THERMODYNAMIC PROPERTIES OF
CARBON TETRACHLORIDE
BY SESHADRI, D. N., VISWANATH, D. S., AND KULOOR, N. R.
(Department of Chemical Engineering, Indian Institute of Science, Bangalore-12, India)
Received on February 5, 1966
ABSTRACT
The thermodynamic properties of carbon tetrachloride have been calCulated
up to a temperature of 750°K and a pressure of 200 atmospheres, using Martin and
Hou equation of state. Tables of thermodynamic properties and a temperatureentropy diagram are presented.
Carbon tetrachloride is a raw material in the production of Freons, and
can be used as a refrigerant by itself. Therefore, a knowledge of its thermodynamic properties is necessary. A detailed literature survey revealed that
thermodynamic properties of carbon tetrachloride are available only in the
saturated region up to a pressure of about 0.4 atmospheres 6. In the present
work tables and a diagram of thermodynamic properties of carbon tetrachloride over wide ranges of temperature and pressure are presented.
SURVEY OF EXISTING DATA
The vapour pressure of carbon tetrachloride has
Vapour Pressure.
been experimentally determined by various investigators like Regnault 25,
Mundel TM , Herz and Rathmann s, Young33 and Hildenbrand and McDonald °.
Accurate determination of vapour pressure up to a pressure of one atmosphere
has been carried out by Hildenbrand and McDonald' ° by twin ebulliometric
method. The authors have fitted their data to an equation of the form,
1.
(1.a)
log P (m.m.) =
—
+ c1 )
where a' a 6.89406;
= 227.16 and t as temperature, ° C.
= 1219.58 ;
The data Hildenbrand and McDonald °, Young33 and the data given in
International Critical Tables" were combined and smoothed. The smoothed
data of vapour pressure, over the temperature range of 273 ° K to the critical
point were used for this investigation.
The vapour pressure data above one atmosphere was fitted to an equation
of the form
log P = a + /VT+ c log T dT
where a = 61.37647
b = — 3632.894766
21.46100899
d = 1.028807543 x 10 -2 with T in ° K and P in atmosphere
65
SESHADRI, D. N., VISWANATH, D. S., AND KULOOR, N. R.
66
The equation predicts the vapour pressure data with maximum and
average deviations of 0.63% and 0.2% respectively.
Equation (1.a) has been used below 1 atmosphere and Equation (Lb) has
been used above I atmosphere.
The critical constants used in the present
2. The Critical Constants.
work are those suggested by Kobe and Lynn 16. They are,
Te 7= 556.36°K; Pc — 45.0 atms. ;
3.
276.0 c.c./mole.
The Specific Volume of Saturated Liquid and Vapour.
Young'
measured the saturated liquid and vapour volumes from 353 ° K to the critical
point. These data are listed in International Critical Tables". The densities
of carbon tetrachloride have been measured by Biron 2 , Egerton and Lee 3, and
Mills and Mac Rae 23 .
The saturated liquid and vapour densities of several investigators 2 . 3
over the temperature range of 273 353 ° K, were combined with the data given
in the International Critical Tables" over the temperature range of 353 °K to
the critical point, and were smoothed.
The smoothed data over the temperature range of 273 ° K to the critical
point were used for this investigation.
'
4.
Transition and Melting Temperatures.
5.
Heats of Transition and Fusion.
23
The melting and transition
temperatures have been determined by various investigators like Stu11 29, Johnstone and Lone, Turkevich and Smyth" and Hicks et a/ 9
The melting point of 250.30 ° K and the transition temperature of 225.35 °K
reported by Hicks et at, agree very well with the values of other investigators29. 136 30 . For the present work, the data of Hicks et at, have been used.
The heats of transition and fusion
by Latimer", Johnston and Lone, Stu11 29, and
have been determined
Hicks a al. 9
The differences in the reported values of heats of fusion with those
reported by Hicks et al., is about ± 4%. At this stage it is difficult to choose
the best values of heats of fusion, and hence it is necessary to redetermine the
heats of fusion. For the present work, more weight was placed on the data
of Hicks a al.
The heat of transition reported by Hicks et at, agrees very well with
the data of other investigators" .13, 29 and therefore, it was selected for the
present work.
The values used are:
Heat of transition =1095.0 calories/mole.
Heat of fusion
—2 601.0 calories/mole.
6.
Heat Capacity from Calorimetric Data.
