Formula Sheet for Exam 2

PHYS208 Exam 2
Formula/Information Sheet
Basic constants:
Gravitational acceleration
Electric permittivity in vacuum
𝑔
πœ–π‘œ
Electric constant in vacuum
π‘˜
Speed of light in vacuum
Elementary charge
Atomic mass unit
Rest mass of electron
Rest mass of proton
𝑐
𝑒
1𝑒
π‘šπ‘’
π‘šπ‘
= 9.8 π‘š/𝑠 2
= 8.854 βˆ™ 10βˆ’12 𝐹/π‘š
1
=
= 8.99 βˆ™ 109 π‘π‘š2 /𝐢 2
4πœ‹πœ–π‘œ
β‰… 3.00 βˆ™ 108 π‘š/𝑠
= 1.60 βˆ™ 10βˆ’19 𝐢
= 1.66 βˆ™ 10βˆ’27 π‘˜π‘”
= 9.11 βˆ™ 10βˆ’31 π‘˜π‘”
= 1.67 βˆ™ 10βˆ’27 π‘˜π‘”
Electron-volt
Kilowatt-hour
1 𝑒𝑉
1π‘˜π‘Šβ„Ž
= 1.60 βˆ™ 10βˆ’19 𝐽
= 3.6 βˆ™ 106 𝐽
Units of energy:
Some indefinite integrals:
𝑑π‘₯
π‘₯
𝑑π‘₯
∫ 2
(π‘₯ + π‘Ž2 )3/2
𝑑π‘₯
∫ 2
(π‘₯ ± π‘Ž2 )1/2
𝑑π‘₯
∫
π‘Ž + 𝑏π‘₯
π‘₯𝑑π‘₯
∫ 2
(π‘₯ + π‘Ž2 )3/2
π‘₯ 𝑑π‘₯
∫ 2
(π‘₯ ± π‘Ž2 )1/2
= 𝑙𝑛 π‘₯ + 𝐢
∫
=
= 𝑙𝑛 (π‘₯ + √π‘₯ 2 ± π‘Ž2 ) + 𝐢
1
ln(π‘Ž + 𝑏π‘₯) + 𝐢
𝑏
βˆ’1
= 2
+𝐢
(π‘₯ + π‘Ž2 )1/2
=
= (π‘₯ 2 ± π‘Ž2 )1/2 + 𝐢
βƒ—=
βˆ‡
Definition of the gradient operator:
Some basic geometry:
π‘₯
+𝐢
π‘Ž2 (π‘₯ 2 + π‘Ž2 )1/2
πœ•
πœ•
πœ•
𝑖̂ +
𝑗̂ + π‘˜Μ‚
πœ•π‘₯
πœ•π‘¦
πœ•π‘§
𝐴
= 4πœ‹π‘…2
4πœ‹ 3
=
𝑅
3
= 2πœ‹π‘…β„Ž
V
= πœ‹π‘…2 β„Ž
𝛺
= 4πœ‹
𝐴
Sphere of radius R
V
Cylinder of radius R and height h
(Area here refers to the cylindrical barrel,
not including the ends)
Solid angle of a sphere
Coulomb’s Law
for point charges
𝐹
Unit vector directed from a source to an
observation point
Definition
π‘ŸΜ‚
for a point charge
𝐸⃗ (π‘Ÿ)
Definitions and Laws:
=
1 π‘ž1 π‘ž2 π‘Ÿ
βˆ™
4πœ‹πœ–π‘œ π‘Ÿ 2 π‘Ÿ
|π‘ŸΜ‚ | = 1
=
1 π‘ž
π‘ŸΜ‚
4πœ‹πœ–π‘œ π‘Ÿ 2
𝑁
Electric field [1N/C=1V/m]
Electric force [1N]
𝑁
1 π‘žπ‘–
π‘ŸΜ‚
4πœ‹πœ–π‘œ π‘Ÿπ‘– 2 𝑖
for a group of point charges
(discrete charge distribution)
𝐸⃗𝑛𝑒𝑑
for a continuous charge distribution
𝐸⃗𝑛𝑒𝑑
on q placed in 𝐸⃗
𝐹
≑ π‘žπΈβƒ—
through a small flat area βˆ†π΄
βˆ†Ξ¦πΈ
= 𝐸⃗ βˆ™ βˆ†π΄ =|𝐸⃗ ||βˆ†π΄| π‘π‘œπ‘ πœƒ
through an entire surface
Φ𝐸
= lim βˆ‘ βˆ†Ξ¦πΈ,𝑖 = ∯ 𝐸⃗ βˆ™ 𝑑𝐴
≑ βˆ‘ 𝐸⃗𝑖 = βˆ‘
𝑖=1
=∫
𝑖=1
1 π‘‘π‘ž
