ENVELOPE EQUATIONS Transverse envelope equations 1-dimensional (8 Slides) 2-dimensional => Coupled oscillations of the transverse beam sizes (8) Longitudinal envelope equation Longitudinal envelope equation far from transition (4) Evolution of the phase space ellipse near transition, without collective effects (16) Longitudinal envelope equation near transition (6) Bunch rotation with (or without) SC (and or BB impedance) (7) Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 1 /50 TRANSVERSE ENVELOPE EQUATIONS (1/16) Consider a particle in an ensemble of particles which obeys the single-particle equations x′ = px The total force is Fx ( x, s ) p′x = 2 β E total Fx ( x, s ) = Fxext + FxSC € € distribution f ( x , px , s ) . Averaging over Let’s consider a particle the particle distribution, we obtain the equations of motion for the centre of€the beam < x >′ = < px € > < Fx ( x, s ) > < Fxext > < px >′ = = 2 2 β E total β E total as < FxSC > = 0 , because of Newton’s 3rd law € € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 2 /50 TRANSVERSE ENVELOPE EQUATIONS (2/16) For a linear machine, one has Fxext = − Kx ( s ) x 2 β E total < x >′′ + K x ( s ) < x > = 0 € The 2nd moments satisfy the equations < x 2 >′ = 2 < x x′ > = € 2 < x px > SC F < x px >′ = < x ′ px > + < x p′x > = < px2 > − K x ( s ) < x 2 > + < x 2 x > β E total SC F < px2 >′ = 2 < px p′x >= − 2 K x ( s ) < x px > + 2 < px 2 x > β E total Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 3 /50 TRANSVERSE ENVELOPE EQUATIONS (3/16) To study space-charge effects, we are interested in the position and momentum offsets of the particle from their respective averages, i.e. Δx = x − < x > Δpx = px − < px > < Δx 2 >′ = 2 < Δx Δpx > € <Δx Δpx >′ = <Δpx2 > − K x ( s ) <Δx 2 > + <Δx € € € FxSC > 2 β E total SC F <Δpx2 >′ = − 2 K x ( s ) <Δx Δpx > + 2 <Δpx 2 x > β E total Define the rms beam emittance εx,rms = € and rms beam size σx = Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 € <Δx 2 > <Δpx2 > − <Δx Δpx > 2 <Δx 2 > 4 /50 TRANSVERSE ENVELOPE EQUATIONS (4/16) 2 2 ε + <Δx Δp > x <Δpx2 > = x,rms <Δx 2 > σ ′x = € σ ′x′ = € € <Δx Δpx > <Δx 2 > <Δx Δpx > 2 − 2 3/2 2 <Δx > <Δx > <Δx Δpx >′ Finally, the transverse envelope equation can be obtained 2 εx,rms <Δx FxSC > σ ′x′ + K x ( s ) σ x − 3 − =0 2 σx σ x β E total Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 5 /50 TRANSVERSE ENVELOPE EQUATIONS (5/16) The SC force was derived in the previous “SC course” (assuming for instance a uniform transverse distribution and a round beam) FxSC eλ Δx = 2 2 β E total β E total 2 π ε0 γ 2 a 2 FxSC Δx = K sc, x 2 2 2 β E total a => € with € 2 N l rp K sc, x 2 = 2 3 β γ Therefore, € a = 2σ x Nb e λ= = Nl e l € € <Δx FxSC > K sc, x 2 = 2 β E total 4 Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 6 /50 TRANSVERSE ENVELOPE EQUATIONS (6/16) The 1-dimensional envelope equation can finally be written εx2 K sc, x 2 a′′ + K x ( s ) a − 3 − =0 a a a = 2σ x εx = 4 εx,rms Effect € of space charge on the equilibrium beam size smooth approximation € € K x = ( Qx 0 / R ) a0 , in the 2 € € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 7 /50 TRANSVERSE ENVELOPE EQUATIONS (7/16) The equilibrium beam size is therefore found from 2 K sc, x 2 εx2 Qx 0 − 3 =0 a0 − R a0 a0 εx R which yields a = κ + 1+ κ 2 Qx 0 € 2 0 ( κ= 2 