Heat capacity of carbon
tetrachloride has been determined by the calorimetric method by various
investigators. Among them mention may be made of Stavely et al. , Stull 29 ,
tr/
Thermodynamic Properties of Carbon Tetrachloride
67
Hicks et (11. 9 , Vold", Richards and Wallace 26 and Lord and Blanchard' s.
Harrison and Moelwyn-Hughes 7 have measured heat capacity of carbon tetrachloride over the range of 243 ° K to 303 °K. Hicks et al. 9, have reported low
te mperature thermal data of carbon tetrachloride over the range of temperature
o f 17 to 298 ° K. The entropy calculated at 298.15 °K using the data of Hicks
et at, agrees very well with the spectroscopic entropy data of Albright et
Hence, among the number of low temperature investigations, the data reported
by Hicks et a!, seem to be the most reliable and complete. Hence, for this
investigation the data of Hicks et al., were used.
Heat Capacity of the Ideal Gas.
The heat capacity of carbon tetrachloride in the ideal gaseous state has been calculated by Gelles and Pitzer 4,
Albright et al.% Kelley", Stevenson and Beach n and by Gordon s. Gordon
conservatively took the frequencies in order to offset the neglect of anharmonicity, rotational stretching and rotation = rotation interaction. The data of
Albright et at, includes a semi-empirical anharmonicity correction. Kobe and
Kobe ° have fitted the data of Albright et al., to an equation of the form,
(2
Cp a=3" + .8'77 + C' T 2 + D'T 3
7.
)
where A' s 9.288;
i=
5.099 x 10_2;
— 5.729 x 10 -5 and D'
2.257 x 10 - 8.
The authors report average and maximum deviations of 0.2 and 0.36 per
cent, respectively.
Equation (2) was verified and was found to agree with the data with the
same accuracy. For this work, Equation (2) has been used.
Latent heats of vaporization of carbon tetrachloride have been experimentally determined by various investigators like
Marshall °, Mathews n , Hildenbrand and McDonald °, Wirtz 32 and Young34.
The values tabulated by Mills 22 are those of Young34 and are in good agreement with the data given in the International Critical Tables n . The data of
Mills22 were smoothed. The heat of vaporization was calculated by using
Clausius-Clapeyron equation and was compared with the values of Mills. The
The smoothened data of
agreement was found to be quite satisfactory.
Mills over a range of temperature of 273 to 556.36 ° K were used in the present
investigation.
8.
Heat of Vaporization.
CALCULATION OF THERMODYNAMIC PROPERTIES
For the calculation of thermodynamic properties, the Martin and HOU
equation of state,
p an RT
V–
A2 ± B- T+ C 2 e -kTIT4
(V – b1)2
A4
(v — b,) 4
B5 T
(V b3
+
A3 4- B3T
20
C3e -kT1Tr
07:- 7503(3)
SESHADRI, D. N., VISWANATII, D. S., AND KULOOR, N. R.
63
with k 5.475 has been used.
The constants in Equation (3), evaluated following the procedure outlined
by the authors" are :
0.05755953
26.19011895
A2
143 a= 4,95628873
44 — 0.38842449
B2 a 0 016924131
B3 — 0.00280089
135 = 0.000028784
C2— — 428.5816275
C3 a 93.49053479
bi
en
—
Table I presents the deviation of pressures calculated using Equation (3).
Comparison could not be made in the superheated region because of nonavailability of data over this region.
The volume of carbon tetrachloride at various temperatures and pressures
were evaluated by Newton-Raphson iterative method.
The change of entropy and enthalpy are given by the relation,
dS
t# V (
dr)
(81 dV
+
(4)
8T V
and
(Y)
8 1 + V ildV
dH =2[IT(--T + Cp T
ST V
8V T)
(5)
and if Cr a" A + BT + C7 12 + DT 3,
( 6)
using Equation (3) and taking necessary derivatives, Equations (4) and (5)
become :
{A ln T + BT + (Cl2) T 2 + (DI3) T 3 + R ln (V — bi) 1121( — bi)
— B514(Y/ — b 1)4 +[C21(
B312(V —
b 1 ) + C3/2(V— b i )2 1(KI 7:)e - lam} + C,
(7)
and,
H a=1 {AT + BT 2I2 + CT 313 + DT 4I4 + PV +
A2 +
+ kr I Tc)C2e -krIre
b1)
-kTIrc
A3 +0 + knr c)C3E
2
2
Of — b i )
114
3 (V.
