bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Neo-sexchromosomesintheMonarchbutterfly,Danaus plexippus AndrewJ.Mongue1,PetrNguyen2,3,AnnaVolenikova2,3,andJamesR.Walters1* 1)DepartmentofEcologyandEvolutionaryBiology,UniversityofKansas,Lawrence,KS,USA 2)FacultyofScience,UniversityofSouthBohemia,37005ČeskéBudějovice,CzechRepublic 3)InstituteofEntomology,BiologyCentreCAS,37005ČeskéBudějovice,CzechRepublic *Authorforcorrespondence:JamesRWalters,DepartmentofEcologyandEvolutionary Biology,UniversityofKansas,Lawrence,KS,USA phone:301-404-2743 email:[email protected] Runningtitle:Neo-Zchromosomeinmonarchbutterfly Keywords:sexchromosomes,evolution,Lepidoptera,genomics,chromosomalfusion 1 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Abstract Wereportthediscoveryofaneo-sexchromosomeinMonarchbutterfly,Danaus plexippus,andseveralofitscloserelatives.Z-linkedscaffoldsintheD.plexippusgenome assemblywereidentifiedviasex-specificdifferencesinIlluminasequencingcoverage. Additionally,amajorityoftheD.plexippusgenomeassemblywasassignedtochromosomes basedoncountsof1-to-1orthologsrelativetothebutterflyMelitaeacinxia(withreplication usingtwootherlepidopteranspecies),inwhichgenomescaffoldshavebeenmappedtolinkage groups.Sequencing-coveragebasedassessmentsofZ-linkagecombinedwithhomologybased chromosomalassignmentsprovidedstrongevidenceforaZ-autosomefusionintheDanaus lineage,involvingtheautosomehomologoustochromosome21inM.cinxia.Coverageanalysis alsoidentifiedthreenotableassemblyerrorsresultinginchimericZ-autosomescaffolds. CytogeneticanalysisfurtherrevealedalargeW-chromosomethatispartiallyeuchromatic, consistentwithbeinganeo-Wchromosome.Thediscoveryofaneo-Zandtheprovisional assignmentofchromosomelinkagefor>90%ofD.plexippusgeneslaysthefoundationfor novelinsightsconcerningsexchromosomeevolutioninthisfemale-heterogameticmodel speciesforfunctionalandevolutionarygenomics. Background Majorrearrangementsofkaryotypeandchromosomestructureoftenhavesubstantial evolutionaryimpactsonboththeorganismscarryingsuchmutationsandthegeneslinkedto suchgenomicreorganization(LynchandWalsh2007;SoltisandSoltis2012).Additionally,such large-scalechromosomalmutationsoftenpresentnovelopportunitiestoinvestigatemolecular evolutionaryandfunctionalgeneticprocesses,forinstancetheevolutionofneo-sex chromosomes,whichcanarisefromthefusionofanautosomewithanexistingandwelldifferentiatedallosome.Thiseffectivelyinstantaneoustransformationofaformerlyautosomal setofgenesintosex-linkedlociisfertilegroundforadvancingourunderstandingofthedistinct setofevolutionaryforcesactingonsexchromosomesrelativetoautosomes(Bachtrogetal. 2009;Pala,Hasselquist,etal.2012;Bachtrog2013;Šíchováetal.2013).Furthermore,when suchaneventisobservedinatractablegeneticmodelsystem,thereisopportunitytoexplore thefunctionalandmechanisticchangesassociatedwithsexchromosomeevolution.The congruenceofneo-sexchromosomesexistinginamodelsystemisrelativelyrare,although 2 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. therearesomenotableexamples.Namely,independentoriginsofneo-sexchromosomesare knowninDrosophilafruitflies(Countermanetal.2004;Floresetal.2008;Bachtrogetal.2009; Zhouetal.2013;BrownandBachtrog2014;Nozawaetal.2014)andsticklebackfish,where neo-sexchromosomesappeartoplayanimportantroleinreproductiveisolationbetween incipientspecies(Kitanoetal.2009;Yoshidaetal.2014;Whiteetal.2015). Lookingbeyondtheseestablishedmodelsystems,therapidexpansionofgenomic technologieshasallowedextensiveanalysesofgenecontent,sex-biasedgeneexpression, dosagecompensation,andsequencedivergenceforrecentlyevolvedsexchromosomesamong averydiversesetoforganismsincludingseveralinsectlineages[Teleopsidflies,agrasshopper, andStrepsiptera(BakerandWilkinson2010;MahajanandBachtrog2015;Palacios-Gimenezet al.2015)],vertebrates[mammalsandbirds(Zhouetal.2008;Pala,Hasselquist,etal.2012; Murataetal.2015)],andplants[SileneandRumexgenera(Houghetal.2014;Charlesworth 2015;Papadopulosetal.2015)].Aclearconsensusemergesfromthisresearchthatthelackof recombinationassociatedwithsexchromosomescatalyzesacascadeofevolutionarychanges involvingthedegenerationofoneallosome,theaccumulationofgeneswithsex-biased expression,increasedevolutionaryrates,andoften,butnotalways,theacquisitionofdosage compensation.Yetmanyofthedetailsinthisprocessremainelusiveandunresolved,including therateofallosomedivergence,theroleofpositiveselectionversusdrift,theimportanceof sex-specificselection,andthemechanismsunderlyingdosagecompensationorthereasonsfor itsabsence.Itisthereforeimportanttocontinueidentifyingnewopportunitiesfornovelinsight intotheevolutionofsexchromosomes. Overwhelmingly,researchonsexchromosomesoccursinmale-heterogametic(XY) species(VicosoandCharlesworth2006;Ellegren2011;Bachtrog2013;ParschandEllegren 2013).Thisappearstobeparticularlytrueforneo-sexchromosomes,wherecontemporary genomicanalysesofneo-Zorneo-Wchromosomesarecurrentlylacking,withonenotable exceptionforbirds(Pala,Hasselquist,etal.2012).Thisimbalanceisunfortunate,becauseZW sexdeterminationoffersthenovelframeworkoffemale-specificselectionduringtheevolution ofheterogametyandisacommonformofsexdeterminationinbothvertebratesand invertebrates.Birdsarethemostprominentvertebratetaxonthatisfemale-heterogametic,but 3 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. itappearsthatavianneo-sexchromosomesarequiterareandindeedabsentfromprominent modelspecies,e.g.chicken,zebrafinch(Nandaetal.2008;Pala,Naurin,etal.2012).Fishesand squamatesseemtobefarmorelabileinsex-chromosomeconstitution,withnumerous independenttransitionsbetweenmaleandfemale-heterogametyandrelativelyfrequentsexautosomefusions(Pennelletal.2015),thustherearepotentiallygreatopportunitiesinthese taxa.However,notractableZWmodelsystemwithneo-sexchromosomeshasbeenidentified fortheselineages. Formanyreasons,Lepidoptera,mothsandbutterflies,maybethemostpromising female-heterogametictaxonforstudyingneo-sexchromosomes.Synteny,i.e.thechromosomal placementoforthologousgenesbetweenspecies,isunusuallywell-conservedinLepidoptera (Pringleetal.2007;TheHeliconiusGenomeConsortium2012;Aholaetal.2014;Kanostetal. 2016),yettherearealsonumerousknownexamplesofindependentlyevolvedneo-ZandneoWchromosomes,severalofwhichhavebeenwell-characterizedcytogenetically(Trautetal. 2008;Yoshidoetal.2011;Nguyenetal.2013;Šíchováetal.2013;Smithetal.2016). Furthermore,comparativegenomicresourcesinthisinsectorderaresubstantialandgrowing quickly(www.lepbase.org). Inthiscontext,wereportthediscoveryofaneo-Zchromosomeinthemonarch butterfly,Danausplexippus,andcloselyrelatedspecies.Monarchbutterflies,renownedfor theirannualmigrationacrossNorthAmerica,alreadyhaveastrongprecedentasamodel systeminecology(Urquhart1976;OberhauserandSolensky2004).Recently,monarchshave emergedasamodelsystemforgenomebiology,withawell-assembledreferencegenome, extensivepopulationresequencingdata,andaprecedentforgenomeengineering(Zhanetal. 2011,2014;Merlinetal.2013;Markertetal.2016).Thediscoveryofaneo-Zchromosome furtherenrichesthevalueofthisspeciesasaresearchmodelingenomebiologyandlaysthe foundationforextensivefutureinsightsintotheevolutionandfunctionaldiversityofsex chromosomes. 4 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Materialsandmethods Sequencingcoverageanalysis IlluminashotgungenomicDNAsequencingdataforthreemaleandthreefemaleD. plexippusindividualswereselectedforanalysisfromsamplessequencedbyZhanetal.