Lecture 4, Part 1: Proton conduction in glass sand its application to

Lehigh University
Lehigh Preserve
US-Japan Winter School
Semester Length Glass Courses and Glass Schools
Winter 1-1-2008
Lecture 4, Part 1: Proton conduction in glass sand
its application to fuel cell - Proton conduction
Masayuki Nogami
Nagoya Institute of Technology, Japan
Follow this and additional works at: http://preserve.lehigh.edu/imi-tll-courses-usjapanwinterschool
Part of the Materials Science and Engineering Commons
Recommended Citation
Nogami, Masayuki, "Lecture 4, Part 1: Proton conduction in glass sand its application to fuel cell - Proton conduction" (2008). USJapan Winter School. 11.
http://preserve.lehigh.edu/imi-tll-courses-usjapanwinterschool/11
This Video is brought to you for free and open access by the Semester Length Glass Courses and Glass Schools at Lehigh Preserve. It has been accepted
for inclusion in US-Japan Winter School by an authorized administrator of Lehigh Preserve. For more information, please contact
[email protected].
Proton conduction in glass and its application to fuel cell
Masayuki NOGAMI
Department of Materials Science and Engineering,
Graduate School of Engineering,
Nagoya Institute of Technology
Email: [email protected]
Home Page: http://nitzy.mse.nitech.ac.jp/~nogamilab/index.html
★
New optical glasses
★ Fast proton conducting glasses and their application to fuel cell
★ Self-assembling of nanoparticles
(b)
(a)
400
x1
x150
500
600
Wavelength
700
(nm)
800
Intensity (a. u.)
Optical memory
Nonlinearity
Fluorescence intensity (Arb. units)
Optics, Rare-earth
Proton Conductor
Fuel Cell
λ ex = 8 0 0 n m
λ ex = 2 6 7 n m
600
640
68 0
(S/cm)
560
W a v e le n g th (n m )
Metal Nanoparticles
o
Temperature ( C)
A
tip
R 2 ,C 2
Au
Si substrate
1
40
0.9
35
0.8
30
0.7
25
0.6
20
0.5
15
0.4
10
0.3
0.2
5
0
20
40
60
80
0
100 120 140
2
Current Density (mA/cm )
2
shell R 1,C 1
V
Cell Voltage (V)
Au Nanochains
Au Nanoparticles
Glass Electrolyte
Power Density (mW/cm )
Fuel cell
Sensors
log Conductivity
-0.5
150 100
50
0
-50
-75
-1
-1.5
-2
-2.5
-3
-3.5
-4 2
3
4
(Temperature, K)-1
5
x10 -3
Fluorescence
Spectral Hole-burning
PSHB spectrum in Eu3+-doped glass
0 0 1 0 1 0
Intensity (a. u.)
Hole
1 0 1 0 1 0 0 0
Laser
Rare-earth
in
Glasses
λex= 800 nm
λex= 267 nm
560
600
640
680
Wavelength (nm)
Faraday rotation
Self-Assembling of Nano-Particles and Nonlinear Optics
Shape-Control
(a. u.)
Spectral Hole-burning
A
R 2 ,C 2
Intensity
tip
V
Au
shell R 1,C 1
Si substrate
600
800
1000 1200
Wavenumber
1400 1600
(cm-1)
1800
Nanoparticles
Self−Assembly
-5
0
5
10
15
Delay time (ps)
80
χ
(3)
(10
-11
esu.)
Normalized ∆T/T (a.u.)