+c11
Thermodynamic Properties of Carbon Tetrachloride
69
TABLE I
Comparison of Calculated and Observed Pressures
...----
T° K
280.0
290.0
300.0
310.0
320.0
3301)
340.0
350.0
360.0
370.0
380.0
390.0
400.0
410.0
420.0
430.0
440.0
450.0
460.0
470.0
480.0
485.0
490.0
495.0
500 0
50551
510.0
515.0
520.0
525.0
530.0
535.0
540.0
545.0
550.0
555.0
556.36
Pcalc.
Pubs •
0.061497
0.1026209
0.1629273
0.24344
0.358799
0.518653
0.728813
0.994190
1.332682
1.7633148
2.297082
2 927128
3.672161
4.567123
5.58585
6.777344
8.153701
9.7241199
1 1 .54685 1
13.59595
15.879197
17.121826
18.54208
19.87929
21.376526
22.96151
24.593 ./8
26.2771
28.110
30.05174
32.13466
34 367786
36.62378
38.99129
41.41102
44.1673
45 00078
- Path*
Per cent Deviation== Pobs•,--;
robs-
0.063289
0.103510
0.16284
0.247537
0.36495
0.523550
0,732860
1.003684
1.34280
1.77120
2.2962
2.9308
3.68660
4 5810
5.625
6.8364
8.2328
9.8274
11.638
13 688
16.000
17.258
18.54
19.991
21.483
23.055
24.711
26.454
28.303
30.236
32.278
34.434
36.694
39.057
41.568
44.194
45.000
x 100
Maximum Deviation=2.83 per cent.
Average Absolute Deviation =0.654 per cent.
Per cent Deviation
2.831
0.859
-0.536
1.655
1.685
0.935
0.552
0.946
0.754
0.445
- 0.038
0.125
0.392
0.303
0.696
0.864
0.961
1.051
0.783
0.672
0.755
0.788
0.226
0.559
0.496
0.406
0.474
0.669
0.682
0.609
0 444
0.192
0.191
0.378
0.378
0.060
- 0.002
,
SESHADRI, D. N., VISWANATH, D. S., AND KULOOR, N. R.
70
TABLE
Properties of Saturated
•
T°K.
P. Atms
Vg
Vj
280
290
300
310
320
330
340
350
360
370
380
390
400
411)
420
430
440
450
460
470
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
556.36
0.06329
0.10351
0.16284
0.24753
0.36495
0.52355
0.73296
1.00378
1.3428
1.77120
2.2962
2.9308
3.6866
4.5810
5.6250
6.8364
8.2328
9.8274
11.638
13.688
16.000
17.258
18.584
19.991
21.483
23.055
74.711
26.454
28.303
30.236
32.278
34.434
36.694
39.057
41.568
44.194
45.000
371.52
229.99
149.35
102.90
71.222
50.857
37.025
27.719
21.074
16.194
12.610
10.022
8.0756
6.5464
5.3884
4.4591
3.7115
3.1079
2.6030
2.1914
1.8535
1.7055
1.5555
1.4378
1.3194
1.2094
1.1108
1.0215
0.93349
0.84994
0.76843
0.68801
0.61536
0.54360
0 47481
0.37522
0.27570
0.09497
0.09615
0.09734
0.09354
0,09978
0.10168
0.10238
010375
0.10523
0.10677
0.10834
0.11006
0.11182
0.11375
0.11577
0.11783
0.12003
0.12252
0.12327
0.12835
0.13176
0.13368
0.13568
0.13786
0.14019
0.14271
0.14543
0.14844
0.15184
0.15569
0.16015
0.16578
0.17243
0.18088
0.19122
0.21546
0.27570
Si
50.034
50.893
51.871
52.858
53.810
54.837
55.761
56.688
57.592
58.485
59.355
60.210
61.076
61.903
62.696
63.486
64.252
65.013
65.763
66.516
67.259
67.639
67.952
68.379
68.715
69.084
69.448
69.835
70.237
70.659
71.059
71.437
71.836
72.251
72.821
73.855
74.815
•
Thermodynamic Properties of Carbon Tetrachloride
71
Liquid and Vapour
------a So
28.251
26.975
25.737
24.590
23.485
22.325
21.307
20.329
19.392
18.473
17.590
16.753
15.922
15.129
14.391
13.656
12.944
12.239
11.531
10.818
10.112
79.754
9.419
9.019
8.661
8.289
7.909
7.516
7.068
6.587
6.107
5.607
5.071
4.460
3.661
2.010
0
St
78.285
