Algebra 2 Notes Section 14.0: Graphing Basic Trigonometric Functions Objective(s): Vocabulary (see page 908): I. Amplitude: II. Periodic Function III. Cycle: IV. Period: Use the unit circle to complete the table of values: θ 2 0 2 3 2 π 2π y = sin θ y = cos θ Using the table of values, graph both sine and cosine functions. y = sin x π 2 y = cos x 1 1 .5 .5 0 π 2 π 3π 2 2π π 2 0 -.5 -.5 -1 -1 π 2 π 3π 2 2π Identify the key elements for each function: Maximum y = sin θ y = cos θ Minimum Amplitude Period Domain Range Notes 14.0 page 2 Complete the table of values: Θ 2 4 0 4 2 3 4 π 5 4 3 2 y = tan θ Using the table of values, graph the tangent function. y = tan x 4 2 π 2 0 π 2 π 3π 2 2π -2 -4 dentify the key elements for the tangent function: Maximum y = tan θ Minimum Amplitude Period Domain Range Algebra 2 Notes Section 14.1: Graph Trigonometric Functions with Scale Changes Objective(s): Vocabulary: I. Frequency: Amplitude and Period for y = a sin bx and y = a cos bx Amplitude: Period: Graphing Key Points These are the x-values where Examples: Graph each of the following functions using key points. 1. y = sin 3x 2. π 6 2 .5 1 0 π 6 π 3 π 2 2π 3 0 -1 -1 -2 4. π 6 π 2 -.5 3. y = cos 3x y = 2 sin x 1 8 .5 4 π 6 π 3 π 2 2π 3 π π 2 π 3π 2 2π 3π 2 2π y = 5 cos x 1 0 π 2 π 2 0 -.5 -4 -1 -8 Notes 14.1 page 2 5. y = 3 sin 2x 6. y = 3 cos 2x 4 4 2 2 0 π 2 π 2 π 3π 2 2π π 2 -2 -2 -4 -4 7. y = 3 tan x 8. 4 π 2 0 π 2 π π 2 π 3π 2 2π 3π 2 2π 1 y 2 tan x 2 4 2 0 2 π 2 π 3π 2 2π π 2 0 -2 -2 -4 -4 Algebra 2 Notes Section 14.2: Translate and Reflect Trigonometric Graphs Objective(s): Vocabulary: I. Translation (p. 123): II. Reflection (p. 1071): III. Amplitude (p. 908): IV. Period (p. 908): Translations of Sine and Cosine Graphs: y = a sin b(x – h) + k y = a cos b(x – h) + k Step 1: Step 2: Step 3: Step 4: Examples: Graph each of the following functions using key points. 1. y 1 cos 2x 2 2 π 2 2. 1 y 2sin (x π) 2 2 2 1 1 0 π 2 π 3π 2 2π 2π 0 -1 -1 -2 -2 Reflections: When a is negative, reflect the graph across the midline (x-axis or "fake x-axis") of the graph. 2π 4π 6π 8π Notes 14.2 page 2 3. π y cos x 2 π 2 4. y 3 sin 1 x2 2 4 8 2 4 0 π 2 π 3π 2 π 2π π 0 -2 -4 -4 -8 2π 3π 4π Translations of the Tangent Graph: y = a tan b(x – h) + k Step 1: Step 2: Step 3: Step 4: 5. π y 2 tan x 2 6. π y 3 tan x 4 4 2 2 1 π 2 0 -2 π 2 0 -1 -2 π 2 π 3π 2 2π -4 π 2 π 3π 2 2π Algebra 2 Notes Section 14.3: Verify Trigonometric Identities Objective(s): Vocabulary: I. Trigonometric Identity: Fundamental Trigonometric Identities: Reciprocal Identities csc θ = sec θ = cot θ = Tangent and Cotangent Identities tan θ = cot θ = Pythagorean Identities Cofunction Identities Negative Angle Identities Examples: 1. Given cos 4 π θ π , find the values of the other five trigonometric functions of θ. and 5 2 Verifying Identities (p. 926): When verifying an identity, Notes 14.3 page 2 2. a) Simplify the expression. tan (-θ) cos θ b) sin θ + cos θ cot θ 3. a) Verify the identity. sec θ – cos θ = sin θ tan θ b) sin θ (tan θ + cot θ) = sec θ 2 2 2 c) csc x(1 – sin x) = cot x d) cos x csc x tan x = 1 Algebra 2 Notes Section 14.4: Solve Trigonometric Equations Objective(s): Vocabulary: I. Extraneous solution (p. 52): II. General solution (margin on p.931): Examples: Solve the equation in the interval 0 < x < 2π. 1. 2cos x + 1 = 0 2. 3 – tan x = 0 Find the general solutions. 3. 2 sin x + 4 = 5 4. 2cos x - cos x = 0 6. 1 - cos x = 5. 3 sin x - sin x = 0 2 3 3 sin x Notes 14.4 page 2 Solve the equation in the interval 0 < x < π. 7. 2 sin x = csc x Solve the equation in the interval 0 < x < 2π. 9. sin x - cos x = 1 8. 2 2 tan x - sin x ∙tan x = 0
© Copyright 2026 Paperzz