Pump power: 30 mW
120
40
0
500
600
700
Wavelength (nm)
800
Morphology-Control
Proton conduction in glass and its application to fuel cell
(S/cm)
• Introduction
Possibility of fast proton conduction in the glass
• Sol-gel method for preparation of proton conducting glasses
Mechanism of proton conduction in porous glass
Glasses and films exhibiting high proton conductivities at
150oC ~ -100oC
• Applications
Fuel
cell
Electrolytes
for gas sensor and fuel cell
Sensors
• Conclusions
o
Temperature ( C)
150 100
1
-3
40
-3.5
Cell Voltage (V)
35
30
0.7
25
0.6
20
0.5
15
0.4
10
0.3
5
60
80
0
100 120 140
2
Current Density (mA/cm )
2
40
-75
-2
-4 2
20
-50
-2.5
0.8
0
0
-1.5
0.9
0.2
50
-1
Power Density (mW/cm )
log Conductivity
-0.5
3
4
(Temperature, K)-1
5
x10 -3
High proton conducting glasses for the fuel cell electrolyte
Stack
Electrode
Catalyst
Cells
Electrolyte
Electrode
H2
Electrolyte
-
+
+ O2
+
Anode
H2
2H+ + 2e-
Cathode
2H+ + 1/2O2 + 2eTotal
H2 + 1/2O2
H2O
H2O
High efficiency, Clean energy
Proton conducting membrane
Perfluorosulfonate ionomers (Nafion)
High proton conductivity at around
room temperature
Degradation in thermal and chemical
attacks
Inorganic Sol-gel-derived Glass
High proton conductivity at temperatures
of 150oC to -30oC
High stability against the thermal and
chemical attacks
Fast proton conducting-glasses prepared by the sol-gel process
• Mechanism of proton conduction in the solgel-derived porous glasses.
• Effect of pore structure on the proton
conduction.
• Preparation of glass films with ordered pore
structure.
• Application to the gas sensor and fuel cell.
Sample Preparation
Si(OC2H5)4
H2O,EtOH and HCl
Stirring
Drying at R.T.
Gel
Heat Treatment
Porous Glass
Porous structure of the sol-gel-derived glasses
O
H
H
O
O
H
OH
OH
H
O
H
O
H
O
H
O
H
O
H
O
O
H
O
OH
H
O
H
O
H
O
O
H
HO
HO
Glass
H
O
H
O
O
OH
OH
H
H
O
H
O
H
O
H
O
O
OH
H
O
H
O
H
O
HO
OH
H
O
H
O
O
H
O
H
O
H
O
OH
OH
H
O
H
O
H
O
O
4
-1
H
O
H
O
-1
H
O
H
O
H
O
OH
Pore
H
O
dV/d logr (cm3 nm g )
H
O
H
O
H
O
OH
H
O
H
H
O
H
O
Glass
HO
H
O
HO
H
O
O
H
HO
H
HO
H
O
H
O
H
O
HO
HO
OH
HO
H
O
H
O
H
O
H
O
OH
H
O OH H
O
H
O
H
O
H
O
H
O
O
H
H
O
H
O
H
H
O
H
O
H
O
O
H
O
H
O
H
O
H
O
OH
OH
Pore
H
O
H
O
H
O
H
O
O
H
H
O
O
H
O
H
O
H
O
H
O
H
O
OH
OH
H
O
H
O
H
O
H
O
H
O
H
O
H
O
O
SiOH bonds
Porous properties of the
glass
Surface Area
up to ~1000m2/g
Pore volume
0.1 ~ 0.5 cm3/g
Pore size
> 1 nm
H
O
H
O
H
O
H
O
H
O
H
O
H
O
OH
OH
H
O
Glass
H
O
H
O
O
H
O
HO
H
O
H
O
H
O
O
H
HO
3
2
1
0
1
10
Pore radius (nm)
Water molecules absorbed in the porous glasses
Hydrogen bonded
H2 O
Glass
Physically adsorbed
H2 O
HO
OH
H
H
OH
O
H H
H
O
HO H
O
O
H
O
H H
O
H H
O
H H
O
H
O
H H
O
H H
O
H
O
H H
O
H HH
H
H O O OH H O
O
H
O OH H
O
O
H
HO
Glass
H H
O
H
O H
OHH H
H
OH OH H O
O
H
H
O
O
H H
O
H
O H
H
O
H H H H
O
O
H
H
O
H
O H
H H
O
H H
O
HO
HO
OH
H H
O
H
O H
HO
HO
HO
HO
OOH
HH
O
OH
HO
HO
OH
O
OH H
H
OH O
HO
H
O H
O
O H
H
O
HO
OH
OH
H OH
H
H
H
O O
O O H
O H
O
O
O
H
H
O
HO
OH
H
HO HO O
HO
H
O
H
O
H
O
O
H
OHH O
H
O
H OH
H
OO
H
OO
OH
OH
HO
HO
H H
O
H H
O
H
O H
H
O
H H
OH
O
H
O
H H H H
OH O H
O
O
H H
H H
O
HO H
O
O
HO
H H H
O
O
H
O
H
O H
H H
O
O
H
H
H
OH
O
H H
H
H
O
O
H H
O H
H H H
O O O
H H
O H
O
H
H H
O
O
H
O H
H
O
O
H
H
O
OH
H
OH O
H
O
OH
H
HO O
O
H
H OH HO
HO O
HO
HO
O
Physically adsorbed
H2O molecules are
removed by heating
at around 100oC.