77.868
77.608
77.448
77.295
77.162
77.068
77.017
76.984
76.958
76.945
76.963
76.998
77.032
77.087
77.142
77.196
77.252
77.294
77.334
77.371
77.393
77.371
77.398
77.376
77.373
77.357
77 351
77 305
77.246
77.166
77.044
76.907
76.711
76.482
75.865
74.815
Fri
- 17949.8
- 17678.4
- 17384.6
-17094.8
-16796.8
-16460.4
- 16148.9
-15832.1
-15512.6
- 15183.8
-14853.4
- 14546.9
-14184.2
- 13847.0
- 13519.1
-13182.4
- 12846 3
- 12504.9
-12157.4
-11800.3
-11440.4
-11257.3
- 11092.5
- 10920.3
- 10708.4
-10507.1
- 10325.7
-10116.9
-9906.9
-9775.8
-9459.2
-9236.1
-9024.5
- 8772.4
- 8468.7
-7868.0
-7329.4
LI
Hu
79104
7822.8
7721.2
7622 8
7515.1
7367.4
7244.3
7115.1
6981.3
6835.1
6684.3
6533.6
6369.0
6202.8
6044.4
5872.2
5695.2
5507.5
5304.4
5084.4
4853.6
4730.6
4615.2
4464.4
4330.6
4186.0
4033.7
3870.6
3675.2
3458.3
3236 8
2999.9
2738.3
2430.7
2013.8
1115.3
0
Hg
- 10039.3
-9855.6
-9663.4
-94721
-9281.7
-9093.1
-8904.6
-8717.0
-8531.4
- 8348.7
-8169.1
-8013.3
-7815.3
-7644.2
- 7474.8
-731a3
-7151.1
- 6997.4
-6854.0
. -6715.9
-6586.7
-6526.7
-6477.3
- 6415.9
- 6377.8
-6321.1
- 6292.0
-6246.3
-6231.7
- 6217.5
-6222.4
-6236.2
-6286.1
-6341.7
- 6454.9
-6752.7
-7329.4
72
SESHADR1, D. N., VISWANATII, D. S., AND KULOOR, N. R.
TABLE
Properties of Superheated
P, Atms. ÷
0.1
0.2
--a
0.3
0.5
300.0
V
H
S
244.43
-9653.5
78.602
121.35
-9669.24
77.187
320.0
V
H
S
261.12
-9247.4
79.911
129.84
-9260.5
78.505
86.068
-9273.8
77.669
51.043
-9301.2
76.592
340.0
V
H
S
277.76
- 8833.5
81.167
138.27
- 8844.5
79.767
91.763
- 8855.7
78.937
54.555
- 8878.3
77.874
V
H
S
294.34
-8410.9
82.374
146.65
-8420.3
80.978
97.412
-8429.7
80.153
58.019
-8448.8
79.100
380.0
V
H
S
310.90
- 7981,0
83.545
155.99
-7989.1
82.142
103.03
- 7997.1
81.322
61.446
- 8013.5
80.276
400.0
V
H
S
327.42
-7544.4
84.654
163.31
-7551.3
83.264
108.61
-7558.3
82.447
64.846
-7572.3
81.407
420.0
V
H
S
343.93
-7101.4
85.734
171.61
-7107.5
84.347
114.17
-7113.6
83.531
68.224
-7125.7
82.495
440.0
V
H
S
360.42
- 6652.6
86.777
179.90
- 6657.9
85.392
119.72
- 6663.2
84.578
71.585
- 6673.98
83.546
460.0
V
H
S
376.89
-6198.2
87.787
188.17
-6203.2
86.403
125.26
-6207.8
85.590
74.933
-6217.2
84.561
360.0
Thermodynamic Properties of Carbon Tetrachloride
73
Carbon Tetrachloride
1.00
1-50
2.00
3.00
5.00
33.615
-8912.9
76.865
26.629
-8936.6
• 76.370
35.853
- 8478.0
78.107
28.461
- 8497.8
77.623
18.594
- 8548.6
76.713
38.053
- 8038.2
79.295
30.253
- 8055.0
78.819
19.846
- 8097.8
77.931
14.635
- 8156.7
77.181
40.224
- 7593.6
80.434
32.015
- 7607.9
79.965
21.065
- 7644.4
79 093
15.585
- 7693.5
78.373
10.093
- 7760.1
77.502
42.373
-7144.2
81.530
33.755
-7156.6
81.066
22.260
-7188.1
80.206
16.510
-7229.5
79.508
10.751
-7286.7
78.657
6.1226
- 7429 8
77.388
44.505
-6690.0
82.586
35.478
-6700.9
82.125
23.437
-6728.3
81.275
17.415
-6756.2
80.657
11.387
-6813.4
79.757
6.5503
-6935.0
78.539
46.623
-6231.4
83.605
37.185
-6240.9
83.147
24.600
-6265.0
82.304
18.306
-6289.5
81.694
12.007
-6339.5
80.810
6.958
-6444.3
79.629
SESJIADRI, D. N., VISWANATH, D. S., AND KULOOR, N. R.