(2014). Detailsofsampleidentities,includingGenBankSRAaccessions,aregiveninSupplementary TableS1.Male-femalepairswereselectedonthebasisofapproximatelyequalsequencing coverage.SampleswerealignedtotheD.plexippusversion3genomeassemblywithbowtie2 (v2.1.0),usingthe“verysensitivelocal”alignmentoption(LangmeadandSalzberg2012;Zhan andReppert2013).Theresultingalignmentswereparsedwiththegenomecovandgroupby utilitiesintheBedToolssoftwaresuite(v2.17.0)toobtainaper-basemediancoveragedepth statisticforeachscaffold(QuinlanandHall2010).GenomicsequencingdatafromotherDanaus species,alsogeneratedbyZhanetal.(2014b),werealignedtothesameassemblyusingStampy (v1.0.22)(defaultparameters,exceptforsubstitutionrate=0.1)(LunterandGoodson2011). Coverageanalysescomparingmalesandfemaleswerelimitedtoscaffoldsoflengths equaltoorgreaterthantheN90scaffold(160,499bp)(ZhanandReppert2013).Also, incompletecaseswereexcluded(i.e.,scaffoldswithnoreadsfromoneormoresamples).In total,140scaffoldswereexcluded,leaving5,257scaffoldsanalyzed.Foreachsample,each scaffold’smediancoveragewasdividedbythemeanacrossallscaffoldmediancoverages, therebynormalizingfordifferencesinoverallsequencingdepthbetweensamples.Samples weregroupedbysexandtheper-scaffoldmeanofnormalizedcoveragedepthwascompared betweensexes,formulatedasthelog2ofthemale:femalecoverageratio.Autosomalscaffolds areexpectedtoexhibitequalcoveragebetweensexes,yieldingalog2ratioofzero.Z-linked scaffoldsshouldhavearatioofone,duetothetwo-foldgreaterrepresentationinmales. Manipulation,analysis,andvisualizationofcoveragedatawasperformedinR(RDevelopement CoreTeam2015). Toselectscaffoldswithintermediatemediancoverageratios,weusedBedtools genomecovtocalculateper-basecoverage,inordertoidentifypotentialassemblyerrors producingZ-Autosomalchimericscaffolds.Foreachsample,coverageperbasewasdividedby 5 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. themeanofallscaffoldmediancoveragevalues,thusnormalizingforoverallsequencingdepth. Thenormalizedcoverageperbasewasaveragedwithinsexandvisualizedalongthelengthof thescaffoldbyusingthemedianofa5kbpslidingwindow,shiftedby1kbpsteps. PointestimatesforZ-autosomalbreakpointsinchimericscaffoldsweregeneratedusing aslidingwindowanalysisofmale:femalecoverageratios.Putativebreakpointswereobtained asthemaximumoftheabsolutedifferencebetweenadjacentnon-overlappingwindows.A windowof150Kbpwith10kbpstepswasusedforDPSCF300001andthe5’breakpointof DPSCF30028.Awindowof10kbpwith1kbpstepswasusedforDPSCF30044andinasecond, localizedanalysisbetween1.5Mbandthe3’terminusofDPSCF30028tolocalizethesecond,3’ breakpoint. Orthology-basedchromosomalassignmentsforD.plexippusscaffolds PutativechromosomallinkagewaspredictedforD.plexippusscaffoldsrelativetothe genomeassembliesofthreereferencespecies,M.cinxia,B.mori,andH.melpomene(the Glanvillefritillary,domesticsilkmoth,andpostmanbutterfly),basedoncountsoforthologous genes(TheInternationalSilkwormGenomeConsortium2008;TheHeliconiusGenome Consortium2012;Aholaetal.2014).OrthologousproteinswerepredictedbetweenD. plexippusandeachreferencespeciesusingtheProteinorthopipeline(Lechneretal.2011). Usingonly1-to-1orthologs,wetabulatedperD.plexippusscaffoldthenumberofgenes mappedtoeachchromosomeinthereferencespecies.EachD.plexippusscaffoldwasassigned tothechromosomewiththehighestcountoforthologsinthereferencespecies.Scaffoldswere excludedfromanalysiswhenmaximumorthologcountwastiedbetweentwoormore scaffolds,thoughthissituationwasrareandinvolvedscaffoldswithlowgenescounts. PointestimateoftheZ-autosomefusion ThefusionpointinMonarchbetweenancestrallyZandautosomalsegmentswas localizedbyaligningthehomologousH.melpomeneorM.cinxiachromosomesagainst MonarchscaffoldDPSCF300001(Aholaetal.2014;Daveyetal.2016).Alignmentswerebased onsix-frameaminoacidtranslationsusingthePROmeralgorithmandvisualizedwith mummerplot,bothfromtheMUMmersoftwarepackage(v3.1)(Kurtzetal.2004).Weinitially 6 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. alignedthecompletesetofscaffoldsfromtheZ(HmChr21,McChr1)orrelevantautosome (HmChr2,McChr21),yieldingapreliminaryindicationthattheZ-autosomefusionpoint occurredat~4MbponDPSCF300001.Torefineandbettervisualizethisphenomenon,pseudoassemblieswerecreatedforeachchromosomeusingqueryscaffoldsproducing>500bpoftotal alignedcoverageonDPSCF300001.Selectedqueryscaffoldswereconcatenatedintoasingle fastaentry,withorderingbasedontargetalignmentpositions.Foreachspecies,theZand autosomalpseudo-assemblieswereco-alignedtoDPSCF300001.Thetransitionpointbetween contiguousalignmentsofthetwopseudo-assembliesfromdistinctchromosomeswas interpretedastheapproximatelocationoftheZ-autosomefusioninMonarch. Cytogeneticanalysis AllD.plexippustissuesusedforcytogeneticanalysiswerefromcaptive-bredbutterflies rearedonanartificialdietprovidedbyMonarchWatch(MonarchWatch.org).Spread chromosomepreparationsweremadefromgonadsofthirdtofifthinstarlarvaeofbothsexes followingMediounietal.(2004).Inordertotestforthepresenceofsexchromatin, preparationsofpolyploidsomaticnucleiweremadeaccordingtoTrautetal.(1986)from Malpighiantubulesdissectedfromthesamematerial. GenomicDNAwasisolatedseparatelyfrommalesandfemalesbystandardphenolchloroformextraction.Briefly,larvaltissueswerehomogenizedinliquidnitrogen,transferredin lysisbuffer(100mMNaCl,10mMTris-HClpH8,0,50mMEDTA,100μg/mlProteinaseK,0,5% Sarkosyl),andincubatedat37°Covernight.ThesampleswerethentreatedwithRNaseA(10 µg/ml)andpurifiedbythreephenol,onephenol-chloroform,andonechloroformextractions. Male-andfemale-derivedhybridizationprobeswerelabeledbynicktranslationasdescribedin Šíchováetal.(2015). Genomicinsituhybridization(GISH)wasperformedasdescribedbyFukováetal. (2005).Comparativegenomichybridization(CGH)wascarriedoutaccordingtotheprotocolin Šíchováetal.(2013)withseveralmodifications,asfollows.Priortodenaturation,RNaseA treatedslideswereincubatedin5xDenhardt’ssolution(0,1%Ficoll,0,1%polyvinylpyrrolidone, 0,1%bovineserumalbumin)at37°Cfor30min.A10µlhybridizationmixtureconsistingof labeledfemaleandmaleprobes(350ngeach),sonicatedsalmonspermDNA(25µg),50% 7 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. deionizedformamide,and10%dextransulfatein2xSSCwasdenaturedandallowedto reannealat37°Cfortwohours(c.f.Kallioniemietal.1992)beforeitwashybridizedtothe denaturedfemalepreparation. ResultsweredocumentedinaZeissAxioplan2microscope(CarlZeiss,Jena,Germany) equippedwithappropriatefluorescencefilterset.ImageswerecapturedwithanOlympusCCD monochromecameraXM10equippedwithcellSens1.9digitalimagingsoftware.Theimages werepseudocolouredandsuperimposedwithAdobePhotoshopCS3. DataAvailability PutativechromosomalassignmentsforD.plexippusgenesareprovidedinSupplemental TableS2.EstimatedbreakpointsreportedforchimericZ-autosomalassembliesareprovidedin SupplementalTableS3.OtherintermediateRresultsfilesandcodeusedindescribedanalyses areavailableuponrequest. Results IdentifyingZ-linkedscaffoldsinD.plexippus WeidentifiedZ-linkedscaffoldsintheD.plexippusgenomeassembly(Zhanetal.2011; ZhanandReppert2013)bycomparingsequencingcoveragefrommaleandfemalesamples. MalesshouldhavetwicetheZchromosomeDNAcontentthanfemales,whileautosomes shouldhaveequalDNAcontentbetweensexes.Thusacorrespondingtwo-folddifferencein sequencingcoverageisexpectedbetweensexesfortheZchromosome,butnotautosomes, andcanbeusedtoidentifyZ-linkedscaffolds(Martinetal.2013;Vicosoetal.2013;Mahajan andBachtrog2015).Ahistogramofmale:femaleratiosofmediancoverageclearlyidentifies twogroupsofscaffolds(Fig.1).Onelargeclusteriscenteredaroundequalcoveragebetween sexes(Log2M:F=0)andasecond,smallerclusteriscenteredaroundtwo-foldgreatercoverage inmales(Log2M:F=1).WecanthusclearlydistinguishtheZ-linkedscaffoldsasthosewith Log2(M:F)>0.5,withtheremainderofthescaffoldspresumedtobeautosomal. 