In-situ thermal analysis of thermochemical materials for heat storage applications Claire Ferchaud, Herbert Zondag 05.02.2015 www.ecn.nl EXPERTA-ECN Technology Day February 5, 2015, Petten, The Netherlands Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands Outlines of the presentation • Context of the study • In-situ thermal analysis: methods and setup • Performance test on TCM’s • Conclusions and outlook 2 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands Context of the study • Energy consumption for households in the Netherlands primary energy consumption in 2009 Heat demand > 65 % corresponds to 450 PJ/year 3 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands Context of the study • Domestic heat demand fulfilled by solar energy • Need of seasonal heat storage Different heat storage technologies kWh/month > 24 m3 12 m3 6 m3 sensible latent chemical 0.25 GJ/m3 0.5 GJ/m3 1 GJ/m3 For a passive house of 110 m2 = 6 GJ Domestic application Thermochemical heat storage 4 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands Context of the study • System development atmospheric and integrated system Solar tube collectors Charge Discharge Temperature < 150°C 10 – 50 °C P(H2O) 8 - 20 mbar 13 mbar Living rooms Heat load Bath Kitchen • Selection of thermochemical materials – TCM (s) + nH2O (g) ↔ TCM.nH2O (s) + heat Borehole Heat discharge Thermochemical seasonal heat storage – High energy density (1 GJ/m3 in packed bed) – Low cost materials – Safe process, non toxic properties 5 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands In-situ thermal analysis: methods and set-up • Objectives: performances of TCM’s under in-situ application conditions • Required thermal performances – Energy density of the material (in GJ/m3) 35% porosity – Reaction rate of the dehydration and hydration reactions heat power – Long term stability over thermal cycles (deh./hyd.) • Experimental conditions – Fixed p(H2O) = 13 mbar isotherm 150°C – Fixed flow rate = 100 ml/min – Trange = 50-150°C isotherm 50°C – Heating/cooling rates = 1°C/min dehydration hydration 6 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands In-situ thermal analysis: methods and set-up • Thermal analysis technique selected: Simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) STA • Simulation of the application conditions by means of a humidification system STA apparatus 7 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands In-situ thermal analysis: methods and set-up • STA calibration – Dry to moist atmosphere (1-20 mbar) – Al crucible (25 mL) – Different heating/cooling rates (0.1 – 10 K/min) Standards Tfusion (°C) biphenyl 68.93 indium 156.61 tin 231.92 bismuth 271.41 zinc 419.53 Sensitivity (mV/mW) Sensitivity calibration STA 1,1 0.1 K/min 1 0.2 K/min 0,9 0.5 K/min 0,8 1 K/min 0,7 2 K/min 0,6 5 K/min 0,5 0 100 200 300 400 10 K/min Temperature (°C) 8 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands Performance test of TCM’s • Example of MgCl2.6H2O – Mass changes (TG) – Heat flow variations (DSC) 46 MgCl2.6H2O 24 Baseline drift MgCl2.4H2O 64 42 MgCl2.2H2O Two reaction steps for the deh./hyd. : Energy density (35% porosity) : MgCl2.6H2O ↔ MgCl2.4H2O + 2H2O • E density (deh.) = 1.24 GJ/m3 MgCl2.4H2O ↔ MgCl2.2H2O + 2H2O • E density (hyd.) = 1.05 GJ/m3 9 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands Performance test of TCM’s • Example of MgCl2.6H2O – Correction of the DSC signal Fitting of the baseline by polynomial linearization corrected heat flow (mW/mg) 3,0E-01 DSC dehydration 2,0E-01 Investigation of the intrinsic thermodynamical properties at different p(H2O) conditions DSC hydration 1,0E-01 0,0E+00 -1,0E-01 Deviation = heat losses from open DSC cup design of the in-situ characterization -2,0E-01 -3,0E-01 -4,0E-01 -5,0E-01 -6,0E-01 40 50 60 70 80 90 100 Temperature (°C) 110 120 130 10 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands Performance test of TCM’s • Example of MgCl2.6H2O In-situ thermal analysis over 23 cycles Hydrolysis reaction MgCl2.2H2O MgClOH + H2O Hydrolysis of MgCl2.xH2O = f(HCl) Open sorption system p(HCl) ≈ 0 11 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands 20 0,2 40 60 80 100 120 140 Heat flow (mW/mg) 0,0 • Example of MgSO4.7H2O -0,2 -0,4 – Mass changes (TG) % mass (%) 100 Thermogravimetry MgSO4. 