C H A P T E R
13
GENERAL
RELATIVISTIC
MODELS
FOR
COORDINATES A N D EQUATIONS OF
TIME,
MOTION
The r e l a t i v i s t i c t r e a t m e n t of the n e a r - E a r t h s a t e l l i t e orbit
d e t e r m i n a t i o n problem includes c o r r e c t i o n to the e q u a t i o n s of
m o t i o n , the time t r a n s f o r m a t i o n s , and the m e a s u r e m e n t m o d e l .
The
two c o o r d i n a t e Systems g e n e r a l l y used when including r e l a t i v i t y in
n e a r - E a r t h orbit d e t e r m i n a t i o n S o l u t i o n s are the solar
System
b a r y c e n t r i c frane of r e f e r e n c e and the g e o c e n t r i c or E a r t h - c e n t e r e d
frame of r e f e r e n c e .
Ashby and Bertotti (1986) constructed a locally inertial Eframe in the n e i g h b o r h o o d of the g r a v i t a t i n g Earth and d e m o n s t r a t e d
that the g r a v i t a t i o n a l e f f e c t s of the Sun, M o o n , and other p l a n e t s
are basically reduced to their tidal f o r c e s , with very small
r e l a t i v i s t i c c o r r e c t i o n s . T h u s the main r e l a t i v i s t i c e f f e c t s on a
n e a r - E a r t h satellite are those described by the S c h w a r z s c h i l d field
of the Earth itself.
T h i s result makes the g e o c e n t r i c frame m o r e
s u i t a b l e for d e s c r i b i n g the motion of a n e a r - E a r t h satellite (Ries,
et a l . ,
1988).
The time c o o r d i n a t e in the inertial E-frame is T e r r e s t r i a l
Time (designated TT) (Guinot, 1991) which can be c o n s i d e r e d to be
e q u i v a l e n t to the p r e v i o u s l y defined T e r r e s t r i a l D y n a m i c a l T i m e
(TDT) .
T h i s time c o o r d i n a t e
(TT) is realized in p r a c t i c e by
I n t e r n a t i o n a l Atomic T i m e ( T A I ) , w h o s e rate is defined by the
a t o m i c second in the International System of U n i t s (SI) . T e r r e s trial T i m e adopted by the International A s t r o n o m i c a l U n i o n in 1991
d i f f e r s from G e o c e n t r i c C o o r d i n a t e Time (TCG) by a scaling factor:
X 10 !u X (MJD-4 3144 . 0) X 86400 s e c o n d s ,
JA *9?i
w h e r e MJD r e f e r s to the modified J u l i a n d a t e .
Figure 13.1 s h o w s
g r a p h i c a l l y the r e l a t i o n s h i p s between the time s c a l e s .
T C G - T T = 6.9693
E q u a t i o n s of M o t i o n for an Artificial E a r t h Satellite
The correction
s a t e l l i t e Aa is
Aa =
-
GM,
2-f
c2rJ
where
|[2(/3
ff
L
to
+7)
the
GM,e
—
r
acceleration
"
7V2]r
+
of
[2(1
+
an
7)
artificial
(r-v)v]
c = speed of light,
= PPN p a r a m e t e r s equal to 1 in G e n e r a l
Relativity,
r,v,ä = g e o c e n t r i c satellite p o s i t i o n , v e l o c i t y ,
acceleration, respectively,
Earth
(1)
ß,y
123
and
G M @ = g r a v i t a t i o n a l parameter of t h e
Earth.
T h e e f f e c t s of L e n s e - T h i r r i n g p r e c e s s i o n ( f r a m e - d r a g g i n g ) , g e o d e s i c
(de Sitter) p r e c e s s i o n , and t h e relativistic e f f e c t s of t h e Earth's
oblateness have been neglected.
