Lehigh University Lehigh Preserve US-Japan Winter School Semester Length Glass Courses and Glass Schools Winter 1-1-2008 Lecture 4, Part 1: Proton conduction in glass sand its application to fuel cell - Proton conduction Masayuki Nogami Nagoya Institute of Technology, Japan Follow this and additional works at: http://preserve.lehigh.edu/imi-tll-courses-usjapanwinterschool Part of the Materials Science and Engineering Commons Recommended Citation Nogami, Masayuki, "Lecture 4, Part 1: Proton conduction in glass sand its application to fuel cell - Proton conduction" (2008). USJapan Winter School. 11. http://preserve.lehigh.edu/imi-tll-courses-usjapanwinterschool/11 This Video is brought to you for free and open access by the Semester Length Glass Courses and Glass Schools at Lehigh Preserve. It has been accepted for inclusion in US-Japan Winter School by an authorized administrator of Lehigh Preserve. For more information, please contact [email protected]. Proton conduction in glass and its application to fuel cell Masayuki NOGAMI Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology Email: [email protected] Home Page: http://nitzy.mse.nitech.ac.jp/~nogamilab/index.html ★ New optical glasses ★ Fast proton conducting glasses and their application to fuel cell ★ Self-assembling of nanoparticles (b) (a) 400 x1 x150 500 600 Wavelength 700 (nm) 800 Intensity (a. u.) Optical memory Nonlinearity Fluorescence intensity (Arb. units) Optics, Rare-earth Proton Conductor Fuel Cell λ ex = 8 0 0 n m λ ex = 2 6 7 n m 600 640 68 0 (S/cm) 560 W a v e le n g th (n m ) Metal Nanoparticles o Temperature ( C) A tip R 2 ,C 2 Au Si substrate 1 40 0.9 35 0.8 30 0.7 25 0.6 20 0.5 15 0.4 10 0.3 0.2 5 0 20 40 60 80 0 100 120 140 2 Current Density (mA/cm ) 2 shell R 1,C 1 V Cell Voltage (V) Au Nanochains Au Nanoparticles Glass Electrolyte Power Density (mW/cm ) Fuel cell Sensors log Conductivity -0.5 150 100 50 0 -50 -75 -1 -1.5 -2 -2.5 -3 -3.5 -4 2 3 4 (Temperature, K)-1 5 x10 -3 Fluorescence Spectral Hole-burning PSHB spectrum in Eu3+-doped glass 0 0 1 0 1 0 Intensity (a. u.) Hole 1 0 1 0 1 0 0 0 Laser Rare-earth in Glasses λex= 800 nm λex= 267 nm 560 600 640 680 Wavelength (nm) Faraday rotation Self-Assembling of Nano-Particles and Nonlinear Optics Shape-Control (a. u.) Spectral Hole-burning A R 2 ,C 2 Intensity tip V Au shell R 1,C 1 Si substrate 600 800 1000 1200 Wavenumber 1400 1600 (cm-1) 1800 Nanoparticles Self−Assembly -5 0 5 10 15 Delay time (ps) 80 χ (3) (10 -11 esu.) Normalized ∆T/T (a.u.) Pump power: 30 mW 120 40 0 500 600 700 Wavelength (nm) 800 Morphology-Control Proton conduction in glass and its application to fuel cell (S/cm) • Introduction Possibility of fast proton conduction in the glass • Sol-gel method for preparation of proton conducting glasses Mechanism of proton conduction in porous glass Glasses and films exhibiting high proton conductivities at 150oC ~ -100oC • Applications Fuel cell Electrolytes for gas sensor and fuel cell Sensors • Conclusions o Temperature ( C) 150 100 1 -3 40 -3.5 Cell Voltage (V) 35 30 0.7 25 0.6 20 0.5 15 0.4 10 0.3 5 60 80 0 100 120 140 2 Current Density (mA/cm ) 2 40 -75 -2 -4 2 20 -50 -2.5 0.8 0 0 -1.5 0.9 0.2 50 -1 Power Density (mW/cm ) log Conductivity -0.5 3 4 (Temperature, K)-1 5 x10 -3 High proton conducting glasses for the fuel cell electrolyte Stack Electrode Catalyst Cells Electrolyte Electrode H2 Electrolyte - + + O2 + Anode H2 2H+ + 2e- Cathode 2H+ + 1/2O2 + 2eTotal H2 + 1/2O2 H2O H2O High efficiency, Clean energy Proton conducting