8 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Onescaffold,DPSCF300028,appearedtohaveanintermediatecoverageratio,fallingat Log2M:F≈0.7.Onelikelyexplanationforsuchanintermediatevalueisthatthescaffoldisa chimeraofZ-linkedandautosomalsequencearisingfromanerroringenomeassembly(Martin etal.2013).Inthisscenario,onlyaportionofthescaffoldisZ-linkedandgivesatwo-fold differenceincoveragebetweensexes;theremainingautosomalfractionofthescaffoldyields equalcoverage.Theresultingestimateofaveragecoveragefortheentirescaffoldthenfallsata valuebetweenexpectationsforZorautosomalscaffolds.ThisisclearlytrueforDPSCF300028, asrevealedbyexaminingbasepair-levelsequencingcoverageacrossthescaffold(Fig.2A). Whileaveragemalecoverageisconsistentacrosstheentirelengthofthescaffold,female coverageexhibitsacleartransitionbetweencoverageequaltomales(theautosomalportion) andcoverageonehalfthatofmales(theZ-linkedportion).Indeed,therearetwosuch transitionsinscaffoldDPSCF300028,whichweestimatetooccurat0.76Mbpand1.805Mbp, creatingaZsegmentflankedbyautosomalsegments. Orthologcountslinkscaffoldstochromosomes. Asmentionedabove,Lepidopterashowaveryhighlevelofsyntenyconservedacross substantialevolutionarydistances(Pringleetal.2007;TheHeliconiusGenomeConsortium 2012;Aholaetal.2014;Kanostetal.2016).Thusitispossibletousecountsoforthologous genestoassignD.plexippusscaffoldstolinkagegroups(i.e.chromosomes)delineatedinother mothorbutterflyspecies.WegeneratedpredictedorthologsbetweenD.plexippusandthree otherreferencespecieswheregeneticlinkagemappinghasbeenusedtoassigngenomic scaffoldstochromosomes:Melitaeacinxia(N=31),Heliconiusmelpomene(N=21),andBombyx mori(N=28)(TheInternationalSilkwormGenomeConsortium2008;TheHeliconiusGenome Consortium2012;Aholaetal.2014).M.cinxiaandH.melpomenearebothbutterfliesequally divergedfromD.plexippusandallthreearepartofthesamefamily,Nymphalidae;the silkmoth,B.mori,isdistinctlymorediverged,locatedoutsideofthesubordercontainingall butterflies(Wahlbergetal.2009;KawaharaandBreinholt2014). ToassignD.plexippusscaffoldstochromosomes,wetabulatedperscaffoldthecounts ofone-to-onereferencespeciesorthologsperreferencespecieschromosome.D.plexippus 9 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. scaffoldswerethenassignedtothereferencechromosomewiththemaximumcountof orthologs.Forafewscaffolds,atieoccurredinmaximumorthologcountperreference chromosome,inwhichcasethescaffoldwasremovedfromfurtheranalysis;atmostthis occurredforonly14scaffoldsperreferencespeciesandusuallyinvolvedsmallscaffolds harboringfewerthan5orthologs.Typically,thismethodyieldedasingleobviousreference chromosomalassignmentforeachD.plexippusscaffold. Thismethodofortholog-countchromosomallift-overresultedinputativechromosomal assignmentsfor>90%ofD.plexippusgenesrelativetoeachreferencespecies(Table1, SupplementaryTableS2).Also,atleast4500orthologousgeneswereco-localizedto chromosomebetweenD.plexippusandeachreferencespecies.Havingseveralthousand orthologsmappedtochromosomeinD.plexippusandareferencespeciespresentsthe opportunitytoexaminetheextentofchromosomalrearrangementsandgenemovement betweenthetwospecies.HereweprimarilyreportthecomparisonwithM.cinxiabecausethis speciesisbelievedtoretaintheancestrallepidopterankaryotypeof31chromosomes(Aholaet al.2014).Furthermore,thiscountofchromosomesisclosesttothatreportedforseveral Danausbutterflies,includingmonarch(N=30,seeFigure3),makingitthemostappropriate comparisonavailable(Brownetal.2004).H.melpomeneandB.moriareknowntohaveless similarkaryotypesinvolvingseveralchromosomalfusionsrelativetoM.cinxia;nonetheless, detailsofcomparisonstothesetwospeciesarereportedinthesupplementarycontentand providecomparablesupportfortheprimaryfindingsreportedhere. Figure3summarizesthecross-tabulationofchromosomallinkagefor>4500orthologs betweenM.cinxiaandD.plexippus.Theoverwhelmingmajorityoforthologsfallonthe diagonal,indicatingsubstantialconservationofchromosomallinkageandrelativelylittlegene shuffling,ashasbeenreportedelsewhereforLepidoptera(TheHeliconiusGenomeConsortium 2012;Aholaetal.2014;Kanostetal.2016).Thetwomostnotableexceptionstothispattern bothinvolvetheZchromosome(Chr1).Inonecase[McChr9,DpChr1]wecouldanticipatethis becauseofthepreviouslyidentifiedchimericscaffold,DPSCF300028.Thisscaffoldharbors34 orthologsassignedtoMcChr1and23orthologsassignedtoMcChr9,consistentwiththe chimericnatureofthescaffoldrevealedfrommale:femalecoverageratios(Fig2A). 10 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Thesecondcase[McChr1,DpChr21]appearedtoariseentirelyfromasinglescaffold, DPSCF300001,thelargestscaffoldintheD.plexippusv3assembly.Thisscaffoldcarried107 orthologsassignedtoMcChr21,28orthologsassignedtoMcChr1,13orthologsassignedto McChr23,andafewotherorthologsassignedtootherautosomes.Notably,despitethelarge numberofapparentlyautosomalorthologs,theaveragemale:femalecoverageratiofor DPSCF300001wasconsistentwithitbeingZ-linked[Log2(M:Fcoverage)=0.92].Nonetheless, weplottedcoverageacrossthechromosomeanddetecteda~1Mbpportionatthe3’endof thescaffoldwithcoveragepatternsconsistentwithbeinganautosome(Fig2C).TheM.cinxia orthologsinthisautosomalportion,withanestimatedbreakpointat5.82Mbp,werelinked exclusivelytoMcChr23.Therewasnotanobviousshiftinsequencingcoveragebetweensexes toindicateamisassembledZ-autosomechimerainvolvingMcChr21.Rather,itappearedthat nearlytheentiretyofscaffoldDPSCF300001hadtwicethecoverageinmalesthaninfemales, consistentwithZ-linkageforregionsapparentlyhomologousbothtoMc1(Z)andMcChr21. Aneo-ZchromosomeinD.plexippus TheobservationthatasubstantialportionofscaffoldDPSCF300001wasZ-linkedand homologoustoMcChr21,whileanotherlargesectionofthesamescaffoldwashomologousto McChr1,i.e.McChrZ,ledustohypothesizethataZ-autosomefusioncouldreadilyexplainthe karyotypicdifferencesbetweenD.plexippus(N=30)andM.cinxia(N=31).Tofurtherinvestigate thishypothesisofamajorevolutionarytransitioninsexchromosomecompositioninthe Danauslineage,weexaminedthechromosomalassignmentsforallMonarchscaffolds identifiedasZ-linkedviasequencingcoverageratios(Z-covscaffolds).Specifically,weidentified theuniquesetofreferencechromosomestowhichZ-covscaffoldswereassigned,andthen examinedthemale:femalecoverageratioforallscaffoldsassignedtothosereference chromosomes.InthecaseofM.cinxiaasthereference,allZ-covscaffoldswereassignedeither toMcChr1orMcChr21(Fig.4;comparableresultswereobtainedforH.melpomeneandB. mori,SupplementaryFig.S2).ThisresultprovidesfurtherevidencethattheZinD.plexippusisa neo-sexchromosomereflectingthefusionoftheancestralZchromosomewithanautosome homologoustoMcChr21. 11 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. ThisanalysisintersectingZ-covscaffoldswithhomologytoM.cinxiarevealedtwo scaffoldsthatdidnotfitwiththeexpectedpatternofsequencingcoverage(Fig.5).First, scaffoldDPSCAF300044wasassignedtoMcChr1(Z)buthadLog2M:F≈0.25,muchmorelike otherautosomesthanotherZ-linkedchromosomes.ThisscaffoldhadsevenZ-linkedorthologs andfourautosomal,suggestinganotherchimericscaffold.Indeed,examiningcoverageacross thescaffoldrevealedacleartransitionincoverageaspreviouslyobservedforDPSCF300001and DPSCF300028(Fig2B).Thusthelowmale:femalecoverageratioforthisscaffoldislikelythe artifactofanassemblyerror.Againwewereabletopartitionthescaffoldintotwosections, oneautosomalandoneZ-linked,withabreakpointestimatedat0.29Mbpfromthe5’end.The autosomalsectioncontainedapproximatelyequalcountsoforthologsassignedtotwodistinct chromosomesinM.cinxiaandtheotherreferencespecies,solinkagetoaspecificautosome couldnotbepredicted.SupplementaryTableS3summarizesbreakpointsandpredictedscaffold assignmentsforthethreechimericZ-autosomescaffoldsidentifiedhere. DPSCF300403wastheotherscaffoldwheretheM:Fratioofmediancoveragewas inconsistentwiththehypothesisofaneo-Zchromosome.Thisscaffoldwasassignedto McChr21buthadanautosomalcoverageratio.Coveragealongthechromosomewas consistentwithitbeingentirelyautosomal(SupplementaryFigureS3).Inthiscasethescaffold carriedonlyasingleone-to-oneorthologousgene(andonly5protein-codinggenestotal),so theassignmenttoMcChr21istenuousandlikelyinaccurate.Thisscaffoldalsohadasingleoneto-oneorthologfoundinB.mori,andnoneidentifiedinH.melpomene.Wethereforeconsider thisscaffoldlargelyuninformativeconcerningthepresenceofaneo-ZinD.plexippus. Theneo-ZchromosomeexistsintheMonarch’scloserelatives TheMonarchpopulationgenomicdatasetfromZhanetal.