Math 131 EXAM 6 FALL 2011 Graph the linear inequality. 6 1) 3y - x 0 5 m=- 6 5 = 3 6 1 2 = 5 3 5 intercept is (0, 0) Solve the absolute value inequality. Write the solution set using interval notation and graph it. 2 5 - 4x + 11 3 2) 3 6 - 2 5 - 4x 3 6 -8 5 - 4x 6 -8- 5 - 4x 6 12 5 - 4x 6 - 12 3 2 5 - 4x - 72 - 4x - 77 77 x 4 ( ,- 5 - 4x 6 12 5 - 4x - 72 - 4x 67 67 x 4 67 77 U , ) 4 4 1 3) |2x - 3| - 1 > -3 |2x - 3| > - 2 - , Solve the rational inequality using a sign graph. Write the solution set in interval notation and graph it. (10 points) 18 15 > 4) 5-x x+1 18 15 >0 5-x x+1 18 x + 1 15 5 - x >0 5-x x+1 x+1 5-x 18x + 18 75 - 15x >0 5-x x+1 x+1 5-x 33x - 57 >0 x+1 5-x 33x - 57 = 0 33x = 57 57 x= 33 x+1=0 x=- 1 5-x=0 5=x 33x - 57 x+1 5-x ------------++++++++++++++++++++++++ ----++++++++++++++++++++++++++++++++ ++++++++++++++++++++++-------------- - ,- 1 U 57 ,5 33 2 Solve the inequality. Graph the solution set on a number line and write the solution set in set-builder notation. Use a sign graph to determine solution set. (10 points) 2 5) 4x + 11x - 20 0 4x - 5 x + 4 0 4x - 5 = 0 4x = 5 5 x= 4 4x - 5 x-4 x|x x+4=0 x=-4 ------------------------+++++++++++ ---------++++++++++++++++++++++++++ - 4 or x 5 4 Solve the inequality. Give the solution set in both interval and graph forms. 6) -21 < 5a + 4 -1 - 25 < 5a - 5 - 5 < 5a - 1 ( - 5, - 1] For the compound inequality, give the solution set in both interval and graph forms. 2 5 x x 1 - 2x - 1 7) (1 - x) > (7x - 3) and 3 9 20 2 4 2 5 (9) (1 - x) > (7x - 3)(9) 3 9 6(1 - x) > 5(7x - 3) 6 - 6x > 35x - 15 - 41x > - 21 21 x< 41 - , 20 x 20 x x x 10x - 5 2x - 1 10x - 10x + 5 5 21 41 3 x 1 - 2x - 1 20 2 4 (10 points) For the compound inequality, give the solution set in both interval and graph forms. 8) -3x + 1 7 or 6x + 3 -21 -3x 6 or 6x - 24 x - 2 or x - 4 - , Solve the system of inequalities by graphing. 4 + y > -2x x y 1 + 9) 4 8 x y + 4 8 4 + y > - 2x 8 18 y > - 2x - 4 2x + y 8 y - 2x + 8 4 10) 3 - x 9 -x 6 x -6 y > -1 3 y>- 3 Solve the system of equations using Cramer's Rule. 11) 3x + 5y = 30 7x - 4y = 23 D = 3 5 = - 12 - 35 = - 47 7 -4 Dx = 30 5 = - 120 - 115 = - 235 23 -4 Dy = 3 30 = 69 - 210 = - 141 7 23 x= - 235 =5 - 47 y= - 141 =3 - 47 5, 3 5 Solve the system of three linear equations containing three unknowns. 12) 1 - x + 2y - 2z = -16 3 3x - 4 y + z = 26 3 x - 3y + 3z = 27 3- 1 x + 2y - 2z = -16 3 3 - x + 6y - 6z = - 48 1 and 3 - x + 6y - 6z = - 48 x - 3y + 3z = 27 3y - 3z = - 21 3 3x - 4 y + z = 26 3 3 9x - 4y + 3z = 78 1 and 2 9 - x + 6y - 6z = - 48 9 9x - 4y + 3z = 78 - 9x + 54y - 54z = - 432 9x - 4y + 3z = 78 50y - 51z = - 354 4 and 5 -17(3y - 3z) = - 21(-17) 50y - 51z = - 354 3(-3) - 3z = - 21 - 9 - 3z = - 21 x - 3(- 3) + 3(4) = 27 x + 9 + 12 = 27 -51y + 51z = 357 50y - 51z = - 354 - 3z = - 12 z=4 x + 21 = 27 x=6 -y=3 y=- 3 6, - 3, 4 6 Solve the system of equations by graphing. 13) -x + 2y = 4 4x - 8y = 8 - x + 2y = 4 -1 1 m== 2 2 4x - 8y = 8 4 1 m== -8 2 4 = 2 0, 2 2 8 = - 1 0, - 1 -8 Solve the system of equations using either substitution or elimination. 1 y= x+3 2 14) x - 2y = -6 substitution 1 x-2 x+ 3 =-6 2 x-x-6=- 6 -6=- 6 x | x - 2y = - 6 7
© Copyright 2026 Paperzz