74
TABLE
Properties of Superheated
Pe Atms. ---,-
0.1
0.2
0.3
T°K
0.5
480.0
V
H
S
393.36
-5739.1
88.763
196.43
-5743.3
87.381
130.79
- 5747.5
86.569
78.268
- 5755.9
85.542
500.0
V
H
S
409.82
-5275.3
89.710
204.68
- 5279.1
88.328
136.30
- 5282.8
87.517
81.599
- 5290.4
86.492
540.0
V
H
S
442.77
-4333.6
91.518
221.17
-4338.5
90.137
147.32
-4341.5
89.328
88.241
-4347.7
88.305
580.0
V
H
S
475.60
- 3381.4
93.242
237.64
-3383.9
91.862
158.32
- 3386.5
91.054
94.865
- 3389.7
90.033
620.0
V
H
S
508.46
-2415.7
94.832
254.10
-2417.9
93.452
169.31
-2420.1
92.644
101.48
-2424.6
91.625
660.0
V
H
S
541.32
-1440.5
96.356
270.55
- 1442.5
94.977
180.29
- 1444.4
94.169
108.08
- 1448.3
93.151
700.0
V
H
S
574.18
-457.69
97.802
286.99
-459.35
96.423
191.26
-461.08
95.616
114.67
-464.56
94.598
750.0
V
H
S
615.24
779.80
99.509
307.54
778.27
98.131
204.97
776.75
97.324
122.91
773.71
96.306
Thermodynamic Properties of Carbon Tetrachloride
75
HI
Carbon Tetrachloride
0.8
1.00
1.50
2.00
3.00
5.00
48.731
- 5768.5
84.590
38.883
- 5777.0
84.134
25.752
- 5798.4
83.297
19.185
- 5820.0
82.693
12.615
- 5964.0
81.822
7.351
- 6055.7
80.669
50.830
-5301.7
85.542
40.572
-5309.2
85.088
26.895
- 5328.3
84.256
20.055
- 5347.6
83.657
13.213
- 5386.8
82.796
7.734
- 5467.8
81.664
55.007
- 4357.0
87.359
43.932
- 4363.2
86.908
29.161
- 4378.8
86.082
21.775
-4394.5
85.490
14.388
- 4426.3
84.643
8.475
- 4491.4
83.542
59.170
-3391.6
89.090
47.271
- 3404.9
88.640
31.409
- 3417.8
87.819
23.477
-3431.0
87.232
15.543
- 3497.6
86.394
9.1949
3511.6
85.313
63.320
-2431.3
90.684
50.601
-2435.8
90.235
33.645
-2447.0
89.417
25.165
-2458.3
88.833
16.686
-2481.0
88.002
9.9008
-2527.2
86.934
67.462
- 1454.2
92.211
53.922
- 1458.1
91.763
35.870
- 1468.0
90.947
26.845
- 1477.8
90.365
17.819
- 1497.6
89.538
10.597
- 1537.5
88.480
71.597
- 469.78
93.659
57.237
-473.27
93.212
38.091
- 482.00
92.398
28.517
- 490.77
91.817
18.946
-508.23
90.994
11.287
- 543.53
89.943
76.759
769.13
95.368
61.374
766.08
94.922
40.860
758.43
94.109
30.600
750.77
93.530
20.347
735.49
92.710
12.142
704.69
91.665
76
SESHADRI, D. N., VISWANATH, D. S., AND KULOOR, N. R.
TABLS
P, Attn.