(2014b)alsocontainedmale andfemaleresequencingsamplesfromthreecloselyrelatedcongeners:D.gilippus,D.erippus, andD.eresimus.Thisallowedustoassesswhetherthisneo-Zexistsintheserelatedspecies similarlytoD.plexippus.Analyzingmaleversusfemaleresequencinginthesespeciesdoes indeedshowthesamescaffoldshomologoustobothMcChr1andMcChr21ashavingcoverage differencesconsistentwithaneo-Z(Fig.5).Thusitappearsthattheoriginofthisneo-Z predatesthediversificationofthegenusDanaus. 12 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Annotatingchromosomallinkage Thecombinationofsequencingcoverageanalysisandcomparativelift-overallowedus toprovisionallyassignmostgenestochromosomesinD.plexippus.GenesfallingonZ-cov scaffolds,orwithintheportionassessedasZ-linkedfornotedchimericscaffolds,havebeen assignedtotheZchromosome.WefurtherpartitionedtheseZ-linkedgenesintobeingonthe ancestral(anc-Z)orneo(neo-Z)portionoftheZ,basedonscaffoldhomologytoreference chromosomes.InthecaseofDPSCF300001,welocalizedthefusionpointbetweenanc-Zand neo-ZbyaligningM.cinxiaandH.melpomenescaffoldsfromtheZ(HmChr21,McChr1)or relevantautosome(HmChr2,McChr21).Alignmentswithbothspecieswereconsistentin placingthefusionpointatapproximately3.88Mbpfromthe5’endofthescaffold (SupplementaryFig.S5).Otherwise,genesandscaffoldswereassignedtochromosomesbased directlyontheresultsofthelift-overrelativetoM.cinxia.Table2givesatabulatedsummaryof results,whileresultsforeveryproteincodinggeneareprovidedinSupplementaryTableS4. Cytogeneticanalysis PreparationsofhighlypolyploidnucleiofMalpighiantubulesfromD.plexippuslarvae wereexaminedforthepresenceofaso-called“sexchromatin”,i.e.femalespecific heterochromatinbodyconsistingofmultiplecopiesoftheWchromosome(TrautandMarec 1996).Largemulti-lobednucleiwereobservedonbothmaleandfemalepreparations(Fig.6), whichsuggestsahighdegreeofpolyploidyintheexaminedcells,asexpectedinMalpighian tubules(cf.Buntrocketal.2012).Allfemalenucleicontainedasingle,highlystained heterochromatinbody(Fig.6a).Incontrast,nosuchheterochromatinwasdetectedinmale somaticnuclei(Fig.6b).Thisdiscrepancyconfirmsthefemale-specificityofthe heterochromatinobservedandindicatesaWchromosomeisacomponentoftheD.plexippus genome. Spreadmitoticcomplementsofmalescontained2N=60chromosomes.The chromosomesweregenerallysmallanduniform,asistypicaloflepidopterankaryotypes (Marecetal.2009),exceptfortwodistinctlylargerelements(Fig.7a).Femalemitotic metaphaseconsistedof2N=60elementsaswell.Infemales,however,thetwolargest chromosomesdifferinintensityoftheirDAPIstaining.Thedeeplystainedelementfound 13 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. exclusivelyinfemalespresumablyrepresentstheWsexchromosomeconsistingofA-Trich heterochromatin(Fig.2b;Kapuscinski1979). Inbothmitoticandpachytenenuclei,GISHclearlyidentifiedtheWchromosomeby strongbindingoffemale-derivedprobe(Fig.7c,d).ItconfirmedthattheWchromosomeisone ofthetwoexceptionallylargechromosomesintheD.plexippuskaryotype(Fig.7c).In pachyteneoocytes,theWZbivalentwaseasilydiscerniblebytheheterochromaticW chromosomethread.However,aboutonethirdofthechromosomewasnotstrongly highlightedbyDAPIandtheintensityofitsstainingwascomparabletoautosomes,indicatinga portionoftheWthatissubstantiallyeuchromatic(Fig.7e).Accordingly,thefemale-derived probedidnothighlighttheWchromosomehomogeneouslyasthesignalwasweakeronboth itsendsandtheeuchromaticsegment(Fig.7e-f).Female-derivedprobesinGISHalsostrongly labeledoneinterstitialandafewterminalregionsofsomeautosomes,whichmostlikely containclustersofrepetitivesequences(Fig.7d). Comparativegenomichybridizationwithbothmale-andfemale-derivedprobeswasalso usedtoassessthebroadmolecularcompositionoftheD.plexippusWchromosome(Fig.7h-i). Hybridizationsignaloffemale-derivedprobelabeledbyfluoresceinwaslargelyconsistentwith theresultsobtainedbyGISH.ThesignalhighlightednearlytheentireWchromosomethread, withtheexceptionofitsterminiandeuchromaticsegment,inwhichtheprobedetectedonlya smallinterstitialblock(Fig.7i,k,l).Themale-derivedprobelabeledbyCy3providedrelatively weakhybridizationsignal,whichwasscatteredalongtheWchromosome.Thismaleprobe highlightedonlytworegions:theWchromosomeendoppositetotheeuchromaticsegment andtheregionhighlightedwithintheeuchromatinbyfemale-derivedprobe(Fig.7j,k,l).Both probesdetectedthesameautosomalregionsasGISH(datanotshown). Discussion Usingacombinationofgenomicresequencing,comparativegenomics,andcytogenetic analysis,wehavedocumentedthepresenceofaneo-ZchromosomeinDanausbutterflies, alongwithwhatislikelyanaccompanyingneo-Wchromosome.Thisdiscoveryofneo-sex chromosomesinDanausbutterfliesandourdiscriminationofgenesfallingontheancestral 14 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. versusrecentlyautosomalportionsoftheZarefundamentalobservationsthatprovidethe foundationforahostoffutureinferences.Theseresultscreatenovelopportunitiestoaddress ratesofmolecularevolution,theevolutionofdosagecompensation,thepatternofallosome divergence,andmanyotherimportantquestionsinsexchromosomebiology,allinafemaleheterogameticspeciesthatisalsoanemerginggenomicmodelsystem. InanalyzingpatternsofchromosomalfusioninH.melpomeneandB.morirelativetoM. cinxia,Aholaetal.(2014)reportasignificanttendencyforalimitedsetofancestral chromosomes–particularlythesmallestones–tobeinvolvedinchromosomalfusionevents. NeithertheancestralZnorMcChr21areamongthesesmall,repeatedlyfusedchromosomes; thusthechromosomalfusionreportedheredoesnotfitneatlywiththispattern.Nonetheless, HmChr2(homologoustoMcChr21)isthesecondsmallestchromosomethatremainsunfused betweentheselineages(Daveyetal.2016).SoitisalsodifficulttoarguestronglythatthisZautosomefusioninDanausisastrikingcontrasttothetrendofchromosomalfusionsinvolving smallchromosomes. Motivatedbythebioinformaticdiscoveryofaneo-Zchromosome,weperformed cytogeneticanalysisoftheD.plexippuskaryotypeinordertoprovidefurtherinsightinto evolutionandmolecularcompositionofthemonarchsexchromosomes.Previously,an observationofN=30chromosomeswasreportedonlyformales(Nageswara-RaoandMurty 1975).Ourcurrentanalysisconfirmsthesamechromosomenumbernotonlyinmalesbutalso infemales(Fig.7a,b).Equalnumbersofchromosomesinmalesandfemales,alongwith presenceofsexchromatininfemales,indicatesthatasingleWchromosomepersistsinthis speciesalongsidetheneo-Z.Furthermore,detailedanalysisofmitoticcomplementsrevealeda largechromosomepair(Fig.7a,b)andGISHclearlyidentifiedonechromosomeofthepairas theWchromosome(Fig.7c).Asimilar,extraordinarilylargechromosomepairwasrecently showntocorrespondtoneo-sexchromosomesinleafrollermothsofthefamilyTortricidae (Nguyenetal.2013;Šíchováetal.2013). GISHrepresentsasimplifiedversionofCGH,whichhasbeensuccessfullyusedfor evaluatingthegrossmolecularcompositionoflepidopteranWchromosomes(e.g.Mediouniet al.2004;Fukováetal.2005).Previousstudiesinseveralmothspeciescontrastedfluorescence 15 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. intensitiesofmaleversusfemalederivedprobesandidentifiedtwocommontypesofrepeats onlepidopteranWchromosomes:(i)repetitivesequencescommontobothmalesandfemales, i.e.presentinautosomesandZchromosome;and(ii)repetitivesequencesexclusivelyor predominantlypresentinfemales(Saharaetal.2003).Inthesepreviouslystudiedspecies,the Wprimarilycontainsthefirsttype,i.e.ubiquitousrepeats(e.g.Fukováetal.2005;Šíchováetal. 