membrane Perfluorosulfonate ionomers (Nafion) High proton conductivity at around room temperature Degradation in thermal and chemical attacks Inorganic Sol-gel-derived Glass High proton conductivity at temperatures of 150oC to -30oC High stability against the thermal and chemical attacks Fast proton conducting-glasses prepared by the sol-gel process • Mechanism of proton conduction in the solgel-derived porous glasses. • Effect of pore structure on the proton conduction. • Preparation of glass films with ordered pore structure. • Application to the gas sensor and fuel cell. Sample Preparation Si(OC2H5)4 H2O,EtOH and HCl Stirring Drying at R.T. Gel Heat Treatment Porous Glass Porous structure of the sol-gel-derived glasses O H H O O H OH OH H O H O H O H O H O H O O H O OH H O H O H O O H HO HO Glass H O H O O OH OH H H O H O H O H O O OH H O H O H O HO OH H O H O O H O H O H O OH OH H O H O H O O 4 -1 H O H O -1 H O H O H O OH Pore H O dV/d logr (cm3 nm g ) H O H O H O OH H O H H O H O Glass HO H O HO H O O H HO H HO H O H O H O HO HO OH HO H O H O H O H O OH H O OH H O H O H O H O H O O H H O H O H H O H O H O O H O H O H O H O OH OH Pore H O H O H O H O O H H O O H O H O H O H O H O OH OH H O H O H O H O H O H O H O O SiOH bonds Porous properties of the glass Surface Area up to ~1000m2/g Pore volume 0.1 ~ 0.5 cm3/g Pore size > 1 nm H O H O H O H O H O H O H O OH OH H O Glass H O H O O H O HO H O H O H O O H HO 3 2 1 0 1 10 Pore radius (nm) Water molecules absorbed in the porous glasses Hydrogen bonded H2 O Glass Physically adsorbed H2 O HO OH H H OH O H H H O HO H O O H O H H O H H O H H O H O H H O H H O H O H H O H HH H H O O OH H O O H O OH H O O H HO Glass H H O H O H OHH H H OH OH H O O H H O O H H O H O H H O H H H H O O H H O H O H H H O H H O HO HO OH H H O H O H HO HO HO HO OOH HH O OH HO HO OH O OH H H OH O HO H O H O O H H O HO OH OH H OH H H H O O O O H O H O O O H H O HO OH H HO HO O HO H O H O H O O H OHH O H O H OH H OO H OO OH OH HO HO H H O H H O H O H H O H H OH O H O H H H H OH O H O O H H H H O HO H O O HO H H H O O H O H O H H H O O H H H OH O H H H H O O H H O H H H H O O O H H O H O H H H O O H O H H O O H H O OH H OH O H O OH H HO O O H H OH HO HO O HO HO O Physically adsorbed H2O molecules are removed by heating at around 100oC. H O H H H O H H O O H O H H O O H O OH H O OH OH HO H HO H O O H O H HO O H O H O SiOH Physically bonds adsorbed H2 O H HO O HO HO H O H O H O H O OH OH OH H H O O HH O H H O O O H H H O O OH O O HO H H O H O H O H O O H O H OO H H O H H H OH O H O H O HO O O O H O O H HO Glass HO O OH OH H OH O H O OH HO OH H O Glass OH He ex o ati po r ng su re O O H HO H H O H H O H H H H O O H H O H H H O O H H H H H HO O H H H H O O H H O O H H H O HO H H O H H H H H H O O O H OH O H H OHH H H O OH OH H O O H H H H O O O H H O H H HH H H O O OH H O O O H H O OH H O O H H O H H O H H O H H H H O H O H H H O O H H O H H O H H O H H O H H OH O H O H H HO H O O H O H O H H O H O H O SiOH bonds H H H H OH O H O O H O H H H O H H O H H H H O O O H H O H O H H H O O H H O O H H O O H H O H O H H O Exposure to humid atmosphere HO O H Effect of the physically bonded H2O molecules on the conductivity -7 (S/cm) -3 3 Z" ( x10 Ω) -4 -2 2nm-glass -1 -8 4 1 Weight gain 0 0.8 -1 0.6 -2 σ Normalized weight gain 1 3 0.4 Conductivity 0.2 0 log 2 3 Z' ( x10 Ω) (S/cm) 1 -3 -4 0 10 20 30 40 50 60 Time (min) 70 -5 80 log 0 σ 4nm-glass 0 -9 -10 0.6 0.8 1 log [H2O] log σ = K log [H2O] 1.2 Controlling the amount of the chemically bonded H2O molecules O H H O