E q u a t i o n s o f M o t i o n in t h e B a r y c e n t r i c F r a m e
T h e n-body e q u a t i o n s of m o t i o n for t h e solar s y s t e m frame of
r e f e r e n c e (the isotropic P a r a m e t e r i z e d P o s t - N e w t o n i a n system w i t h
B a r y c e n t r i c C o o r d i n a t e T i m e (TCB) as t h e t i m e c o o r d i n a t e ) are
required to d e s c r i b e t h e d y n a m i c s of the solar s y s t e m and a r t i f i c i a l p r o b e s m o v i n g about t h e s o l a r system (for e x a m p l e , see M o y e r ,
1971).
T h e s e are the e q u a t i o n s applied to t h e M o o n ' s m o t i o n for
L u n a r L a s e r R a n g i n g (Newhall, W i l l i a m s , and D i c k e y , 1 9 8 7 ) .
In
a d d i t i o n , r e l a t i v i s t i c c o r r e c t i o n s to the laser r ä n g e m e a s u r e m e n t ,
t h e d a t a t i m i n g , and t h e S t a t i o n c o o r d i n a t e s a r e required (see
Chapter 1 4 ) .
Scale Effect and Choice of T i m e Coordinate
T h e p r e v i o u s IAU d e f i n i t i o n of the time c o o r d i n a t e in the
b a r y c e n t r i c frame required t h a t only p e r i o d i c d i f f e r e n c e s e x i s t
b e t w e e n B a r y c e n t r i c D y n a m i c a l T i m e (TDB) and T e r r e s t r i a l Dynamical
T i m e (TDT) (Kaplan, 1 9 8 1 ) .
A s a c o n s e q u e n c e , the s p a t i a l c o o r d i n a t e s in the b a r y c e n t r i c f r a m e had to be r e s c a l e d t o k e e p the speed
of light u n c h a n g e d b e t w e e n t h e barycentric and t h e g e o c e n t r i c
frames (Misner, 1 9 8 2 ; H e l l i n g s , 1 9 8 6 ) . T h u s , w h e n b a r y c e n t r i c (or
T D B ) u n i t s of length w e r e c o m p a r e d to g e o c e n t r i c (or T D T ) u n i t s of
l e n g t h , a scale d i f f e r e n c e , L, appeared.
T h i s is no longer
r e q u i r e d w i t h the use of t h e TCG time s c a l e .
The difference between
F u k u s h i m a et al.
(1986) as
TCB
and
TDB
is
given
T C B - T D B = 1.550505X10' 8 (±1X10* 1 4 ) X (MJD-43144 . 0)
in
seconds
by
X 86400.
T h e d i f f e r e n c e b e t w e e n Barycentric C o o r d i n a t e T i m e (TCB) and
Geocentric
Coordinate
Time
(TCG)
involves a
four-dimensional
transformation,
t
T C B - T C G = c- 2 {/[v-v/2 + Uexl(xc)]dt + ve- (x-xc) } ,
t0
w h e r e x c and vc d e n o t e the b a r y c e n t r i c p o s i t i o n and v e l o c i t y of the
Earth's c e n t e r of m a s s and x is the b a r y c e n t r i c p o s i t i o n of the
o b s e r v e r . Ucxl is the N e w t o n i a n potential of all of t h e solar system
b o d i e s a p a r t from the Earth evaluated a t the g e o c e n t e r .
t 0 is
chosen t o be c o n s i s t e n t w i t h 1977 January 1, 0 h 0 m 0 S T A I and t is
124
TCB.
An a p p r o x i m a t i o n
(1986) as
is g i v e n
in
seconds
by
Fukushima
(TCB-TCG) = 1.480813X10- 8 (±1X10' 1 4 ) X (MJD-43144 . 0)
+ c"2vc- (x-x c ) + P.
al.
et
X 86400
w i t h M J D m e a s u r e d in T A I .
For o b s e r v e r s on the E a r t h ' s s u r f a c e ,
diurnal p e r i o d i c d i f f e r e n c e s d e n o t e d by P w i t h a m a x i m u m amplitude
of 2.1 ßs also r e m a i n .
T h e s e can be e v a l u a t e d from p o s i t i o n s and
m o t i o n s of solar system b o d i e s using e x p r e s s i o n s of H i r a y a m a et
al.
(1987) .
1976
1991
RECOMMENDATION
TDT
Terrestrial Dynamical Time
RECOMMENDATION
TT
Terrestrial Time
TDT = TT « TAI + 32sl84
V
II
T
TCG
Geocentric Coordinate Time
TCG - TT = 6.9693 X 10*"10 X AT
V
4-dimensional
space
transformation
Linear transformation
1.480813 X 10"8 X AT
T
TDB
Barycentric Dynamical Time
T
TCB
Barycentric Coordinate Time
TCB = TDB + 1,550505 X 10~8 X AT
AT = (date in days - 1977 January 1,0h)TAI X86400 see
Fig 13.1
R e l a t i o n s between time s c a l e s .
References
A s h b y , N. and B e r t o t t i , B.,
Inertial Frames, 1 1 Phys.
1986, " R e l a t i v i s t i c E f f e c t s
Rev.,
D34 ( 8 ) , p . 2 2 4 6 .
125
in
Local
F u k u s h i m a , T., F u j i m o t a , M. K., K i n o s h i t a , H., and A o k i , S., 1986,
"A System
of A s t r o n o m i c a l
Constants
in the
Relativistic
F r a m e w o r k , " Celest.
Mech.,
38, pp. 215-230.
Guinot, B., 1 9 9 1 , "Report of the S u b - g r o u p on T i m e , " in
Systems,
J. A. H u g h e s , C. A. S m i t h , and G. H. K a p l a n
S. Naval O b s e r v a t o r y , W a s h i n g t o n , D. C., p p . 3-16.
Reference
( e d s ) , U.
H e l l i n g s , R. W. , 1986, " R e l a t i v i s t i c Effects in A s t r o n o m i c a l T i m i n g
M e a s u r e m e n t , " Astron.
J. , 91 ( 3 ) , p p . 6 5 0 - 6 5 9 .
Erratum,
ibid.,
p. 1446.
H i r a y a m a , T h . , K i n o s h i t a , H., F u j i m o t o , M. K., F u k u s h i m a , T., 1 9 8 7 ,
" A n a l y t i c a l E x p r e s s i o n s of T D B - T D T 0 , " in Proceedings
of
the
International
Association
of Geodesy
(IAG)
Symposia,
Vancouver, pp. 91-100.
Kaplan, G. H. , 1 9 8 1 , The IAU Resolutions
Time
Scale
and
the
Fundamental
O b s e r v a t o r y C i r c u l a r No. 163.
on Astronomical
Reference
Frame,
M i s n e r , C. W., 1 9 8 2 , Scale
Factors
for
Relativistic
Coordinates,
NASA C o n t r a c t N A S 5 - 2 5 8 8 5 , R e p o r t ,
ington A n a l y t i c a l S e r v i c e s C e n t e r , Inc.
Moyer,
T. D. , 1 9 7 1 , Mathematical
precision
Orbit
Determination
32-1527.
U.
Constantsf
S. Naval
EG&G,
Formulation
of
the
Program,
JPL Technical
Ephemeris
Wash-
DoubleReport
M o y e r , T. D., 1 9 8 1 , " T r a n s f o r m a t i o n from P r o p e r T i m e on Earth to
C o o r d i n a t e T i m e in Solar System B a r y c e n t r i c S p a c e - T i m e Frame
of R e f e r e n c e , Parts 1 and 2 , " Celest.
Mech.,
23, pp. 33-68.
N e w h a l l , X. X., W i l l i a m s , J. G., D i c k e y , J. 0., 1 9 8 7 , "Relativity
M o d e l i n g in Lunar Laser R a n g i n g Data A n a l y s i s , " in
Proceedings
of
the
International
Association
of
Geodesy
(IAG)
Symposia,
Vancouver, pp. 78-82.
Ries,
J. C ,
H u a n g , C. , and W a t k i n s , M. M. , 1 9 8 8 , "Effect of
G e n e r a l R e l a t i v i t y on a N e a r - E a r t h S a t e l l i t e in the G e o c e n t r i c
and B a r y c e n t r i c R e f e r e n c e F r a m e s , " Phys.
Rev.
Let.,
61, pp.
903-906.
126
© Copyright 2026 Paperzz