2013).Incontrast,themonarchWappearsdistinctfromtheWchromosomesoftheseother speciesbecausethemajorityofthemonarchWchromosomeoverwhelminglycontainsrepeats ofthesecondtype,i.e.female-limitedrepeats.ThemonarchWwaslabelledprimarilyby female-derivedprobe(7i-k),indicatingthatitisprimarilycomprisedofrepetitivesequences eitherspecifictoorgreatlyenrichedontheWchromosome.OnlytwosmallsegmentsoftheW showednotablyhighdensitiesofubiquitousrepeatscommonlyenrichedontheentireWin otherlepidopteranspecies. ThisdiscrepancybetweenMonarchandotherspeciescouldberelatedtotherelatively smallsizeoftheD.plexippusgenome.Themonarchbutterflyrepresentsthesmallest lepidopterangenomeyetsequenced,withhaploidnuclearcontentofmale284Mbp(see Dolezeletal.2003fortheconversionofpgofDNAtoMbp;GregoryandHebert2003)and female273Mbp(Zhanetal.2011).Thissmallgenomeispresumablydepletedofrepetitive sequencesfoundmoreubiquitouslyamongtheautosomesandZinotherlepidoptera.Indeed, repeatcontentconstitutesonly13.1%oftheD.plexippusgenomeassembly(Zhanetal.2011). TheresultsofCGHthuscouldreflectthefactthattheWchromosomerepresentsthelast refugeformanysuchrepetitivesequencesinthemonarchgenomeafterotherwisebeing purgedfromthegenome. CytogeneticanalysesthusconfirmthattheD.plexippusWchromosomeiswell differentiatedrelativetotheZ,whichisinagreementwithsequencingdatathatyieldavery consistent2:1coverageratioonscaffoldregionscorrespondingtoMcChr21.Ifaneo-W retainedsubstantiallyclosehomologytotheneo-Z,wewouldexpectmanysequencingreads emanatingfromtheneo-Wtoaligntotheneo-Z,andshiftthiscoverageratiotowardsone.This evidentlydoesnotoccur,indicatingsubstantialdivergencebetweentheneo-Zandanyneo-W sequencethatisretained. 16 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. CytogeneticanalysesfurtherindicatethatthemonarchWchromosomeexhibitsnotable compositionalheterogeneity.BothGISHandCGHrevealedterminalgapsinfemale-derived signal(Fig.2g,l).ThisissimilartoGISHresultsobtainedinacodlingmoth,Cydiapomonella (Tortricidae),wherefemalederivedprobelabelledtheentireWchromosomeexceptforboth subtelomericsegments(Fukováetal.2005).Van’tHofetal.(2012)proposedthatacopyofthe Z-linkedlamininAgenewastransferredandmaintainedtoaWchromosomeofthepeppered moth,Bistonbetularia(Geometridae),bygeneconversionresultingfromectopicrecombination betweenrepeatslocalizedinterminalchromosomeregions.Thesamemechanismcouldbe invokedtoexplainthelackoffemalespecificsignalsonthemonarchWchromosomeends. AnotherregiondistinctlyidentifiedbyCGHcorrespondstoaninterstitialblocklocalized withinaeuchromaticchromosomesegment.Theblockwasilluminatedbybothfemale-and male-derivedprobes(Fig.2j,k,l),whichsuggestspresenceofrepetitivesequencescommonto autosomesandZchromosome(Saharaetal.2003).Thisblock,togetherwiththeadjacent terminalregion,formsachromosomesegmentwithdistinctmolecularcompositioncomprising aboutonethirdoftheWchromosome.ThemonarchWthusshowsabipartiteorganization, withonlytwo-thirdsofthechromosomebeinghighlyheterochromaticwhiletheremaining thirdappearseuchromatic.AlsonoteworthyisthelargesizeofthemonarchWchromosome relativetochromosomesotherthantheZ,whichisofcomparablylargesize.Thiscombination ofsizeandbipartiteorganizationsuggeststhischromosomemaybeaneo-Wresultingfroma W-autosomefusionoccurringinparallelwiththeneo-Zformation.However,cautionisadvised inthisinterpretationbecauseWchromosomesizecanbemisleading(Schartletal.2016)and cytogeneticexaminationofspeciesbearingneo-Zchromosomesrevealedconsiderable differencesinthestructureoftheirWchromosomes(Šíchováetal.2013). Finally,itshouldbenotedthatarelativelymodernW-autosomefusionwasrecently reportedtobesegregatingintheAfricanQueenbutterfly,D.chrysippus,whereitcontrolscolor patternandmale-killingandisdrivingpopulationdivergenceacrossahybridzone(Smithetal. 2016).GivenourresultsandthesamechromosomenumberN=30observedinthewild-typeD. chrysippusdorippus,itseemsallDanausspeciesincludingD.chrysippussharetheneo-Zand thuspresumablythisputativeneo-W(i.e.homologoustoMcChr21).Ifso,thismeanstheW- 17 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. autosomefusioninD.chrysippuswouldbeacompoundneo-Winvolvingtwodistinctformer autosomes.Thispatternofrelativelyfrequentkaryotypicchangeswithinthegenusfurther recommendsDanausbutterfliesasanexcellentmodelsystemforstudyingsexchromosome evolution. Conclusion Wehaveusedacombinationofgenomesequencingcoverage,comparativegenomic analysis,andcytogeneticstodemonstratethatDanausbutterfliesharboraneo-Zchromosome resultingfromthefusionoftheancestralZchromosomeandanautosomehomologousto Chr21inM.cinxia.Also,atleastinthecaseofMonarchbutterflies,itappearsthatthisfusion hasresultedinalargeneo-Wchromosomewithaprominenteuchromaticregion.Ouranalysis alsoidentifiedandresolvedseveralZ-autosomechimericscaffoldsinthemostrecentassembly oftheD.plexippusgenome.Thisdiscoveryandprovisionalassignmentofchromosomallinkage for>90%ofD.plexippusgenespavesthewayformyriadanddiverseinvestigationsintosex chromosomeevolution,whicharelikelytobeofdistinctimportancegiventheincreasing prominenceofDanausbutterfliesasafemale-heterogameticmodelspeciesforfunctionaland evolutionarygenomics. Acknowledgements ThankstoChipTaylor,AnnRyan,andtherestofMonarchWatch.orgfordonationoforganisms usedinthisstudy.JimMalletandJohnDaveyprovidedhelpfulcommentsonthiswork.This researchwassupportedbyNSF-DEB1457758toJ.R.W.Cytogeneticanalysiswassupportedby theCzechScienceFoundationgrant14-35819PtoP.N.Thecomputingforthisprojectwas performedontheCommunityClusterattheCenterforResearchComputingattheUniversityof Kansas. Authorcontributions:AJM,PN,AV,andJRWallperformedanalysesandcontributedtothe manuscripttext.AJMadditionallyassembledanalysesandmanuscriptcomponentsandedited thecompleteversion.Allauthorsreadandapprovedthefinalmanuscript. 18 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. CompetingInterests:Theauthorsdeclarenocompetinginterests. Additionaldatafiles: Monarch_neoZ_Gene-Scaff.xlsxcontainsasummaryofZ-autosomechimericscaffold breakpoints(TableS3)andthepredictedchromosomallinkage,wheredetermined,forallD. plexippusproteincodinggenes(TableS4). 