O H OH OH H O H O H O H O H O H O O H O OH H O H O H O O H HO HO H O O OH H OH H O H O H O H OH H O H O O H O OH OH H O H O H O O H O H O H O H O H O H O H O H O H H O H O O H HO OH OH H O H O H O H O H O H O OH OH H O H O H O O H O HO O H OH OH H O H O H O H O O H HO H O H H O H O H O H O H O H O O H O H H O H O HO H O H H O HO O O H H Pore O O HO HO HO H H O O H O H O H H O H H H O H O H H O OH H H O H O OH H O H O H O H O H H H O O H O H O H O H O H H O O H O H HH H OO O H O H O OH OH H O H H O H O H O H O H O H O H O H O H H O H O O H H O OH OH H H O H O H H OH O H O at around 200oC. H O H O O H H H O O H O H H OH O H O Chemically bonded H2O molecules are removed by heating Glass Effect of the chemically bonded H2O molecules on the conductivity and its activation energy Activation energy (kJ/mol) (Scm -1 ) -11.5 -12 σ 160oC log10 -12.5 310oC -13 log σ (S/cm) at 150oC -11 1.8 210oC 250oC 2 2.2 2.4 2.6 2.8 1/Temperature (K) x 10-3 -12 -13 -14 120 100 80 60 -1 -0.5 0 0.5 1 log [H2O]・[H+] -15 -16 -1 -0.5 0 0.5 1 log σ = k log [H2O]・[H+] log [H2O]・[H+] E = k log [H2O]・[H+] Proton conduction in the porous glass Activation energy (kJ/mol) 120 100 Conduction process of proton through the porous glass Chemically bonded H2O 80 E 60 Physically bonded H2O 40 HH O H+ 20 0 0 1 log10 {[H] [H 2 O]} 2 (mol/l) 3 O Si O HH O HH O HH O H+ H O Si O O Si O H O Si O HH O H+ O Si O Proton conduction is controlled by the proton dissociation from the SiOH bond and the proton hopping between SiOH and H2O. Fast proton conducting-glasses prepared by the sol-gel process • Mechanism of proton conduction in the solgel-derived porous glasses. • Effect of pore structure on the proton conduction. • Preparation of glass films with ordered pore structure. • Application to the gas sensor and fuel cell. Preparation of glasses with different pore size Si(OC2H5)4 Catalysts Templates H y d r o ly z in g Reacting Drying Pore size Gels B u lk G la s s Heating Porous Glasses 5 cm 6 4 No. 3 No. 2 No. 1 No. 4 (S/cm) -2 2 0 1 2 5 10 20 50 Pore Diameter (nm) log conductivity 3 -1 dV/d(logD) (cm .g nm-1 ) Pore size distribution and its effect on the conductivity -4 No. 2 No. 1 -6 -8 No. 3, 4 -10 -12 40 60 Relative humidity (%) 80 DTA curve for No. 2 glass No. 3 6 No. 2 Solidification of H 2O o Exotherm = -45 C 4 2 Quantum dot effect -60 0 1 -40 -20 0 o Temperature ( C) o 20 Temperature ( C) 30 0 -30 2 5 10 20 50 Pore Diameter (nm) -1 log σ (S/cm) 3 -1 dV/d(logD) (cm .g nm-1 ) Effect of the pore size on the proton conductivity No.2 -2 -3 No.3 -4 3.2 3.4 3.6 3.8 4 -1 1000/T (K ) 4.2 4.4 Effect of P2O5 on proton conductivity Si(OC2H5)4 Hydrolyzing PO(OCH3)3 Reacting Drying P5+ ion Gels Heating Porous Glasses FT-IR Glass Composition P2O5-SiO2 glass SiO2 glass H Absorption coefficient 4000 O H Si -OH O 3500 3000 2500 2000 Wave Number ( cm-1) Dissociation energy for proton; SiOH > POH H Absorption coefficient (cm-1) P -OH (cm-1) H 4000 3500 3000 2500 Wave Number ( cm-1) High proton conductivity can be expected for POH bonds. 