8.0
10.0
VIK
Properties of Superheated
15.0
20.0
__...,.
440.0
V
H
S
3.799
-7139.7
77.254
460.0
V
H
S
4.0979
-6616.4
78.417
3.1305
-6744.3
77.762
480.0
V
H
S
4.3769
-6203.4
79.508
3.3763
-6310.5
78.898
2.0110
-6622.4
78.033
500.0
V
H
S
4.6420
- 5596.7
80.543
3 6052
- 5688.5
79.963
2.2036
- 5945.5
79.119
1.4702
- 6265.5
77.691
540.0
V
H
S
5.1437
- 4593.2
82.473
4.0303
- 4664.0
81.934
2.5370
- 4854.2
81.114
1.7785
- 50.681
79.996
580.0
V
H
S
5.6210
- 3595.0
84.276
4.4280
- 3652.4
83.762
2.8332
- 3802.8
82.956
2.0304
- 3964.8
81.988
620.0
V
H
S
6.0827
- 2597.5
85.919
4.8091
- 2645.5
85.420
3.1087
- 2769.8
84.469
2.2561
- 2900 3
83.743
660.0
V
H
S
6.5341
- 1598.4
87.480
5.1793
- 1639.7
86.922
3.3712
- 1745.4
86.070
2.4668
- 1854.8
85.377
700.0
V
H
S
6.9582
-597.13
88.953
5.5419
633.2
88.473
3.6262
-725.2
87.371
2.6679
-819.5
86 900
750.0
V
H
S
7.5262
658.13
90.685
5.8876
626.84
90.211
3.9361
547.74
89.327
2.9104
467.40
88.676
Thermodynamic Properties of Carbon Tetrachloride
77
iii
Cat bon Tetrachloride
30.0
50.0
80.0
103.0
150.0
200.0
•
0.97867
- 5624.3
78.369
1.2135
- 4336.1
80.693
0.48778
- 5530.2
0 77.962
1.3974
-31843
82.594
0.69213
-3884.9
80.692
0.25201
-5629.6
77.355
1.5593
-2086.2
84.310
0.82729
-2608.4
82.688
0.41049
-3570.6
80.585
0.26E94
-4356.0
79.149
1.7088
-1015.1
85.886
0.94010
-1437.1
84.412
0.50925
-2143.7
82.686
0.36877
-2649.4
81.664
0.19325
-3933.8
79.375
1.8848
302.96
87.705
1.0654
-39.791
86.340
0.60839
-581.06
84.843
0.45924
-949.78
84.011
0.2643
-1891.9
82,192
0.19084
-25617
80.947
SESHADRI, D. N., VISWANATH, D. S., AND KULOOR, N. R.
78
CH are intergration constants.
where C
The basic reference point was taken to be the absolute zero temperature
with H O and S+.R In P = 0 for elements.
The entropy at 298.16 ° K is given by Hildenbrand and McDonald' to be
77.65 calories/mole, The enthalpy at 298.16 °K was calculated to be
9699.61
calories/mole.
Using the values of entropy and enthalpy at 298.16 ° K, in Equations (7)
and (8), the integration constants C, and CH were evaluated.
The entropy and enthalpy of carbon tetrachloride were evaluated at
various temperatures and pressures using Equations (7) and (8).
Entropy and Enthalpy of Saturated Vapour.
These were evaluated by substituting the experimental vapour pressures, volumes and temperatures in the
Equations (7) and (8).
Entropy and Enthalpy of Saturated Liquid. —
the relations,
Si ow Si A Sv
These were evaluated using
1/1 rnis Hg — A il v
where A S and A
tion, respectively.
(9)
(10)
are the entropy of vaporization and heats of vaporiza-
Superheated Carbon Tetrachloride.
The volume of superheated vapour
was calculated . using Equation (3), by substituting the values of pressure and
by making use of Newton-Raphson iterative method.
The entropy and enthalpy of superheated vapour were calculated by
substituting the calculated volume of superheated vapour in Equations (7) and
(8). The properties of saturated liquid and vapour are presented in Table It
and the properties of superheated vapour are presented in Table III*. These
values are presented in graphical form as Figure 1 t. Table III has been
checked for internal consistency using the usual relations, and found to be
internally consistent.