H
O H
H H
O
H
H O
O
H
O
H H
O O
H
O
OH
H
O
OH
OH
HO
H
HO H
O O
H
O
H
HO O
H
O
H
O
SiOH
Physically
bonds
adsorbed
H2 O
H
HO
O
HO
HO
H
O
H
O
H
O
H
O
OH
OH OH
H
H
O
O
HH O
H H
O
O O
H H
H O
O
OH O
O
HO H
H
O
H
O
H
O
H
O
O
H
O
H
OO
H
H
O
H
H H OH
O H
O H
O HO O
O
O
H
O
O
H
HO
Glass
HO
O
OH
OH
H
OH O
H
O
OH
HO
OH
H
O
Glass
OH
He
ex o ati
po r ng
su
re
O
O
H
HO
H H
O
H
H
O
H H
H H
O O
H H
O
H H H
O
O
H H
H
H
H HO
O
H
H H
H O
O H
H
O
O
H H H
O HO
H
H
O
H H H H
H H
O
O
O
H
OH
O
H H
OHH H
H
O
OH OH H O
O
H H H
H
O
O
O
H
H
O
H
H HH
H
H O O OH H O
O
O
H
H
O OH H
O
O
H H
O
H H
O
H H
O
H H
H H
O
H O
H
H
H
O
O
H H
O
H H
O
H H
O
H H
O
H H
OH
O
H
O
H H
HO H
O
O
H
O
H
O
H H
O
H
O
H
O
SiOH bonds
H H H H
OH O H
O
O
H
O H
H H
O
H H
O H
H H H
O O O
H H
O H
O
H
H H
O
O
H H
O
O
H
H
O
O
H H
O
H
O H
H
O
Exposure
to humid
atmosphere
HO
O
H
Effect of the physically bonded H2O molecules
on the conductivity
-7
(S/cm)
-3
3
Z" ( x10 Ω)
-4
-2
2nm-glass
-1
-8
4
1
Weight gain
0
0.8
-1
0.6
-2
σ
Normalized weight gain
1
3
0.4
Conductivity
0.2
0
log
2
3
Z' ( x10 Ω)
(S/cm)
1
-3
-4
0
10
20
30 40 50 60
Time
(min)
70
-5
80
log
0
σ
4nm-glass
0
-9
-10
0.6
0.8
1
log [H2O]
log σ = K log [H2O]
1.2
Controlling the amount of the chemically bonded H2O molecules
O
H
H
O
O
H
OH
OH
H
O
H
O
H
O
H
O
H
O
H
O
O
H
O
OH
H
O
H
O
H
O
O
H
HO
HO
H
O
O
OH
H
OH H O
H
O
H
O
H
OH
H
O
H
O
O
H
O
OH
OH
H
O
H
O
H
O
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
H
O
H
O
O
H
HO
OH
OH
H
O
H
O
H
O
H
O
H
O
H
O
OH
OH
H
O
H
O
H
O
O
H
O
HO
O
H
OH
OH
H
O
H
O
H
O
H
O
O
H
HO
H
O
H
H
O
H
O
H
O
H
O
H
O
H
O
O
H
O H
H
O
H
O
HO
H
O
H
H
O
HO
O
O
H
H
Pore
O
O
HO
HO
HO
H H
O
O
H
O
H
O
H
H
O
H
H
H
O
H
O
H H
O OH
H H
O
H
O OH H
O
H
O
H
O
H
O
H H
H
O O
H
O
H
O
H
O
H
O
H H
O
O
H
O
H HH
H OO
O
H
O
H
O
OH
OH
H
O
H H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
H
O
H
O
O
H
H
O
OH
OH
H H
O
H
O
H H
OH
O
H
O
at around 200oC.