π‘ŸΜ‚
4πœ‹πœ–π‘œ π‘Ÿ 2
Electric flux [1Vβˆ™m]
βˆ†π΄β†’0
Gauss’s Law (for a closed surface)
in vacuum
Φ𝐸,π‘‘π‘œπ‘‘
in dielectric
Φ𝐸,π‘‘π‘œπ‘‘
𝑄𝑒𝑛𝑐𝑙
πœ–π‘œ
𝑄𝑒𝑛𝑐𝑙
≑ ∯ 𝐸⃗ βˆ™ 𝑑𝐴 =
πœ–
≑ ∯ 𝐸⃗ βˆ™ 𝑑𝐴 =
𝑏
βˆ†π‘‰
≑ 𝑉𝑏 βˆ’π‘‰π‘Ž = βˆ’ ∫ 𝐸⃗ βˆ™ 𝑑𝑙
for a point charge, with 𝑉(∞) = 0
𝑉(π‘Ÿ)
1 π‘ž
=
4πœ‹πœ–π‘œ π‘Ÿ
for a group of point charges, with 𝑉𝑖 (∞) =
0
𝑉(π‘Ÿ )
Definition
π‘Ž
Electric Potential [1V=1J/C]
Electric potential energy[1J=1Nβˆ™m]
𝑁
𝑖=1
𝑖=1
for a continuous charge distribution, with
𝑉𝑖 (∞) = 0
𝑉(π‘Ÿ )
1
π‘‘π‘ž
=
∫
4πœ‹πœ–π‘œ |π‘Ÿβƒ—βƒ—βƒ—π‘œ βˆ’ π‘Ÿ |
for a test charge π‘žπ‘œ in 𝐸⃗
βˆ†π‘ˆ
≑ π‘ˆπ‘ βˆ’ π‘ˆπ‘Ž = π‘žπ‘œ (𝑉𝑏 βˆ’ π‘‰π‘Ž )
for a system of two point charges
π‘ˆ12
𝐸⃗
Electric field 𝐸⃗ from potential V
For a capacitor
=
1 π‘ž1 π‘ž2
4πœ‹πœ–π‘œ π‘Ÿ12
βƒ— 𝑉 (βˆ‡
βƒ— = gradient operator)
≑ βˆ’βˆ‡
≑ 𝑄/𝑉
For an insulated conductor
Electric capacitance[1F]
𝑁
1
π‘žπ‘–
≑ βˆ‘ 𝑉𝑖 =
βˆ‘
4πœ‹πœ–π‘œ
|π‘Ÿπ‘– βˆ’ π‘Ÿ|
C
≑ 𝑄/π‘‰π‘Žπ‘
πœ–π‘œ 𝐴
𝑑
πœ–0 𝐾𝑒 𝐸 2
=
2
=πœ…
Formula for parallel–plates
Density of electric field energy [J/m3]
𝑒𝐸
Moment of an electric dipole [1Cβˆ™m]
𝑝
≑ π‘žπ‘™
Torque of the electric dipole [1Nβˆ™m]
𝜏
=𝑝
βƒ—βƒ—βƒ— × πΈβƒ—
Potential energy of an electric dipole [1J]
π‘ˆπΈ
= βˆ’π‘ βˆ™ 𝐸⃗
Energy stored in a capacitor [1J]
π‘ˆπΈ (𝑑)
Intensity of the electric current [1A]
Current density [1A/m2]
Definition
I
for a current density 𝑗
I
for a steady current I through a surface of
area A
for charges in motion
j
j
Resistivity [1Ξ©βˆ™m]
Definition
ρ
Resistance [1Ξ©]
Definition for a steady current
R
for a metallic wire of length l and crosssection A
R
Energy-rate dissipated on resistors [1W]
P
=
1 𝑄(𝑑)2
2 𝐢
π‘‘π‘ž
≑
𝑑𝑑
= ∯ 𝑗 βˆ™ 𝑑𝐴
𝐼
𝐴
= π‘›π‘žv𝑑
1 |𝐸⃗ |
= =
𝜎 |𝑗|
𝑉
=
𝐼
𝑙
=𝜌
𝐴
=
= 𝐼𝑉 = 𝑅𝐼 2 =
𝑉2
𝑅
πœπ‘…πΆ
= 𝑅𝐢
Charging a capacitor
π‘ž(𝑑)
= π‘„π‘šπ‘Žπ‘₯ βˆ™ (1 βˆ’ exp(βˆ’π‘‘/𝜏))
Discharging a capacitor
π‘ž(𝑑)
= π‘„π‘œ βˆ™ exp(βˆ’π‘‘/𝜏)
Time constant for an RC circuit [1s]
Definition