19 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. WorksCited Ahola,V.,R.Lehtonen,P.Somervuo,L.Salmela,P.Koskinenetal.,2014TheGlanvillefritillarygenomeretainsan ancientkaryotypeandrevealsselectivechromosomalfusionsinLepidoptera.NatCommun5:1–9. Bachtrog,D.,2013Y-chromosomeevolution:emerginginsightsintoprocessesofY-chromosomedegeneration. Nat.Rev.Genet.14:113–24. Bachtrog,D.,J.D.Jensen,andZ.Zhang,2009AcceleratedadaptiveevolutiononanewlyformedXchromosome. PLoSBiol.7:e82. Baker,R.H.,andG.S.Wilkinson,2010Comparativegenomichybridization(CGH)RevealsaNeo-Xchromosome andbiasedgenemovementinStalk-eyedflies(GenusTeleopsis).PLoSGenet.6:e1001121. Brown,E.J.,andD.Bachtrog,2014ThechromatinlandscapeofDrosophila:Comparisonsbetweenspecies,sexes, andchromosomes.GenomeRes.24:1125–1137. Brown,K.S.,B.VonSchoultz,andE.Suomalainen,2004ChromosomeevolutioninNeotropicalDanainaeand Ithomiinae(Lepidoptera).Hereditas141:216–236. Buntrock,L.,F.Marec,S.Krueger,andW.Traut,2012Organgrowthwithoutcelldivision:somaticpolyploidyina moth,Ephestiakuehniella.Genome55:755–63. Charlesworth,D.,2015Plantcontributionstoourunderstandingofsexchromosomeevolution.NewPhytol.208: 52–65. Counterman,B.a,D.Ortíz-Barrientos,andM.aF.Noor,2004Usingcomparativegenomicdatatotestforfast-X evolution.Evolution58:656–660. Davey,J.W.,M.Chouteau,S.L.Barker,L.Maroja,S.W.Baxteretal.,2016MajorimprovementstotheHeliconius melpomenegenomeassemblyusedtoconfirm10chromosomefusioneventsin6millionyearsofbutterfly evolution.G3Genes|Genomes|Genet.g3-115. Dolezel,J.,J.Bartos,H.Voglmayr,andJ.Greilhuber,2003NuclearDNAcontentandgenomesizeoftroutand human.Cytometry.A51:127–8;authorreply129. Ellegren,H.,2011Sex-chromosomeevolution:recentprogressandtheinfluenceofmaleandfemale heterogamety.Genetics12:157–66. Flores,S.V,A.L.Evans,andB.F.McAllister,2008Independentoriginsofnewsex-linkedchromosomesinthe melanicaandrobustaspeciesgroupsofDrosophila.BMCEvol.Biol.8:33. Fuková,I.,P.Nguyen,andF.Marec,2005Codlingmothcytogenetics:karyotype,chromosomallocationofrDNA, andmoleculardifferentiationofsexchromosomes.Genome48:1083–1092. Gregory,T.R.,andP.D.N.Hebert,2003Genomesizevariationinlepidopteraninsects.Can.J.Zool.81:1399– 1405. Van’tHof,A.,P.Nguyen,M.Dalıová,N.Edmonds,F.Marecetal.,2012Linkagemapofthepepperedmoth,Biston betularia(Lepidoptera,Geometridae):amodelofindustrialmelanism.Heredity(Edinb).110:283–295. Hough,J.,J.D.Hollister,W.Wang,S.C.H.Barrett,andS.I.Wright,2014GeneticdegenerationofoldandyoungY chromosomesinthefloweringplantRumexhastatulus.Proc.Natl.Acad.Sci.U.S.A.2014:1–6. Kallioniemi,a,O.P.Kallioniemi,D.Sudar,D.Rutovitz,J.W.Grayetal.,1992Comparativegenomichybridization formolecularcytogeneticanalysisofsolidtumors.Science258:818–821. Kanost,M.R.,E.L.Arrese,X.Cao,Y.-R.Chen,S.Chellapillaetal.,2016Multifacetedbiologicalinsightsfromadraft genomesequenceofthetobaccohornwormmoth,Manducasexta.InsectBiochem.Mol.Biol.76:118–147. 20 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Kapuscinski,J.,1979DAPI:aDNA-SpecificFluorescentProbe.Biotech.Histochem.70:220–233. Kawahara,A.Y.,andJ.W.Breinholt,2014Phylogenomicsprovidesstrongevidenceforrelationshipsofbutterflies andmoths.Proc.R.Soc.BBiol.Sci.281:20140970. Kitano,J.,J.A.Ross,S.Mori,M.Kume,F.C.Jonesetal.,2009Aroleforaneo-sexchromosomeinstickleback speciation.Nature461:1079–1083. Kurtz,S.,A.Phillippy,A.L.Delcher,M.Smoot,M.Shumwayetal.,2004Versatileandopensoftwareforcomparing largegenomes.GenomeBiol.5:R12. Langmead,B.,andS.L.Salzberg,2012Fastgapped-readalignmentwithBowtie2.NatMethods9:357–359. Lechner,M.,S.Findeiß,L.Steiner,M.Marz,P.F.Stadleretal.,2011Proteinortho:Detectionof(Co-)orthologsin large-scaleanalysis.BMCBioinformatics12:124. Lunter,G.,andM.Goodson,2011Stampy:AstatisticalalgorithmforsensitiveandfastmappingofIllumina sequencereads.GenomeRes.21:936–939. Lynch,M.,andB.Walsh,2007Theoriginsofgenomearchitecture.SinauerAssociatesSunderland. Mahajan,S.,andD.Bachtrog,2015Partialdosagecompensationinstrepsiptera,asistergroupofbeetles.Genome Biol.Evol.7:591–600. Marec,F.,K.Sahara,andW.Traut,20093RiseandFalloftheWChromosomeinLepidoptera.Mol.Biol.Genet. Lepid.49. Markert,M.J.,Y.Zhang,M.S.Enuameh,S.M.Reppert,S.A.Wolfeetal.,2016GenomicAccesstoMonarch MigrationUsingTALENandCRISPR/Cas9-MediatedTargetedMutagenesis.G3Genes|Genomes|Genet.g3116. Martin,S.H.,K.K.Dasmahapatra,N.J.Nadeau,C.Salazar,J.R.Waltersetal.,2013Genome-wideevidencefor speciationwithgeneflowinHeliconiusbutterflies.GenomeRes.23:1817–1828. Mediouni,J.,I.Fuková,R.Frydrychová,M.H.Dhouibi,andF.Marec,2004Karyotype,sexchromatinandsex chromosomedifferentiationinthecarobmoth,Ectomyeloisceratoniae(Lepidoptera:Pyralidae).Caryologia 57:184–194. Merlin,C.,L.E.Beaver,O.R.Taylor,S.A.Wolfe,andS.M.Reppert,2013Efficienttargetedmutagenesisinthe monarchbutterflyusingzinc-fingernucleases.GenomeRes.23:159–168. Murata,C.,Y.Kuroki,I.Imoto,M.Tsukahara,N.Ikejirietal.,2015InitiationofrecombinationsuppressionandPAR formationduringtheearlystagesofneo-sexchromosomedifferentiationintheOkinawaspinyrat,Tokudaia muenninki.BMCEvol.Biol.15:1. Nageswara-Rao,N.,andA.S.Murty,1975ChromosomenumberofDanausplexippus(Lepidoptera:Danaidae). Curr.Sci.44:629–630. Nanda,I.,K.Schlegelmilch,T.Haaf,M.Schartl,andM.Schmid,2008SyntenyconservationoftheZchromosomein 14avianspecies(11families)supportsaroleforZdosageinaviansexdetermination.Cytogenet.Genome Res.122:150–156. Nguyen,P.,M.Sýkorová,J.Šíchová,V.Kůta,M.Dalíkováetal.,2013Neo-sexchromosomesandadaptivepotential intortricidpests.Proc.Natl.Acad.Sci.U.S.A.110:6931–6. Nozawa,M.,N.Fukuda,K.Ikeo,andT.Gojobori,2014Tissue-andstage-dependentdosagecompensationonthe Neo-XchromosomeinDrosophilapseudoobscura.Mol.Biol.Evol.31:614–624. Oberhauser,K.S.,andM.J.Solensky,2004TheMonarchbutterfly:biology&conservation.Cornelluniversitypress. Pala,I.,D.Hasselquist,S.Bensch,andB.Hansson,2012Patternsofmolecularevolutionofanavianneo-sex chromosome,pp.3741–3754inMolecularBiologyandEvolution,. Pala,I.,S.Naurin,M.Stervander,D.Hasselquist,S.Benschetal.,2012Evidenceofaneo-sexchromosomeinbirds. Heredity(Edinb).108:264–272. 21 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Palacios-Gimenez,O.M.,D.A.Marti,andD.C.Cabral-de-Mello,2015Neo-sexchromosomesofRonderosiabergi: insightintotheevolutionofsexchromosomesingrasshoppers.Chromosoma124:353–365. Papadopulos,A.S.T.,M.Chester,K.Ridout,andD.A.Filatov,2015RapidYdegenerationanddosage compensationinplantsexchromosomes.Proc.Natl.Acad.Sci.112:201508454. Parsch,J.,andH.Ellegren,2013Theevolutionarycausesandconsequencesofsex-biasedgeneexpression.Nat. Rev.Genet.14:83–7. Pennell,M.W.,M.Kirkpatrick,S.P.Otto,J.C.Vamosi,C.L.Peicheletal.,2015YFuse?SexChromosomeFusionsin FishesandReptiles.PLoSGenet.11:e1005237. Pringle,E.G.,S.W.Baxter,C.L.Webster,A.Papanicolaou,S.F.Leeetal.,2007Syntenyandchromosome evolutioninthelepidoptera:EvidencefrommappinginHeliconiusmelpomene.Genetics177:417–426. Quinlan,A.R.,andI.M.Hall,2010BEDTools:Aflexiblesuiteofutilitiesforcomparinggenomicfeatures. Bioinformatics26:841–842. RDevelopementCoreTeam,2015R:ALanguageandEnvironmentforStatisticalComputing.RFound.Stat. Comput.1:409. Sahara,K.,F.Marec,U.Eickhoff,andW.Traut,2003Mothsexchromatinprobedbycomparativegenomic hybridization(CGH).Genome46:339–342. Schartl,M.,M.Schmid,andI.Nanda,2016Dynamicsofvertebratesexchromosomeevolution:fromequalsizeto giantsanddwarfs.Chromosoma125:553–571. Šíchová,J.,P.Nguyen,M.Dalíková,andF.Marec,2013ChromosomalEvolutioninTortricidMoths:Conserved KaryotypeswithDivergedFeatures.PLoSOne8:. Šíchová,J.,A.Voleníková,V.Dincă,P.Nguyen,R.Vilaetal.,2015Dynamickaryotypeevolutionanduniquesex determinationsystemsinLeptideawoodwhitebutterflies.BMCEvol.Biol.15:89. Smith,D.A.S.,I.J.Gordon,W.Traut,J.Herren,S.Collinsetal.,2016Aneo-Wchromosomeinatropicalbutterfly linkscolourpattern,male-killing,andspeciation,pp.20160821inProc.R.Soc.B,TheRoyalSociety. Soltis,P.S.,andD.E.Soltis,2012Polyploidyandgenomeevolution.Springer. TheHeliconiusGenomeConsortium,2012Butterflygenomerevealspromiscuousexchangeofmimicryadaptations amongspecies.Nature487:94–98. TheInternationalSilkwormGenomeConsortium,2008Thegenomeofalepidopteranmodelinsect,thesilkworm Bombyxmori.InsectBiochem.Mol.Biol.38:1036–1045. Traut,W.,andF.Marec,1996SexchromatininLepidoptera.Q.Rev.Biol.71:239–256. Traut,W.,K.Sahara,andF.Marec,2008SexchromosomesandsexdeterminationinLepidoptera.Sex.Dev.1: 332–346. Traut,W.,A.Weith,andG.Traut,1986StructuralmutantsoftheWchromosomeinEphestia(Insecta, Lepidoptera).Genetica70:69–79. Urquhart,F.A.,1976FoundatLast-MonarchsWinterHome.Natl.Geogr.Mag.150:161–173. Vicoso,B.,andB.Charlesworth,2006EvolutionontheXchromosome:unusualpatternsandprocesses.Nat.Rev. Genet.7:645–653. Vicoso,B.,J.J.Emerson,Y.Zektser,S.Mahajan,andD.Bachtrog,2013ComparativeSexChromosomeGenomicsin Snakes:Differentiation,EvolutionaryStrata,andLackofGlobalDosageCompensation.PLoSBiol.11: e1001643. Wahlberg,N.,J.Leneveu,U.Kodandaramaiah,C.Peña,S.Nylinetal.,2009Nymphalidbutterfliesdiversify followingneardemiseattheCretaceous/Tertiaryboundary.Proc.Biol.Sci.276:4295–4302. White,M.a,J.Kitano,andC.L.Peichel,2015PurifyingSelectionMaintainsDosage-SensitiveGenesduring DegenerationoftheThreespineSticklebackYChromosome.Mol.Biol.Evol.32:1981–1995. 