H
O
H
O
O
H H H
O O
H
O
H H
OH
O
H
O
Chemically bonded
H2O molecules are
removed by heating
Glass
Effect of the chemically bonded H2O molecules
on the conductivity and its activation energy
Activation energy (kJ/mol)
(Scm -1 )
-11.5
-12
σ
160oC
log10
-12.5
310oC
-13
log σ (S/cm)
at 150oC
-11
1.8
210oC
250oC
2
2.2
2.4
2.6
2.8
1/Temperature (K)
x 10-3
-12
-13
-14
120
100
80
60
-1
-0.5
0
0.5
1
log [H2O]・[H+]
-15
-16
-1
-0.5
0
0.5
1
log σ = k log [H2O]・[H+]
log [H2O]・[H+]
E = k log [H2O]・[H+]
Proton conduction in the porous
glass
Activation energy (kJ/mol)
120
100
Conduction process of proton
through the porous glass
Chemically
bonded H2O
80
E
60
Physically
bonded H2O
40
HH
O
H+
20
0
0
1
log10 {[H] [H 2 O]}
2
(mol/l)
3
O
Si
O
HH
O
HH
O
HH
O
H+
H
O
Si
O
O
Si
O
H
O
Si
O
HH
O
H+
O
Si
O
Proton conduction is controlled by
the proton dissociation from the
SiOH bond and the proton hopping
between SiOH and H2O.
Fast proton conducting-glasses prepared by the sol-gel process
• Mechanism of proton conduction in the solgel-derived porous glasses.
• Effect of pore structure on the proton
conduction.
• Preparation of glass films with ordered pore
structure.
• Application to the gas sensor and fuel cell.
Preparation of glasses with different pore size
Si(OC2H5)4
Catalysts
Templates
H
y d r o ly z in g
Reacting
Drying
Pore size
Gels
B u lk
G la s s
Heating
Porous Glasses
5 cm
6
4
No. 3
No. 2
No. 1
No. 4
(S/cm)
-2
2
0
1
2
5 10 20 50
Pore Diameter (nm)
log conductivity
3
-1
dV/d(logD) (cm .g nm-1 )
Pore size distribution and its effect on the conductivity
-4
No. 2
No. 1
-6
-8
No. 3, 4
-10
-12
40
60
Relative humidity (%)
80
DTA curve for No. 2 glass
No. 3
6
No. 2
Solidification of H 2O
o
Exotherm
= -45 C
4
2
Quantum dot
effect
-60
0
1
-40
-20
0
o
Temperature ( C)
o
20
Temperature ( C)
30
0
-30
2
5 10 20 50
Pore Diameter (nm)
-1
log σ (S/cm)
3
-1
dV/d(logD) (cm .g nm-1 )
Effect of the pore size on the proton conductivity
No.2
-2
-3
No.3
-4
3.2
3.4
3.6 3.8 4
-1
1000/T (K )
4.2
4.4
Effect of P2O5 on proton conductivity
Si(OC2H5)4
Hydrolyzing
PO(OCH3)3
Reacting
Drying
P5+ ion
Gels
Heating
Porous Glasses
FT-IR
Glass Composition
P2O5-SiO2 glass
SiO2 glass
H
Absorption coefficient
4000
O
H
Si -OH O
3500
3000
2500
2000
Wave Number ( cm-1)
Dissociation energy
for proton;
SiOH > POH
H
Absorption coefficient
(cm-1)
P -OH
(cm-1)
H
4000
3500
3000
2500
Wave Number ( cm-1)
High proton conductivity
can be expected for POH
bonds.
2000
•
High proton conductivity
in wide temperature
range
-30oC to 150oC
(ex. 170 mS/cm at 150oC)
o
Temperature ( C)
150 100 50
0
(S/cm)
proton dissociation from the
SiOH bond and the proton
hopping between SiOH and
H2O.
-1
0
-50
-75
Sol-gel glasses
-2
Nafion
-3
log Conductivity
•
Dependence of Conductivity on
Temperature
Proton conduction
mechanism
-4
-5
-6
Glasses
-7
-8
2
3
4
(Temperature, K) -1
5
x10 -3
Fast proton conducting-glasses prepared by the sol-gel process
• Mechanism of proton conduction in the solgel-derived porous glasses.
• Effect of pore structure on the proton
conduction.
• Preparation of glass films with ordered pore
structure.
• Application to the gas sensor and fuel cell.