εx Qx 0 The beam size is significantly perturbed by the space-charge force when κ ≥ 1 € ) K sc, x 2 R € If the beam size becomes larger than the vacuum chamber aperture, there will be a beam loss € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 8 /50 TRANSVERSE ENVELOPE EQUATIONS (8/16) For weak beam intensities, i.e. κ << 1 2 2 a02 = a00 + Δ a00 εx R with a = Qx 0 2 00 € €2 2 Δ a00 = κ a00 € a00 describes the beam size in the absence of The parameter space charge. Interpreting Δ a00 as a perturbation on the singleparticle€ tune according to a02 = εx R / ( Qx 0 + Δ Qx ) , gives an expression for the shift of the single-particle tune due to space charge € € K€sc, x 2 R It is ½ of the result found in the “SC Δ Qx = − course” with a = 2 σ (as expected) 2 εx x Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 9 /50 € TRANSVERSE ENVELOPE EQUATIONS (9/16) Let’s come back to the general case, i.e. consider a beam with unequal transverse beam sizes => The envelope equations are therefore given by (we saw in the “SC course”, that in the SC force, a 2 must be replaced by a a + b / 2 ) ( ) 2K sc, x 2 € € 2 x 3 ε a′′ + K x a − − =0 a+ b a εy2 b′′ + K y b − − 3 =0 a+ b b 2K sc, x 2 € € € a = 2σ x εx = 4 εx,rms b = 2σ y εy = 4 εy,rms Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 € 10 /50 TRANSVERSE ENVELOPE EQUATIONS (10/16) Both transverse planes have thus to be treated jointly for highintensity beams due to space-charge coupling The beam may execute some collective motion on top of equilibrium beam sizes a 0 and b0 Let the horizontal and vertical beam sizes be € the perturbations € Δ a and where respect to the equilibrium sizes a ( s ) = a0 − Δ a ( s ) b ( s ) = b0 + Δ b ( s ) Δ €b are considered small with € Linearizing yields€ K a = 4 K x€− € Δ a′′ + K a Δ a = K Δ b € Δ b′ + K b Δ b = K Δ a 2K sc, x 2 ( 2 a0 + 3b0 ) a0 ( a0 + b0 ) 2 , Kb = 4 Ky − € K= 2K sc, x 2 ( a0 + b0 ) 2 2K sc, x 2 ( 2b0 + 3a0 ) b0 ( a0 + b0 ) 2 The transverse beam sizes execute coupled oscillations Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 11 /50 TRANSVERSE ENVELOPE EQUATIONS (11/16) The equilibrium beam sizes a 0 and b0 are found from the following equations εx2 K x a0 − − 3 =0 € a0 + b0€ a0 2K sc, x 2 εy2 K y b0 − − 3 =0 a0 + b0 b0 2K sc, x 2 € Using the smooth approximation € K x = ( Qx 0 / R ) 2 K y = ( Qy 0 / R ) 2 €shifts, yields and assuming small tune € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 K a = ( Qa / R ) 2 K b = ( Qb / R ) 2 € € 12 /50 TRANSVERSE ENVELOPE EQUATIONS (12/16) Qa = 2Qx 0 + ΔQa = 2Qx 0 − Qb = 2Qy 0 + ΔQb = 2Qy 0 − € K sc, x 2 R 2 ( 2 a0 + 3b0 ) 2Qx 0 a0 ( a0 + b0 ) 2 K sc, x 2 R 2 ( 2b0 + 3a0 ) 2Qy 0 b0 ( a0 + b0 ) 2 The coupled equations can be re-written € 2 d Δa 2 2 + Q Δ a = K R Δb a 2 dφ € d 2Δ b 2 2 + Qb Δ b = K R Δ a 2 dφ Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 € φ = Ω0 t 13 /50 TRANSVERSE ENVELOPE EQUATIONS (13/16) Far from the coupling resonance Qa = Qb , the solutions of the homogeneous equations (of the coupled oscillations) are given by Δa = Δa0 e j Qa φ € In the presence of coupling, the coupled oscillations can be solved by searching the normal (i.e. decoupled) modes (u,v) linked by a simple rotation € Δb = Δb0 e j Qb φ € Δa cosα − sin α u = Δb sin α cos α v "b The equations of the 2 normal modes can be found € d 2u 2 + Q u=0 u 2 dφ d 2v 2 + Q v =0 v 2 dφ ! "a ! Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 € € 14 /50 TRANSVERSE ENVELOPE EQUATIONS (14/16) with (assuming small tune shifts) Qu = Qa − € C tan α 2 C tan ( 2 α ) = €Δ C Qv = Qb + tan α 2 R2 K C = Q0 The solutions for the decoupled modes are € u = Ue Δ = Qb − Qa Qx 0 ≈ Qy 0 ≈ Q0 j Qu φ v = V e j Qv φ € (U,V) are constants € of motion, which where depend on the initial € conditions Δa = Δa0 e j Qu φ € € j Qv φ cosα − Δb0 e sin α Δb = Δa0 e j Qu φ sin α + Δb0 e j Qv φ cosα € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 15 /50 TRANSVERSE ENVELOPE EQUATIONS (15/16) 2 Δa = Δa Δa * Therefore, 2 2 2 2 2 2 2 Δa = Δa0 cos2 α + Δb0 sin 2 α − Δa0 Δb0 sin ( 2 α ) cos [ ( Qv − Qu ) φ ] 2 Δb = Δa0 sin α + Δb0 2 € cos α + Δa0 Δb0 sin ( 2 α ) cos [ ( Qv − Qu ) φ ] 2 € € 2 Δa + Δb = Δa0 + Δb0 2 Furthermore, using the fact that € 2 −1/ 2 C C cos ( 2 α ) = cos arctan = 1+ 2 Δ Δ 2 € sin 2 α = Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 C /2 2 Δ2 + C + Δ Δ2 + C 2 16 /50 TRANSVERSE ENVELOPE EQUATIONS (16/16) and, averaging over time (i.e. Φ), it yields (when the resonance is crossed) 2 2 2 ( 2 Δa = Δa0 − Δa0 − Δb0 2 )Δ + 2 C /2 2 C + Δ Δ2 + C 2 2 2 € 2 Δb = Δb0 + ( Δa 2 0 − Δb0 2 )Δ + 2 C /2 2 C + Δ Δ2 + C 2 € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 17 /50 LONGITUDINAL ENVELOPE EQUATION (1/33) Consider as canonical coordinates ΔE = β 2 E total δ Δφ = ω RF Δt = h Ω0 Δt € € € The single-particle equations to be solved (far away from transition) are Δ€ φ˙ = p The total force is € Δφ = φ − φ s h Ω0 η p= 2 ΔE β γ E rest p˙ = Fl Fl = Flext + FlSC € Without SC one has Fl ext 2 s0 = − ω Δφ 2 ˙ ˙ Δφ + ω s0 Δφ = 0 € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 18 /50 LONGITUDINAL ENVELOPE EQUATION (2/33) With SC, one can follow exactly what was done in the transverse plane, making the following replacements € σ€ x = εx = < Δx 2 € Δx Δφ px p K€ x ω s02 φ˜ = <Δx 2 > > < Δpx2 > − < Δx € Δpx€ >2 E0 = < Δφ 2 > < Δφ 2 > < p 2 > − < Δφ p> 2 € € the longitudinal envelope equation can be obtained Finally, SC €2 E <Δ φ F > ˙φ˜˙ + ω 2 φ˜ − 0 − l =0 s0 3 φ˜ φ˜ Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 19 /50 LONGITUDINAL ENVELOPE EQUATION (3/33) Using the fact that (see “SC course”) K sc, l Fl SC 2 s0 = − ηSC ω Δφ , with ηSC 3 π N b rp E rest g0 h 2 Sgn ( η ) b = g0 = 1 + 2 ln 2 ˆ R€γ e VRF cos φ s a K sc, l = Δφˆ 3 Δφˆ = π f 0 h τ b € and the fact that € < Δφ 2 > ˜ =φ ˜ φ € For a parabolic distribution € 2 s0 2 E ˙φ˜˙ + ω 2 φ˜ − 0 + ω K sc, l = 0 s0 φ˜ 3 Δφˆ 3 Half bunch length Let’s now express E0 as a function of the usual longitudinal emittance εl,rms [ eVs ] € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 20 /50 LONGITUDINAL ENVELOPE EQUATION (4/33) Δφ = ω RF t = h Ω0 t h Ω0 η p= 2 ΔE β γ E rest h 2 Ω20 η εl,rms [ eVs ] E 0 =€ 2 × β γ E rest π h 2 Ω20 η p Δφ = 2 ΔE t β γ E rest Now, let’s convert the envelope equation to one for the half bunch€ length ˆ . For a parabolic distribution Δφ Δφˆ = 5 φ˜ € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 € 21 /50 LONGITUDINAL ENVELOPE EQUATION (5/33) 2 2 ω K 25 E ˙ˆ˙ s0 sc, l 0 Δφ + ω s02 Δφˆ + − =0 2 3 ˆ ˆ Δφ Δφ Envelope equation for the half bunch length far from transition € € Let’s now derive the evolution of the phase space ellipse near transition (before deriving the envelope equation near transition) Synchrotron oscillations equation d Δφ h η Ω0 = 2 ΔE dt β E total d ΔE e VˆRF Ω0 e VˆRF Ω0 = sin ( φ s + Δφ ) − sin φ s ] ≈ cos φ s Δφ [ dt 2π 2π Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 22 /50 LONGITUDINAL ENVELOPE EQUATION (6/33) d β 2 E total d Δφ d t h η Ω0 d t with β , E total , η , Ω0 e VˆRF Ω0 cos φ s Δφ = 0 − 2π which depend on time t € Approximation: We neglect the slow time variations of all the parameters except € € € € € η E total d E total d Δφ h e VˆRF Ω20 cos φ s Δφ = 0 − 2 dt η dt 2π β Assumed to be time independent € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 23 /50 LONGITUDINAL ENVELOPE EQUATION (7/33) Furthermore, above transition € € € € γ = γ t + γ˙ t , with t < 0 below transition and t > 0 1 1 2 γ˙ t η= 2 − 2 ≈ 3 γt γ γt η 2 γ˙ t ≈ 4 E total γ t E rest and E total = γ E rest ≈ γ t E rest € d 1 d Δφ 2 + Δφ = 0 d t ω s0 d t e Vˆ h η cos φ 1/ 2 RF s ω = Ω − with s0 0 2 2 π β E total But here, this should be considered as a definition only, as the € beam particle do not make synchrotron oscillations and therefore it loses its meaning of oscillation frequency Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 24 /50 LONGITUDINAL ENVELOPE EQUATION (8/33) t 2 4 β E γ One can write ω = 3 , with rest t T = Tc c 4 π f 2 γ˙ h e Vˆ cos φ 0 RF s 2 s0 1/ 3 It is called the nonadiabatic time € € Physical meaning of the nonadiabatic time: When the time is close enough to transition, the particle will not be able to catch up with the rapid changing of the bucket shape One has to solve d Tc3 d Δφ + Δφ = 0 dt t dt Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 25 /50 LONGITUDINAL ENVELOPE EQUATION (9/33) x Defining a new time variable, and considering only t > 0 for the moment € 0 x= t Tc + Δφ€= 0 Δφ = ϕ y 2 / 3 € € ∫ d 1 d Δφ dx x dx One has to solve Let’s call y= 2 3/2 u du = x 3 2 2 2 d ϕ 1 dϕ 3 + + 1− 2 ϕ = 0 2 dy y dy y Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 26 /50 LONGITUDINAL ENVELOPE EQUATION (10/33) The solution of this equation can be written ϕ = C1 J 2 / 3 ( y ) + C2 N 2 / 3 ( y ) = C3 [ J 2 / 3 ( y ) cos χ + N 2 / 3 ( y ) sin χ ] Constants to be determined from the initial conditions with J2/3 the Bessel function of the 1st kind (or simply the Bessel function), and N2/3 the Bessel function of the 2nd kind (also called Weber or Neumann function) € Δφ = b x [ J 2 / 3 ( y ) cos χ + N 2 / 3 ( y ) sin χ ] Constants to be determined from the initial conditions Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 27 /50 € LONGITUDINAL ENVELOPE EQUATION (11/33) ΔE = β 2 E total δ and β 2 E total d Δφ ΔE = h Ω0 η d t 1 d Δφ γ t3 d Δφ δ= = h Ω0 η d t 2 γ˙ t h Ω0 d t € € γ t3 δ= 2 γ˙ t h Ω0 € Δp δ= p0 Δφ b x 3 / 2 + x Tc Tc 2 J 2 N2 / 3 2/3 − J 5 / 3 cos χ + − N 5 / 3 sin χ 3y 3 y using the fact that n J n′ ( y ) = J n ( y ) − J n +1 ( y ) y Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 n N n′ ( y ) = N n ( y ) − N n +1 ( y ) y 28 /50 LONGITUDINAL ENVELOPE EQUATION (12/33) Now the idea is, with the 2 equations Δφ = b x [ J 2 / 3 ( y ) cos χ + N 2 / 3 ( y ) sin χ ] γ t3 δ= 2€γ˙ t h Ω0 to solve for Δφ b x 3 / 2 + x Tc Tc cos χ and cos2 χ + sin 2 χ = 1 € € 2 J 2 N 2/3 − N 5 / 3 sin χ 2 / 3 − J 5 / 3 cos χ + 3y 3 y sin χ to derive an equation linking α φφ Δφ 2 + 2 