NOMENCLATURE
a, b, c, d
Cr
a, 1/,
A, B, C, D
A' B' C',
bhp A2 9 A3, A4 • . . •
f
Cp
- constants in Equation [Lb]
- constants in Equation [La]
sr constants in Equation [61
e constants in Equation [2]
a constants of Martin and Hou Equation of State
en Ideal gas specific heat at constant pressure,
Calories/gram mole °K
* Complete tabular material can be obtained from the authors.
t 80 cm x 75 cm diagram can be obtained from the authors.
Thermodynamic Properties of Carbon Tetrachloride
79
•=, Ideal gas specific heat at constant volume,
Calories/gram mole ° K
Enthalpy, Calories/gram mole
a Pressure, Atmospheres
Entropy, Calories/gram mole ° K
=Temperature, °K
a Specific volume, Litres/gram mole
a Enthalpy of vaporization, Calories/gram mole
a Entropy of vaporization, Calories/gram mole °K
C,,
II
C
CPS
V
Hy
A SY
Subscripts :
refers to liquid
1
g refers to gas vapour
C refers to the Critical Point.
REFERENCES
J. Am. Chetn. Soc., 1954, 76, 6017.
1. Albright, L. F., Galegar, W. C.
and Innes, K K.
• •
J. Russ. Phys. Chem. Soc., 1910, 42, 167.
3. Egerton, A. C. and Lee, W. B.
. .
Proc. Roy. Soc. London, 192.3, 103A, 487.
4. Gelles, E. and Pitzer, K. S.
..
J. Am. Chem. Soc., 1953, 75, 5259.
5. Gordon, S.
..
J. Chem. Phys., 1958, 29, 889.
2.
Biron, E.
••
.•
6.
Hand Book of Chemistry and Physics, 44th
Edition, p. 2566, 1 he Chemical Rubber
Publishing Co., Cleveland, Ohio, 1961.
7. Harrison, D. and MoelwynHughes, E. A.
Proc. Roy. Soc. London, 1957, 239A, 230.
8. Herz, W. and Rathmann, W.
9.
..
Hick s, J. F. G., Hooley, J. G. and
Stephenson, C. C.
Chem. Ztg., 1913, 36, 1417.
J. Am. Chem. Soc., 1944, 66, 1064.
10. Hildenbrand, D. L. and
McDonald, R. A.
J. Phys. Chem., 1959, 63, 1521.
11.
International Critical Tables, 3, p. 245, McGrawHill, New York, 1928.
12.
International Critical
Tables,
McGraw-Hill, New York, 1928.
5,
13. Johnston, H. L. and Long, E. A.
. •
J. Am. Chem. Soc., 1934, 56, 31.
14. Kelley, K. K.
. .
U. S. Bur. Mines Bull., 1949, 476, 50.
..
Petroleum Refiner, 1959, 38, 117.
••
15. Kobe, K. A. and Kobe, D. FL
p. 138,
80
SESHADR1, D. N., VISWANATH, D. S., AND KULOOR, N. R.
16. Kobe, K. A. and Lynn, R. E.
17. Latimer, W. M.
..
••
Chem. Rev., 1953, 52, 117.
••
J. Am. Chem. Soc., 1934, 56, 31.
18. Lord, It. C., Jr. and Blanchard, E. R.
19. Marshall, D.
20.
..
Martin, J. J. and Hou, Y. C.
I. Chem. Phys.,
1936, 4, 707.
..
London, Edinburgh and Dublin. Philosophical
Magazine and Journal of Science, 1897,
43, 27.
..
AlChE Journal, 1955, 1, 142.
21. Mathews, J. H.
••
..
J. Am. Chem. Soc., 1926, 48, 562.
22. Mills, J. E.
•.
..
J. Am. ('hem. Soc.. 1909, 31, 1099.
..
J. Phys. Chem., 1911, 15, 54.
..
..
Z. fur. Physik. Chemie, 1913, 85, 435.
••
..
(Mem. De. L'Acadamie Royale
Des Sciences De L'Institute de France.
1862, 26, 339.)
23.
Mills, J. E. and MacRae, D.
24.
Mandel
25. Regnault,
26. Richards, W. T. and Wallace, J. H. . .
J. Am. Chem. Soc., 1932, 54, 2705.
27. Stavely, L. A. K., Hart, K. R. and
Tupman, W. I.
Trans. Faraday Soc., 1955, 51, 323.
28. Stevenson, D. P. and Beach, J. Y. . .
J. Chem. Phys., 1938, 6, 25, 108.
29. Stull, D. R.
• *
J. Am. Chem. Soc., 1937, 59, 2726.
• .
