11.5 Factor and Solve by using Diamonds Name _______________________ Learning Objective: A.SSE.2 I will rewrite a trinomial with a coefficient of 1 into factored form A.SSE.3 I will find the factors of a quadratic function and then solve to find the zeros A.APR.3 I will factor a quadratic function to determine the zeros A.REI.4 I will solve a quadratic equation by factoring first with a trinomial with a coefficient of 1 F.IF.8 I will use factoring to find the zeros of a quadratic function Use “Diamonds” to factor. 1. 2. - - 18 9. x2 + 14x + 45 4. 18 63 7 - 16 8 6. x2 – 5x + 6 7. x2 + 7x + 12 8. n2 – 10n + 21 11. x2 – 11x + 28 12. x2 + 13x + 22 17 5. x2 – 10x + 24 3. 3 10. x2 – 18x + 17 13. x2 + 16x + 28 14. n2 – 16n + 48 15. x2 + 3x – 4 16. n2 + n – 20 17. x2 – 16x – 36 18. x2 + 4x – 21 19. x2 + 6x – 27 20. x2 – 3x – 28 Write the simplified expression for the area for each figure. x–4 5x – 2 21. 22. 3x Area = ___________ 4x + 1 Area = ___________ 3x – 2 23. 3x – 2 Area = ___________ Solve each problem by factoring first, and then solving each factor. 24. x2 – 11x + 30 = 0 25. x2 + 6x – 16 = 0 26. x2 + 17x + 30 = 0 27. x2 – 10x + 9 = 0 28. x2 + 11x + 24 = 0 29. x2 + 4x – 12 = 0 30. 3x2 + 9x – 12 = 0 31. 2x2 – 14x + 12 = 0 32. 3x2 – 15x – 72 = 0 33. 4x2 – 32x + 48 = 0 34. 2x2 – 4x – 30 = 0 35. 4x2 + 24x + 32 = 0 Answers: 1) (x + 18)(x – 1) 3) (x + 9)(x + 7) 5) (x – 4)(x – 6) 7) (x + 3)(x + 4) 9) (x + 9)(x + 5) 11) (x – 7)(x – 4) 13) (x + 14)(x + 2) 15) (x + 4)(x – 1) 17) (x – 18)(x + 2) 19) (x + 9)(x – 3) 21) 15x2 – 6x 23) 9x2 – 12x + 4 25) (x + 8)(x – 2) = 0, x = –8, x = 2 27) (x – 9)(x – 1) = 0, x = 9, x = 1 29) (x + 6)(x – 2) = 0, x = –6, x = 2 31) 2(x2 – 7x + 6) = 0, 2(x – 6)(x – 1) = 0, x = 6, x = 1 33) 4(x2 – 8x + 12) = 0, 4(x – 6)(x – 2) = 0, x = 6, x = 2 35) 4(x2 + 6x + 8) = 0, 4(x + 4)(x + 2) = 0, x = –4, x = –2
© Copyright 2026 Paperzz