys. Rev., 12., 241, (1947). 27. W. E. Lamb .Jr.., Rep. Prog. Phys., XIV, 23, (1951). 28. T. Lyman, Nature, 118, 1 5 6 , (1926). 29. D. L. Mac Adam,. Phys.. Rev., 50, I85, (1936). 30. J . E . Mack, J . R. Stehn, and, B. Edlen, J . Opt. Soc. Amer. 22, 245, (1933). 31. A. A. Michelson, and E. W. Morley, P h i l . Mag., 32. K. R. Rao, and J . S. Badami, P r o c Roy. S o c , A13_8, 540, (1932). 33. David Richardson, p r i v a t e ...communication. 34. 24, E. R u t h e r f o r d , P h i l . Mag., 21, 6 6 9 , (1911). 46,(1887). - 52 - 35. E. Schrodinger, 36. A . G. S h e n s t o n e , P h i l . 37. A. Sommerfeld, 38. T. Takamine, 39. G. E. U h l e n b e c k , a n d S. Goudsmit, 40. T. A . W e l t o n , Phys.. Rev., 41. T. Y. Wu, Ann. d. P h y s i k , Trans. Roy.Soc, Ann. Phys.,Lpz., a n d T. Suga., P h y s . Rev., 22» 36:1, 389, 734, (1926). A751. 195, (1936). _ 1 , 1, (1916). Nature, 13_7, 827, (1936). Nature, 117. 264, (1926). _ 4 , 1153, (1948). J2, 977, (1947).
© Copyright 2026 Paperzz