J. Am. Chem. Soc., 1940, 62, 2468.
• •
30. Turkevich, A. and Smyth, C. P.
31. Vold, R. D.
••
. .
J. Am. Chem. Soc., 1935, 57, 1192.
32. Wirtz, K.
••
..
Annalen der Chemie turd Physik,
33. Young, S.
..
..
J. Chem. Soc. London, 1891, 59, 911.
34.
••
..
Scientific Proceedings of the Royal Dublin
Society, 1910, 12, 374.
1890, 40, 439.
,
a 4 'CI' ea 0 c• 0 o. 94.9 a 0 co 04n 0
.!ZitfigitSI
AiL4-1
g cifiSti egi
44, 444, 4.4 4•148/47473.4 ea. cc if iiti cc 4.4 4:9 A
750,0
,
I
4
i
TEMPERATURE - ENTROPY
DIAGRAM FOR
I
700.0.
•f
ll 1
i
a
I IIa
I f
•
I
I
I
'el t, As
•••
? ? ?. 4..
2;
.
1
_
H a 0. 0
CARBON TETRACHLORIDE
a N SESHADRI, 0 5 VCSWANATH,
AND N. R. KuLOOR
P • PR ESSuRE , ATMOSPHERES
H a ENTHALPY. CALORIES/ GRAM MOLE - - v • vOteumF.,
LITRES/ GRAM MOLE
--•
PREPAFILD By
,
-
i
650.0
7
H a-1000 0
//111/11
I
/
,
r
/1
/ il
1
1
/
1
I
/
i
1
/
REFERENCE STATE:- ..:
IC
0
. 0)1/
AND Ct 2 (GAS)
C (GRAPHITE)
AT 0 ° K AND ZERO PRESSURE
I..
H a 0 , AND 5 * 4t Rin P . 0
- 600.0
iii
//
\
•
A
,
41
/
I
■
,
//
A
i:
S e 4% e e
,
I
Sr
450.0
1
/
t
e
atle /
•
/
/
././ ,
/
/e
/
. . - .9
/ T V
4
'
/,
•
g
ri
,
H
.7
e ,
---T .1-
..,.`
t
t
4*;
,
,
,/
/
i
I L.),
l i ...cf./
1
,
if I
I +I
4I
I 111
I
I
1/1 Il
1
- /
,
,
/
,
,
11 • - 4000 0
H
/
H a - 6090.
471Y
0
.
tv
-Sy
i
/
cy
,
1
1
e I
1/
,, ,,
4
/
i
/ /
/
/ il
/
/
t
,
/
/
.
H a- 6000 0
,
1
Ha-
7000.0
/
,1
,
,
,
/
700 1 a.- - -
/
,
i
..y:
II
a . / .50 ".... - a
•
0
0 .
c7,
C - - - tp,,
--S.e, . ..........-ve-C
- -
,
_4.-
/
70.0
ENTROPY,
v 1
--
1
\
0
;
,
...
9)-e
0
S.
N
60-0
14a- 3000 0
H.-8000-0
01
• 8
ia
ii
/
1
I;
I
sif.,...--
,-
r I/
De-. 1
1
/1
/
0 , /
,
,
1
■
9->r -
i
or i
\I .N9 C.)- "..
....- -
r
C
....„ r
... ''
.*431
/ /•
-04
e ,•*.
el „..."'
jp e _ er e
0
go
e
.r
..
Ide ,
.,
fe3g)
'
..
/ oe
/ di
./..,
350.0
280.0
50.0
e
, el '
400.0
.
se
/ .1 stt:C/ 11 .
a
300.0
/
n 0 '
/71
i
4.- ,-
,
/
1
•
I /
i
,
;V
I / j4•, I
'•
it //
.. .
e
r
1
1
ei'll
•
1
2000.0
/
/
/
/
ski/
1
,I
500.0
-
I
1
r
:i
ll
I
1
1
i
l
i
'
t ., 550.0
iLi
in
I
iii
CC
I
/
/I
, .41
laB-
i
4,
e! /
ix
I<
i
H
i
0
1
.i. ..
/
r a - •
7s,
H a - 9000 0
1
/
0
0
.4 •
/
/
A
80.0
.
CALORIES /GRAM MOLE ° K
iA
FIG. I
,
90.0
-
4.,
100.0
© Copyright 2026 Paperzz