Sol-Gel Method for Glass
Preparation Preparation
of pore-oriented glass films
Si(OC2H5)4
Pore
orientation
Hydrolyzing
Templates
Catalysts
Reacting
Pore size
Drying
Thin Film
Gels
Bulk Glass
Heating
200nm
Substrate
Porous Glasses
5cm
Pore-oriented glass films by self-assembling method
Preparation of glass film by self-assembling method using templates
Substrate
Solution
Film
Substrate
Film
Pore
CTAB;
(CH3(CH2)15N+(CH3)3Br
Dipping
Heating
Gel
C16EO10;
(C16H33(OCH2CH2)10OH
Porous glass film
Self-assembled pore-oriented glass films
210
Glass film
200
d(nm)
4.75
4.44
4.18
a=9.50 nm
(b) hkl d(nm)
100 2.98
a=2.98 nm
Sub.
Cubic
(a) C16EO10
(b) CTAB
2
200 nm
100
Intensity (Arb. units)
211
(a) hkl
200
210
211
3
4
2θ (degrees)
5
6
Hexagonal
Conductivities of pore-oriented glass films
I
V
-4
10
log σ
(S/cm)
-5
-6
(a) C16EO10
-7
-8
I
-9
(b) CTAB
V
-10
-11
40
50
60
70
80
Relative Humidity (RH %)
90
Fast proton conducting-glasses prepared by the sol-gel process
• Mechanism of proton conduction in the solgel-derived porous glasses.
• Effect of pore structure on the proton
conduction.
• Preparation of glass films with ordered pore
structure.
• Application to the gas sensor and fuel cell.
Application of proton conducting
glasses
Sensors
Hydrogen, Humidity
EMF
e-
PHII
H2 = 2H+ + 2e-
H+
PHI
2H+ + 2e- = H2
EMF =
RT
nF
ln
PHII
PHI
Responsibility to H2 gas
80
60
50
60
100
PHII
=25
PHI
40
40
20
0
-20
20
0
n=2
0.0
1.0
2.0
3.0
4.0
5.0
ln (P )
1
0
EMF ( mV )
EMF (mV)
80
H
20
40
Time (min)
60
EMF = (RT/nF) ln(PH)
H2 = 2H+ + 2e-
Gas sensors ~ Preparation of thin films ~
Solid electrolyte
( 組成 : 5P2O5-95SiO2 )
Si(OC2H5)4, 2-PrOH, HClaq
HClaq
H3PO4
Brij56
Spin coating
Alcohol
vapor
Pt
Glass film
Manganese Oxide
ITO glass substrate
Air or Ar
25 oC
Glass film
Reference electrode
MnO2+4H++2e- ↔Mn2++2H2O
ITO substrate
MnO
Intensity (a.u.)
P/G stat
Heat treatment (400oC,4h)
2
20
30
40
50
60
2θ / deg (Cu-Kα)
70
Gas sennsing
0.2
o
25 C
1%CH3OH vapor in air
0.3
1%H2
EMF / V
0.2
EMF / V
o
25 C
0.1
1%CH3OH vapor
1%C2H5OH vapor
0.1
0.5%NH vapor
3
1%CH COCH vapor
3
0
0
10
3
20
30
Time / Sec
40
50
0
0
500
1000
Time / Sec
1500
High proton conducting glasses for the fuel cell electrolyte
Stack
Electrode
Catalyst
Cells
Electrolyte
Electrode
H2
Electrolyte
-
+
+ O2
+
Anode
H2
2H+ + 2e-
Cathode
2H+ + 1/2O2 + 2eTotal
H2 + 1/2O2
H2O
H2O
High efficiency, Clean energy
Proton conducting membrane
Perfluorosulfonate ionomers (Nafion)
High proton conductivity at around
room temperature
Degradation in thermal and chemical
attacks
Inorganic Sol-gel-derived Glass
High proton conductivity at temperatures
of 150oC to -30oC
High stability against the thermal and
chemical attacks
Fuel Cell
1
60
50
Cell voltage (V)
0.8
40
0.7
0.6
30
0.5
20
0.4
10
0.3
0
250
0.2
0
50
100
150
200
2
Current density (mA/cm )
2
0.9
Power density (mW/cm )
2
50.7 mW/cm
Conclusions
•
Fast proton-conducting porous glass
+ Preparation by the sol-gel method
Porous glass with large surface area and small-sized pores
+ Proton conduction process
Dissociation of the protons and their hopping between
water molecules and hydroxyl groups
•
High proton conductivities
+In wide temperature range from -30oC to 150oC
ex. 170 mS/cm at 150oC
•
•
Glass films having high-ordered pore structure
Possible application as the electrolyte
+ Sensor and Fuel cell
Thank you