22 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Yoshida,K.,T.Makino,K.Yamaguchi,S.Shigenobu,M.Hasebeetal.,2014SexChromosomeTurnoverContributes toGenomicDivergencebetweenIncipientSticklebackSpecies.PLoSGenet.10:e1004223. Yoshido,A.,K.Sahara,F.Marec,andY.Matsuda,2011Step-by-stepevolutionofneo-sexchromosomesin geographicalpopulationsofwildsilkmoths,Samiacynthiassp.Heredity(Edinb).106:614–24. Zhan,S.,C.Merlin,J.L.Boore,andS.M.Reppert,2011Themonarchbutterflygenomeyieldsinsightsintolongdistancemigration.Cell147:1171–1185. Zhan,S.,andS.M.Reppert,2013MonarchBase:Themonarchbutterflygenomedatabase.NucleicAcidsRes.41: D758–D763. Zhan,S.,W.Zhang,K.Niitepõld,J.Hsu,J.F.Haegeretal.,2014Thegeneticsofmonarchbutterflymigrationand warningcolouration.Nature514:317–321. Zhou,Q.,C.E.Ellison,V.B.Kaiser,A.A.Alekseyenko,A.A.Gorchakovetal.,2013TheEpigenomeofEvolving DrosophilaNeo-SexChromosomes:DosageCompensationandHeterochromatinFormation.PLoSBiol.11: e1001711. Zhou,Q.,J.Wang,L.Huang,W.Nie,J.Wangetal.,2008Neo-sexchromosomesintheblackmuntjacrecapitulate incipientevolutionofmammaliansexchromosomes.GenomeBiol.9:R98. 23 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Table1.SummaryofassigningD.plexippusgenesandscaffoldstochromosomesviaorthology “liftover”relativetoM.cinxia. 1:1orthologsidentified 6,740 1:1orthologsassignedtoM.cinxiachromosome 4,607(68.4%) ProteincodinggenesinD.plexippus 15,130 D.plexippusproteincodinggenesassignedtochromosome 14,129(93.4%) D.plexippusscaffoldsputativelyassignedtochromosomes 454 Table2.SummaryofprovisionalchromosomallinkageforD.plexippusproteincodinggenes, withchromosomalidentityreflectinghomologytoM.cinxia Chromosome 1 Anc-Z Neo-Z 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 NotAssigned NumberofGenes 1101 624 477 704 758 582 494 689 483 535 647 452 574 576 501 429 493 524 604 561 414 399 302 318 185 329 274 250 284 294 151 168 1055 24 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Figure1.Distributionofmediannormalizedmale:femalegenomicsequencingcoverageratios forD.plexippusversion3assemblyscaffolds.Onlyscaffoldsoflengthequaltoorgreaterthan theN90scaffoldareshown.Thedottedlineat0.5representsthevalueusedtopartition scaffoldsasautosomal(grey)orZ-linked(red). Figure2.Normalizedmaleandfemalecoveragealongthelengthofchimericscaffolds,for(A) DPSCF300028,(B)DPSCF300044,and(C)DPSCF300001.Coveragesareplottedassliding windows(width=5Kbp,step=1Kbp)ofmedianbasepairvalues.Theassociatedmale:female ratioofcoverageforeachwindowisplottedasaredlinebelowthepairofsex-specificplots. AsterisksindicatetheestimatedbreakpointbetweenZlinkedandautosomalsegmentsofeach scaffold,asdeterminedbythemaximumdifferenceinadjacent,non-overlappingwindowsof male:femaleratio(seemethodsfordetails). Figure3.Chromosomalco-linkagebetweenD.plexippusandM.cinxiaforpredicted orthologousproteins. Figure4.Ratiosofmale:femalemediannormalizedgenomicsequencingcoverageplotted againstscaffoldlength.Scaffoldshomologousvia“liftover”proceduretoM.cinxia chromosomes1/Z(blue)and21(green)areplottedindistinctcolors.Dottedlinesindicate expectedvaluesforZ-linked(red)andautosomal(black)scaffolds. Figure5.Ratiosofmale:femalemediannormalizedgenomicsequencingcoverageplottedby scaffoldlengthforfourspeciesofDanausbutterflies.Thedottedlineatlog2(M/F)=0.5 representsthethresholdusedtodiscernautosomal(<0.5)fromZ-linked(>0.5)scaffolds. Figure6.Multi-lobed,highlypolyploidnucleioftheMalpighiantubulesfromDanausplexippus larvaestainedbyorcein.(a)Afemalenucleuswithasingledeeplystainedsexchromatinbody (arrow).(b)Amalepolyploidnucleuswithnoheterochromatin.Bars=20µm. Figure7.CytogeneticanalysisofsexchromosomesinD.plexippus.Chromosomeswere counterstainedbyDAPI(blue).(a)Malemitoticmetaphasecomplementconsistingof2N=60 elements.Notethelargechromosomepair(arrowheads).(b)Femalemitoticmetaphase nucleuscomprising2N=60chromosomes.Thelargestelementsdifferinintensityoftheir staining(arrowheadandarrow,thelattermarkinghighlystainedchromosome).(c-g)Female complementsexaminedbygenomicinsituhybridization(GISH).Femalederivedprobewas labeledbyCy3(red).(c)Thesamemitoticcomplementasin(b).TheprobeidentifiedtheDAPI positivechromosomeasaWchromosomeandthusindicatedtheotherlargechromosometo betheZchromosome.(d)Femalepachytenecomplementconsistingof30bivalents.TheWZ bivalentwasclearlyrecognizedbyfemale-derivedprobe,whichhighlightedwholeW chromosomeexceptitsterminalsegments.Theprobealsomarkedthreeterminalandone interstitialregionsofseveralautosomes(asterisks).(e)TheWZbivalentstainedbyDAPI.Note thatonlyabouttwothirdsoftheWchromosomethreadisdeeplystainedandapparently 25 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. heterochromatic.Themorelightlystainedeuchromaticsegmentismarkedbyanarrow.(f) Hybridizationsignaloffemale-derivedprobehighlightingtheWchromosomethread.Notethat thesignalisweakerintheeuchromaticregion(arrow).(g)CompositeimageofDAPIandthe probe.(h-l)ApachyteneWZbivalentprobedbycomparativegenomichybridization(CGH). Male-derivedprobewaslabeledbyCy3(red),female-derivedprobebyfluorescein(green).(h) TheWZbivalentstainedbyDAPI.TheweaklystainedZiswrappedaroundthestronglystained W,whichisfoldedinhalf.(i)Hybridizationsignaloffemale-derivedprobe.Notethattheprobe labeledonlyasmallregionoftheeuchromaticsegment(arrow).(j)HybridizationsignalofmalederivedprobestronglyhighlightstwoWsegments(arrows).(k)Boththefemale-andmalederivedsignalsmerged.(l)CompositeimageofDAPIandbothprobes.Bars=5µmin(a-g)and 2.5µmin(h);(e-g)and(h-l)havethesamescale. 26 80 40 0 20 Frequency 60 Putative Autosomal scafffolds Putative Z−linked scaffolds −0.5 Figure 1 0.0 0.5 Log2( Male:Female coverage ) 1.0 1.5 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 9 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 11 ● ● ● 15 17 19 M. cinxia chromosome ● ● ● ● ● ● ● ● 13 ● ● ● ● 10 ● ● ● ● ● ● ● 100 ● ● 7 ● ● ● ● ● ● ● ● ● 500 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 5 ● ● ● ● Number of genes ● ● ● ● 3 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 1 Figure 2 ● 1:5 putative D. plexippus chromosome Ortholog Chromosomal Co−localization: M. cinxia vs. D. plexippus 21 23 ● 25 27 29 ● 31 1 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. A 2 1 2 1 steps 2 1 steps 0 Male:Female coverage ratio 0 Female coverage (Normalized) 0 Male coverage (Normalized) DPSCF300028 0 0.25 0.5 0.75 B 1 1.25 1.5 1.75 2 Scaffold Position (Mbp) mcov.smooth[, 2] 2 1 2 1 steps 2 1 steps 0 Male:Female coverage ratio 0 Female coverage (Normalized) 0 Male coverage (Normalized) DPSCF300044 0 0.25 0.5 0.75 1 1.25 Scaffold Position (Mbp) C mcov.smooth[, 2] 2 1 2 1 steps 2 1 steps 0 Male:Female coverage ratio 0 Female coverage (Normalized) 0 Male coverage (Normalized) DPSCF300001 0 0.5 1 1.5 2 2.5 3 3.5 Scaffold Position (Mbp) mcov.smooth[, 2] Figure 3 4 4.5 5 5.5 6 M. cinxia reference chromosome ● 1 ● 21 ● Other ● ● ● ● ● ● ● ●● 0.0 0.5 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ● ●● ●● ●● ●● ● ●● ●● ●●●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●●● ●●● ●●● ●● ● ● ● ● ●● ●● ● ● ● ●● ● ●● ● ●● ● ●●● ● ● ●● ● ●● ●●●● ● ●● ● ●●●● ● ●●● ● ●● ● ●● ● ● ●● ● ● ●● ●●● ●● ● ● ●● ● ● ● ●●● ●● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ● ●● ●● ● ● ● ● ●●● ● ● ● ●●● ● ●● ● ● ● ●●● ● ● ● ● ● ●● ●● ● ●●● ● ● ● ●● ● ● ● ● ● ● ● ●● ●●●● ●● ●● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ●● ●● ● ● ● ●● ●●●● ●● ● ● ●●● ●●● ● ● ● ●● ●●● ● ●●● ● ● ●●● ● ● ● ● ● ●● ● ●● ●● ● ● ●● ● ●● ● ● ● −0.5 Log2[ Male:Female coverage ] 1.0 ● ● 5.5 Figure 4 6.0 Log10[ Scaffold Length (bp) ] 6.5 7.0 1.0 0.5 plexippus erippus eresimus gilippus −0.5 0.0 ● 0 1 2 3 4 5 6 Scaffold length (Mb) D. plexippus D. erippus D. gilippus D. eresimus ●● ● ● 1.0 1.0 1.0 ●● ● ● 1.0 ● ● ● 0 1 2 3 4 Scaffold length (Mb) 5 6 0 1 2 3 4 Scaffold length (Mb) 5 6 0.5 −0.5 0.0 Log2(M/F) 0.5 −0.5 0.0 Log2(M/F) 0.5 0.0 ● −0.5 0.0 ● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ● ● ●● ● ● ●●●● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ●●●●● ● ● ● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●●●● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ● ● ● ● ●●● ● ● ● ● ●●● Log2(M/F) 0.5 ● −0.5 Log2(M/F) Log2(M/F) Danaus spp. median depth of coverage by scaffold Figure 5 0 1 2 3 4 Scaffold length (Mb) 5 6 0 1 2 3 4 Scaffold length (Mb) 5 6 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Figure 6 Figure 7 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Macrosynteny: B. mori vs D. plexippus 27 ● ● ● 26 25 23 ● putative D. plexippus chromosome ● ● ● ● ● ● ● ● ● 20 ● ● 18 ● 17 ● ● ● ● ● ● ● ● ● ● ● ● ● 11 ● ● ● ● Number of genes ● ● ● ● ● 500 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 8 ● ● ● 6 ● ● ● 5 ● 4 ● 3 ● ● ● ● ● ● ● ● ● ● ● 1 ● ● ● ● ● ● ● ● ● ● ● ● ● ● 13 15 17 ● ● ● ● 11 1 ● ● ● ● 1 2 3 4 5 6 7 8 9 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 10 ● ● ● 9 100 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 13 10 ● ● ● ● ● ● ● 14 2 ● ● ● ● ● ● ● 15 ● ● ● ● 19 7 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 21 12 ● ● ● ● 22 16 ● ● 24 ● ● ● ● 1:5 28 19 21 ● 23 25 27 B. mori chromosome Macrosynteny: H. melpomene vs D. plexippus 20 ● ● 19 putative D. plexippus chromosome 18 ● ● ● ● ● ● ● ● ● ● ● 17 ● 16 ● ● ● ● ● ● 15 14 13 ● ● ● ● ● ● 11 ● ● 9 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 500 ● ● ● ● ● Number of genes ● ● ● ● ● ● ● ● ● ● ● ● ● 6 ● ● ● ● ● ● ● ● ● ● 5 ● ● 4 ● ● ● ● ● ● 1 ● 2 3 5 ● ● ● ● ● ● 4 ● ● ● 2 1 ● ● ● ● ● ● ● ● 3 ● ● ● ● ● 6 7 8 9 ● ● ● ● ● ● ● ● ● ● ● ● ● 10 11 12 13 14 15 16 17 18 19 20 21 H. melpomene chromosome 10 ● ● 7 100 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 8 ● ● ● ● 12 10 ● ● ● ● ● ● ● ● ● ● ● ● 1:5 21 1 FigureS1.ChromosomalcolinkagebetweenD.plexippusand B.mori(top)orH.melpomene (bottom)forpredicted orthologousproteins. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. B. mori reference chromosome ● 1 ● 16 ● Other ● ● ● ● ● ● ● ●● 0.0 0.5 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● ● ● ●● ● ● ● ● ● ● ●● ●● ●● ●● ● ● ●● ●● ● ● ●●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ● ● ●● ● ● ● ● ●● ●● ● ●●● ● ● ●● ● ● ● ● ●●● ●● ● ● ● ● ● ● ●● ● ● ●● ●● ● ● ●●●● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ●●● ● ●● ● ●● ● ● ●● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●●●●● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ●● ● ● ● ●● ●●●● ● ● ● ●● ●● ● ● ●● ●● ● ● ●●● ●●● ●●● ●●● ● ● ●● ●● ● ● ● ●● ●● ● ● ●● ● ●● ● ● ● −0.5 Log2[ Male:Female coverage ] 1.0 ● ● 5.5 6.0 6.5 7.0 Log10[ Scaffold Length (bp) ] H. melpomene reference chromosome ● 2 ● Z ● Other ● ● ● ● ● ● ● ●● 0.0 0.5 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ●● ●● ●● ●● ● ● ●● ●● ● ● ●●● ●●● ●● ●● ●● ● ●● ●● ●● ●●● ● ●● ●● ● ●● ● ●● ● ●● ●● ● ● ● ● ●●●● ● ●●●● ● ●● ● ● ●●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●●●●●● ● ●● ● ● ● ● ●● ● ●● ● ● ●● ●●● ●● ● ● ●● ● ●● ● ● ●● ●● ● ● ● ●● ●● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●●●● ●● ●● ● ●● ● ●● ● ● ●● ● ● ●● ●● ● ● ● ● ● ●● ●●●● ● ●● ● ● ● ● ● ● ● ●● ●● ● ● ●●● ●●● ●●● ●●● ● ● ●● ●● ● ● ● ●● ●● ● ● ●● ● ●● ● ● ● −0.5 Log2[ Male:Female coverage ] 1.0 ● ● 5.5 6.0 Log10[ Scaffold Length (bp) ] 6.5 7.0 FigureS2.Ratiosofmale:female mediannormalizedgenomic sequencingcoverageplottedby scaffoldlength.Scaffolds assignedtochromosomes putativehomologoustotheneoZchromosomeinD.plexippusare plottedindistinctcolors.Top, relativetoB.mori,to chromosomes1(i.e.,Z;blue)and 16(green).Bottom,relativetoH. melpomene,chromosomes1 (i.e.,Z;green)and2(blue). bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 2 1 2 1 steps 2 1 steps 0 Male:Female coverage ratio 0 Female coverage (Normalized) 0 Male coverage (Normalized) DPSCF300403 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 Scaffold Position (Mbp) mcov.smooth[, 2] FigureS3.NormalizedmaleandfemalecoveragealongthelengthDPSCF300403.Coveragesareplottedas slidingwindows(width=5Kbp,step=1Kbp)ofmedianbasepairvalues.Theassociatedmale:femaleratioof coverageforeachwindowisplottedasaredlinebelowthepairofsex-specificplots. H. melpomene Chr02 & Chr21(Z) vs DPSCF300001 H. melpomene Chromosome A Chr21(Z) bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Chr02 0 1000000 M. cinxia chromosome B 4000000 3000000 2000000 DPSCF300001 position (bp) 5000000 6000000 5000000 6000000 M. cinxia Chr21 & Chr01(Z) vs DPSCF300001 Chr01(Z) Chr21 0 1000000 4000000 3000000 2000000 DPSCF300001 position (bp) FigureS4.PromeralignmentsofDPSCF300001againsttheZandhomologous autosomefrom(A)H.melpomeneand(B)M.cinxia.Bestone-to-one alignmentsweregeneratedusingdefaultparameters.ManualinspecEonof alignmentcoordinatesrevealedthetransiEononDPSCF300001fromneo-Zto anc-ZoccursinawindowbetweenposiEons3.878and3.886Mbp. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. TableS1.SummaryofassigningD.plexippusgenesandscaffoldstochromosomesviaorthology“liftover” relativetothreedifferentreferenceassemblies. M.cinxia H.melpomene B.mori 15130 15130 15130 totalnumberofproteincodinggenesintarget 14129 14427 14566 numberoftargetgenesassignedtochromosome 0.934 0.954 0.963 fractionoftargetgenesassignedtochromosome 454 514 508 6740 8190 7928 numberoftargetscaffoldsassignedto chromosomes numberof1:1orthologsidentified 4607 7150 7534 0.684 0.873 0.95 numberof1:1orthologsassignedtoreference chromosome fractionof1:1orthologsassignedtoreference chromosome SupplementaryTableS2.Sampleidentificationdetailsforsequencingdatausedincoverateanalyses. Region Sample North Plex_MA_HI004_M America Plex_MA_HI035_F Other Danaus Species plexippus Sex male plexippus female Plex_FLn_StM123_F plexippus female Plex_FLn_StM146_M plexippus male Plex_WSM_M36_M plexippus male Plex_WSM_M38_F plexippus female Erip_BRA_16005_F erippus female Erip_BRA_16008_M erippus male Eres_CRC_92_F eresimus female Eres_FL_27_M eresimus male Gili_CRC_30_M gilippus male Gili_TX_01_F gilippus female Collectinglocation Date Accession Massachusetts,USA July32008 SRX679269 SRX679310 Massachusetts,USA August10 2009 SRX680105 St.Marks,Florida, October USA 2008 SRX681753 St.Marks,Florida, October USA 2009 SRX680118 Samoa June2007 SRX681528 Samoa June2007 Brazil September SRX682069 2010 Brazil September SRX682070 2010 SRX682071 CostaRica July24 2010 SRX682072 Florida,USA July20 2009 SRX682073 CostaRica July24 2010 SRX998564 Texas,USA October 2010
© Copyright 2026 Paperzz