6H2O 90 80 70 Tonset = 34°C MgSO4. H2O 60 50 20 40 60 40 60 80 80 100 120 Temperature (°C) Dehydration : 2 steps of reactions • MgSO4.(7-x)H2O MgSO4.6H2O + xH2O • MgSO4.6H2O MgSO4.H2O + 5H2O 120 140 0,0 -0,2 -0,4 – 20“Corrected” heat flow variations (DSC) 40 60 80 100 120 140 Thermogravimetry DSC 100 0,0 90 80 -0,2 dehydration hydration 70 -0,4 60 50 110 -0,6 20 20 0,2 100 140 100 DSC 110 -0,6 0,2 MgSO4. 6.75H2O flow (mW/mg) Heat (%) % mass 110 -0,6 (%) % mass (mW/mg) eat flow Heat flow (mW/mg) Performance test ofDSC TCM’s 20 0,2 90 0,0 80 40 40 60 60 80 80 100 120 140 100 120 140 Thermogravimetry Temperature (°C) DSC Theoretical energy density = 1.49 GJ/m3 -0,2 70 Stored energy density = 1.29 GJ/m3 60 -0,4 50 12 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands Performance test of TCM’s 20 40 60 80 100 • 0,025 Example of MgSO4.7H2O 0,000 – Mass changes (TG) 110 -0,025 Thermogravimetry % mass (%) 100 90 16 80 Formation of MgSO4. 6H2O after 100h in one step reaction 70 60 20 40 60 80 Heat flow (mW/mg) 0,050 60 80 100 0,050 0,025 0,000 – “Corrected” heat60flow variations (DSC) 20 40 80 100 0,075 110 -0,025 DSC Thermogravimetry 100 0,050 90 0,025 80 70 0,000 60 110 -0,025 100 20 20 0,075 100 time (hours) Hydration : 1 progressive step of reaction • MgSO4.H2O + 5H2O MgSO4.6H2O Low kinetic of reaction 40 DSC (%) % mass flow (mW/mg) Heat DSC 20 0,075 (mW/mg) Heat flow (%) % mass Heat flow (mW/mg) 0,075 40 40 60 60 80 100 80 100 Thermogravimetry time (hours) DSC 90 0,050 Released energy density = 0.013 GJ/m3 80 in the first 25h 0,025 70 60 0,000 110 -0,025 20 40 60 80 100 13 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands Performance test of TCM’s Materials Safety Cost (€/T) Effective energy density (GJ/m3) Kinetics/ Power Material stability Zeolites 13X + 5000 0.24 (50°C) + + CuSO4.5H2O - 1000 - 1500 0.013 (50°C) - + MgSO4.7H2O + 75 - 150 0.013 (50°C) - + MgCl2.6H2O + 150 - 200 1.05 (50°C) + Overhydration, hydrolysis (HCl) CaCl2.2H2O + 75 - 150 1.05 (50°C) + Overhydration SrCl2.6H2O + 500-800 0.25 (50°C) - + Experimental conditions : Tdehydration = 130°C or 150°C , Trehydration = 25 or 50°C, p(H2O)=13 mbar, zeolites density calculated with 13.8%wt(H2O) uptake, and bulk density of 650kg/m3, salt hydrates density estimated for 50% packed bed porosity 14 Claire Ferchaud, ECN, EXPERTA-ECN Technology Day, February 5, 2015, Petten, The Netherlands Conclusions and outlook • A thermal analysis set-up was developed to quantify the thermal performances of TCM’s under in-situ conditions by addition of a humidification system to the initial STA apparatus selected for this study. • The thermal performance test contributed to identify the most promising material (chloride salt hydrates) and their issues based on energy density, kinetic properties and stability, for the domestic application. • Outlook: solve issues of the in-situ characterization – Identify the origin of the deviation of the DSC baseline vs. temperature – Correction of the experimental material performances for the heat losses – Further adjustment of the apparatus for investigation at higher p(H2O) 15 Thanks for your attention Claire Ferchaud Research Thermal System – PhD student [email protected] Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 ZG Petten The Netherlands T +31 88 515 44 54 [email protected] F +31 88 515 86 15 www.ecn.nl
© Copyright 2026 Paperzz