α φδ Δφ δ + αδδ δ 2 = 1 € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 € , and then write the equation Δφ and δ € 29 /50 LONGITUDINAL ENVELOPE EQUATION (13/33) 2 2 J 2 J 2 J 2 J 2 3/ 3 + 2 / 3 − J 5 / 3 + 32/ /23 2 / 3 − J 5 / 3 x x 3y 3y 1 with α φφ = 2 2 2 2 2 det b x 2 N N 2 N2 / 3 2 N2 / 3 2/3 2/3 − N5 / 3 + 3 + 3 / 2 − N 5 / 3 + x x 3y 3y € € € 1 αδδ = det 2 b 2 x 3 α φδ 2 γ˙ t h Ω0 Tc 2 2 2 J + N ( 2/3 2/3 ) γ t3 2 J 2 T h Ω γ˙ t J 2 / 3 Tc 2 J 2 / 3 2/3 c 0 − 2 5/2 3 − J 5 / 3 2 γ˙ t h Ω0 − 2 4 3 b x γt b x γt 3 y 1 = 2 2 det 2 N 2 / 3 Tc h Ω0 γ˙ t N 2 / 3 Tc 2 N2 / 3 ˙ − − − N 2 γ t h Ω 5/3 0 2 4 3 2 5/2 3 b x γ b x γ 3 y t t 2 N2 / 3 2 J2 / 3 det = J 2 / 3 − N5 / 3 − N2 / 3 − J5 / 3 3y 3y Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 30 /50 LONGITUDINAL ENVELOPE EQUATION (14/33) Using the fact that Jα ( y ) Nα′ ( y ) − Jα′ ( y ) Nα ( y ) = 2 πy 2 N2 / 3 2 J2 / 3 2 det = J 2 / 3 − N5 / 3 − N2 / 3 − J 5 / 3 = J 2 / 3 N 2′ / 3 − N 2 / 3 J 2′ / 3 = πy 3y 3y € € π2 α φφ = 2 2 9b x 2 2 ˙ π x 2 γ h Ω0 Tc 2 2 αδδ = J + N ( 2 / 3 2 /3 ) 9 b2 γ t3 2 € € 2 2 3y 3y J5 / 3 + 2 N 2 / 3 − N5 / 3 2 J2 / 3 − 2 2 α φδ π2 = 9 b2 2 2 γ˙ h Ω0 Tc2 3y 3y N 5 / 3 − 2 N 2 / 3 − J2 / 3 2 J2 / 3 − J5 / 3 N2 / 3 3 2 γt 2 Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 31 /50 LONGITUDINAL ENVELOPE EQUATION (15/33) Let’s now compute the emittance of the tilted ellipse δ ψ € Δφ € € Method: Let’s find (u , v) where the ellipse is upright Δφ cosψ − sinψ u = δ sinψ cosψ v Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 32 /50 LONGITUDINAL ENVELOPE EQUATION (16/33) => The ellipse is upright if 2α 1 φδ ψ = arctan 2 α φφ − αδδ It is the tilt angle of the ellipse € Using the fact that cos ( arctan x ) = 1 1+ x2 the equation of the ellipse can be written € € 2 1 1 2 2 α φφ + αδδ + ( α φφ − αδδ ) + 4 α φδ u + α φφ + αδδ − 2 2 Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 sin ( arctan x ) = (α φφ − αδδ ) 2 x 1+ x2 + 4α 2 φδ 2 v = 1 33 /50 LONGITUDINAL ENVELOPE EQUATION (17/33) The area of the ellipse is thus 2 Α =π α φφ + αδδ + (α φφ 2 − αδδ ) 2 and + 4α A= 2 φδ α φφ + αδδ − (α φφ − αδδ ) 2 2 + 4 α φδ π α φφ αδδ − α φδ2 h Ω0 A = εl [ eVs ] 2 β E total € 3 y N5 / 3 3 y J5 / 3 3 Using the fact that J 2 / 3 − 2 N 2 / 3 + N 2 / 3 2 J2 / 3 − =− 2 2 π € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 34 /50 LONGITUDINAL ENVELOPE EQUATION (18/33) => The remaining unknown b can be found and is given by b= 2 εl h 2 Ω20 γ˙ Tc2 3 m0 c 2 β 2 γ t4 One now has all the parameters of the ellipse which can be plotted at any time t => The evolution of the bunch length, the energy spread and the phase space ellipse€can be studied near transition Δφ max = € αδδ α φφ αδδ − α 2 φδ δmax = α φφ α φφ αδδ − α φδ2 Properties in an ellipse (see “Introduction”) € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 35 /50 LONGITUDINAL ENVELOPE EQUATION (19/33) Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 36 /50 LONGITUDINAL ENVELOPE EQUATION (20/33) Case of the CERN PS nTOF bunch without SC Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 37 /50 LONGITUDINAL ENVELOPE EQUATION (21/33) Let’s now concentrate on the derivation of the envelope equation NEAR TRANSITION. Far from transition, the envelope equation was found to be 2 2 ω K 25 E ˙˙ s0 sc, l 0 Δφˆ + ω s02 Δφˆ + − =0 2 3 Δφˆ Δφˆ which can also be written € with € K sc, l1 S1 1 d2 τb + τb + 2 − 3 = 0 2 2 ω s0 d t τb τb 3 N b rp E rest g0 Sgn ( η ) K sc, l1 = 3 3 3 = 2 π h f 0 π h f 03 R γ t2 e VˆRF cos φ s € K sc, l 16 η 2 εl2 S1 = 2 4 2 2 2 π β γ E rest ω s0 Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 εl = 5 εl,rms 38 /50 LONGITUDINAL ENVELOPE EQUATION (22/33) t Close to transition x = Tc x ω = 2 Tc 2 s0 t ω = 3 Tc 2 s0 € € K sc, l1 S1 1 d2 τb + τb + 2 − 3 = 0 € 2 x dx τb τb Knowing that, close to transition, one has to make the substitution (as seen in the previous slides) € 1 d2 τb x d x2 Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 d 1 d τb dx x dx 39 /50 LONGITUDINAL ENVELOPE EQUATION (23/33) One has to solve K sc, l1 S1 d 1 d τb + τb + 2 − 3 = 0 dx x dx τb τb which can also be written € 27 36 10 K 10 x S2 d 1 d τ bns sc, l1 − =0 + τ bns + 2 3 dx x dx τ bns τ bns with 64 εl2 γ˙ 2 Tc4 S2 = 2 4 8 2 π β γ t E rest Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 Full (4σ) bunch length in ns 40 /50 LONGITUDINAL ENVELOPE EQUATION (24/33) Case of the CERN PS nTOF bunch Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 41 /50 LONGITUDINAL ENVELOPE EQUATION (25/33) Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 42 /50 LONGITUDINAL ENVELOPE EQUATION (26/33) Full bunch length [ns] See “Wake fields and impedances” => Constant with opposite sign as SC Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 43 /50 € LONGITUDINAL ENVELOPE EQUATION (27/33) Bunch rotation with SC (and or constant inductive impedance) => The envelope equation can also be used to estimate, for a given compression factor, the needed RF voltage, the compression time, the evolution of the bunch length and the evolution of the momentum spread The envelope equation can also be (sometimes) written K sc, l 2 εl22 d 2 rz + K RF rz − 2 − 3 =0 2 dz rz rz K RF e VˆRF h η cos φ s = 2 π R 2 γ β 2 m0 c 2 Depends on the source (was 1 before) € Half bunch length (in meters) 3 gˆ rp N b η K sc, l 2 = 2 γ 3β 2 rpipe 1 gˆ = + 2ln 2€ rbeam Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 Δp εl 2 = η rz 0 = cte p0 44 /50 LONGITUDINAL ENVELOPE EQUATION (28/33) 2 The bunch is matched (at constant energy) when Before, we used Δφˆ € rz = rz0 and we had € € € rz => Δφˆ = π h f 0 τ b Full bunch length [in s] τb rz = β c 2 Here, we use It can be checked that this equation is the same as the one we used before (with the small difference on the g-factor), remembering that € Used before and we have d rz d rz = =0 2 dz dz € π 2 Δp εl = β γ E rest τ b 2 p0 Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 45 /50 LONGITUDINAL ENVELOPE EQUATION (29/33) Example of bunch rotation estimated in the past in a 2 GeV protonaccumulator-compressor for a neutrino factory VˆRF = 7 MV 13 N b = 10 p/b ( Δp / p0 ) max = 2 ( σ p / p0 ) = 1.5 ×10 −3 € € gˆ ≈ 4 € € Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 46 /50 LONGITUDINAL ENVELOPE EQUATION (30/33) Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 47 /50 LONGITUDINAL ENVELOPE EQUATION (31/33) Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 48 /50 LONGITUDINAL ENVELOPE EQUATION (32/33) Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 49 /50 LONGITUDINAL ENVELOPE EQUATION (33/33) Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 50 /50
© Copyright 2026 Paperzz