2000 • High proton conductivity in wide temperature range -30oC to 150oC (ex. 170 mS/cm at 150oC) o Temperature ( C) 150 100 50 0 (S/cm) proton dissociation from the SiOH bond and the proton hopping between SiOH and H2O. -1 0 -50 -75 Sol-gel glasses -2 Nafion -3 log Conductivity • Dependence of Conductivity on Temperature Proton conduction mechanism -4 -5 -6 Glasses -7 -8 2 3 4 (Temperature, K) -1 5 x10 -3 Fast proton conducting-glasses prepared by the sol-gel process • Mechanism of proton conduction in the solgel-derived porous glasses. • Effect of pore structure on the proton conduction. • Preparation of glass films with ordered pore structure. • Application to the gas sensor and fuel cell. Sol-Gel Method for Glass Preparation Preparation of pore-oriented glass films Si(OC2H5)4 Pore orientation Hydrolyzing Templates Catalysts Reacting Pore size Drying Thin Film Gels Bulk Glass Heating 200nm Substrate Porous Glasses 5cm Pore-oriented glass films by self-assembling method Preparation of glass film by self-assembling method using templates Substrate Solution Film Substrate Film Pore CTAB; (CH3(CH2)15N+(CH3)3Br Dipping Heating Gel C16EO10; (C16H33(OCH2CH2)10OH Porous glass film Self-assembled pore-oriented glass films 210 Glass film 200 d(nm) 4.75 4.44 4.18 a=9.50 nm (b) hkl d(nm) 100 2.98 a=2.98 nm Sub. Cubic (a) C16EO10 (b) CTAB 2 200 nm 100 Intensity (Arb. units) 211 (a) hkl 200 210 211 3 4 2θ (degrees) 5 6 Hexagonal Conductivities of pore-oriented glass films I V -4 10 log σ (S/cm) -5 -6 (a) C16EO10 -7 -8 I -9 (b) CTAB V -10 -11 40 50 60 70 80 Relative Humidity (RH %) 90 Fast proton conducting-glasses prepared by the sol-gel process • Mechanism of proton conduction in the solgel-derived porous glasses. • Effect of pore structure on the proton conduction. • Preparation of glass films with ordered pore structure. • Application to the gas sensor and fuel cell. Application of proton conducting glasses Sensors Hydrogen, Humidity EMF e- PHII H2 = 2H+ + 2e- H+ PHI 2H+ + 2e- = H2 EMF = RT nF ln PHII PHI Responsibility to H2 gas 80 60 50 60 100 PHII =25 PHI 40 40 20 0 -20 20 0 n=2 0.0 1.0 2.0 3.0 4.0 5.0 ln (P ) 1 0 EMF ( mV ) EMF (mV) 80 H 20 40 Time (min) 60 EMF = (RT/nF) ln(PH) H2 = 2H+ + 2e- Gas sensors ~ Preparation of thin films ~ Solid electrolyte ( 組成 : 5P2O5-95SiO2 ) Si(OC2H5)4, 2-PrOH, HClaq HClaq H3PO4 Brij56 Spin coating Alcohol vapor Pt Glass film Manganese Oxide ITO glass substrate Air or Ar 25 oC Glass film Reference electrode MnO2+4H++2e- ↔Mn2++2H2O ITO substrate MnO Intensity (a.u.) P/G stat Heat treatment (400oC,4h) 2 20 30 40 50 60 2θ / deg (Cu-Kα) 70 Gas sennsing 0.2 o 25 C 1%CH3OH vapor in air 0.3 1%H2 EMF / V 0.2 EMF / V o 25 C 0.1 1%CH3OH vapor 1%C2H5OH vapor 0.1 0.5%NH vapor 3 1%CH COCH vapor 3 0 0 10 3 20 30 Time / Sec 40 50 0 0 500 1000 Time / Sec 1500 High proton conducting glasses for the fuel cell electrolyte Stack Electrode Catalyst Cells Electrolyte Electrode H2 Electrolyte - + + O2 + Anode H2 2H+ + 2e- Cathode 2H+ + 1/2O2 + 2eTotal H2 + 1/2O2 H2O H2O High efficiency, Clean energy Proton conducting membrane Perfluorosulfonate ionomers (Nafion) High proton conductivity at around room temperature Degradation in thermal and chemical attacks Inorganic Sol-gel-derived Glass High proton conductivity at temperatures of 150oC to -30oC High stability against the thermal and chemical attacks Fuel Cell 1 60 50 Cell voltage (V) 0.8 40 0.7 0.6 30 0.5 20 0.4 10 0.3 0 250 0.2 0 50 100 150 200 2 Current density (mA/cm ) 2 0.9 Power density (mW/cm ) 2 50.7 mW/cm Conclusions • Fast proton-conducting porous glass + Preparation by the sol-gel method Porous glass with large surface area and small-sized pores + Proton conduction process Dissociation of the protons and their hopping between water molecules and hydroxyl groups • High proton conductivities +In wide temperature range from -30oC to 150oC ex. 170 mS/cm at 150oC • • Glass films having high-ordered pore structure Possible application as the electrolyte + Sensor and Fuel cell Thank you
© Copyright 2026 Paperzz