3.1.1 Dilations - Kenston Local Schools

Geometry Chapter 3: Justification and Similarity
Team Number ______ Name__________________
3.1.1 Dilations
3-1 WARM UP STRETCH
3-2
Video/Group Work on Board
Points:
Conclusions:
3-3
a.)
3-4 Closure: Learning Log
Same Shape, Different Size.
b.)
3.1.2 Similarity
3-11
a.)
b.)
c.
d.)
e.)
3-12
a.)
b.)
3-13
3-14
a.)
Zoom Factor ___________
b.)
3-15 EQUAL RATIOS OF SIMILARITY
a.)
b.)
3-16
a.)
c.)
b.)
x = ____________ y = ____________
3-17 Closure: Learning Log
Similar Figures
Similar:
Zoom Factor:
Congruent:
3.1.3 Using Ratios of Similarity
3-24
a.)
b.)
c.)
d.)
3-25
a.)
b.)
3-26
c.)
y
b.)
c.)
x
d.)
3-27
y
7
6
3-28
5
Enlarge it by 2 and draw
new rectangle.
4
Perimeter
3
Area
Original= __________ Original= __________
2
1
–6
–5
–4
–3
–2
–1
1
–1
–2
–3
–4
2
3
4
5
6
7
8
x
New
= ___________
New = ___________
3.1.4 Applications and Notation
3-35
GEORGE WASHINGTON’S NOSE
Strategy
Measurements & Calculations:
3-36
a.)
b.)
3-37
a.)
b.)
3-38
a.)
b.)
c.)
d.)
3.2.1 Conditions for Triangle Similarity
3-48
How can your prove 2 triangles are similar? List everything you need to show in order to prove this.
Shortcuts to Triangle Similarity
1)
2)
3)
3-51
a.)
b.)
c.)
d.)
Worksheet for Triangle Similarity
3.2.2 Creating a Flowchart
3-59
a.)
b.)
3-60
a.)
b/c/d.)
Facts
Conclusion:
3-61
a.)
CT  __________
3-62*
a.)
b.)
3-63
a/b/c.)
3-64 Closure: Learning Log
Using Flowcharts
3.2.3 Triangle Similarity and Congruence
3-71
a.)
b.)
c.)
d.)
3-72
a.)
b.)
Length of BC  ______ Length of AC  ______
3-73
a.)
b.)
3-74
c.)
Length of VT  ______ Length of TN  _______
a.)
b.)
c.)
d.)
3.2.5 Determining Similarity
3-94
a.)
3-95
b.)
Pair 1:
Pair 2:
Pair 3:
Flowchart Pair 1
Flowchart Pair 2
Flowchart Pair 3
3-96
b.)
3-97
a.
b.
c.
d.
mU  _________
mN  __________
mT  _________
AT = ___________
3.2.6 Applying Similarity
3-105
a.)
YOU ARE GETTING SLEEPY
b.)
3-106
b.)