volume 12 Number 11 1984 Nucleic Acids Research Polymer support oligonudeotide synthesis XVffl1-21: use of 0<yanoethyl-N,N-dialkylamino-/Nmorpholino phosphoramidite of deoxynudeosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product N.D.Sinha, J.Biernat, J.McManus and H.KOster Inslitut fur Organische Chemie und Biochemie, Universitflt Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, FRG Received 9 February 1984; Revised 10 April 1984; Accepted 9 May 1984 ABSTRACT Various 5'-O-N-protected deoxynucleoside-3'-O-S-cyanoethyl-N,Ndialkylamino-/N-morpholinophosphoramid1tes were prepared from B-cyanoethyl monochiorophosphoramidites o f N,N-dimethylamine, N , N - d i i s o p r o p y l a m i n e and N-morpholine. These a c t i v e deoxynucleoside p h o s p h i t e s have s u c c e s s f u l l y been used f o r o l i g o d e o x y n u c l e o t i d e synthessis on c o n t r o l l e d pore glass as polymer support and a r e v e r y s u i t a b l e f o r a u t o m a t e d D N A - s y n t h e s i s d u e t o t h e i r s t a b i l i t y i n s o l u t i o n . The i n t e r m e d i a t e dichioro-B-cyanoethoxyp h o s p h i n e c a n e a s i l y be p r e p a r e d f r e e f r o m a n y P C I , c o n t a m i n a t i o n . The a c t i v e monomers obtained from B-cyanoethyl monochloro N,N-diisopropylaminophosphoramidites a r e favoured. Cleavage of t h e o l i g o n u d e o t i d e c h a i n f r o m t h e p o l y m e r s u p p o r t , N - d e a c y l at i on and d e p r o t e c t i o n o f B - c y a n o e t h y l group from t h e phosphate t r i e s t e r m o i e t y c a n be p e r f o r m e d i n o n e s t e p w i t h concentrated aqueous ammonia. Mixed o l i g o d e o x y n u c l e o t i d e s a r e characterized by t h e s e q u e n c i n g m e t h o d o f Maxam a n d G i l b e r t . INTRODUCTION Adaptation o f "phosphite triester" approach introduced b y 4 )' t o s o l i d p h a s e s y n t h e s i s o f w e l l - d e f i n e d D N A Letsinger 3 ' sequences has tremendously reduced the time required for these syntheses. For the preparation o freactive monomeric intermediates various different types o falkyl/aryl phosphodichi oridites ~ ' ' have been e x p l o r e d . Several d i f f i c u l t i e s g e n e r a l l y encountered in the preparation and handling o f nucleoside phosp h o r o m o n o c h i or i d i t e s for a u t o m a t e d r o u t i n e s y n t h e s i s o f desired DNA f r a g m e n t s led t o t h e i n t r o d u c t i o n o f v a r i o u s m o d i f i c a t i o n s for t h e preparation o f active n u c l e o s i d e p h o s p h i t e interm e d i a t e s " '. T h e c o m m o n r e a c t i v e m o n o m e r i c i n t e r m e d i a t e s p r e s e n t l y i n u s e f o r s o l i d p h a s e ol 1 g o d e o x y n u c l e o t i d e s y n t h e s i s f o l l o w i n g p h o s p h i t e t r i e s t e r a p p r o a c h a r e : 5 '-0 , N - p r o t e c t e d d e ox y n u c l e o s i d e - 3 ' - 0 - m e t h y l - N , N - d i m e t h y l a m i n o , -3'-0-methyl- © IRL Press Limited, Oxford, England. 4539 Nucleic Acids Research N,N-diisopropylaminophosphoramidites. Very amino-/N-morpholino introduced These in t h epreparation not t h esynthesis of active When protection tected In 1 0 e.g. 1 9 " 2 1 ) , paper, taken choice on solid phosphite time t r i e s t e r The phorus AND days approach f o r d e - i s i n most reactions and i n solid pro- that these and r e prior t o chromatography phase DNA syn- approach. and o f various . amines blocks s i g n i f i c a n t l y simplifies support that t h e protection a n dw o r k - u p synthesis phosphor- i n polymer I t i s demonstrated a s N,N- a n d their nucleoside f o r phosphate f o rdeprotection B-cyanosuch N-morpholine, reactive building group ammoniurn o f f u l l y layer o f secondary synthesis i n treat- occasionally We f e e l synthesis g e l thin a t r i e t h y l and support. achieved o f various protection includes and i n reduces o f t h efinal on polymer pro- support. DISCUSSION B-cyanoethyl (V)) reactive necessary t h epreparation o f a n o li g o d e o x y n u c l e o t i d e RESULTS with tl-me after t r i e s t e r " a s nucleotide necessary preparation a t 5 0 °C and deprotection b y silica o f t h eB - c y a n o e t h y l NH, several materials we report ol igodeoxynuc 1e o t i d e work-up f o r t h esynthesis N-N-diiso propylamine serving present c h a r a c t e r i - and f o r phosphate Tne c a nt a k e monochlorophosphoramidites amidites 4540 - t h eimprovements f o rt h esynthesis duct 1 1 b y t h e"phosphite dimethylamine, the * aqueous o f d i f f e r e n t p u r i f i c a t i o n this ethyl a t i s , however, and stable oligonucleotide t h etime steps undermine thesis use linked o f non-nucleotidic migth part a s t h el a r g e - s c a l e t h ef i n a l o li g o d e o x y n u c l e o t i d e s RP-HPLC been t h e e f f i c i e n c y sequences p u r i f i c a t i o n intermediates approach i s o l a t i o n than improved time-consuming synthesis. IB) group ' i s used a t 4 5 °c time-consuming moval most as well concentrated and longer have DNA t r i e s t e r " t-butylamine phosphoramidites o f oligodeoxynucleotide o f t h epolymer ' phosphites b u t t h ew o r k - u p , t h em e t h y l 1 5 o-chiorophenyl-N,N-dimethyl- considerably The deoxynucleoside thiophenol ate, cases have methods. f o rautomated "phosphite ment recently o f t h esequences enough a n d- 3 ' - 0 - m e t h y l - N - m o r p h o l i n o monomeric developments t h esynthetic ' deoxynuc1eoside a s reactive of zation 1 5 > 1 6 group protecting h a sb e e n group used a s a phosphate i n t h ephosphate t r i e s t e r (phosapproach Nucleic Acids Research (2 e q u i v . when Ft = H) (1 e q u i v . when R = NC-CH CH -O- (CH3)3S1) NC-CH,C.H,-O-P-<^\ ' (1 equiv. ) ^ i I Cl ^>R 2 JO-P-N^ a i X MTrO-V<y OH R1-R2-CH a) B =• Thyrai n e , 2 - ( m e t h y l ) b e n z o y l c y t o s i ne , benzoyladenine Scheme by RL+R2- c) b) 3 8 ' morpholino 1 sobu t y r y l g u a n i ne , (I) Letsinger ' and Cramer ' and was p r e v i o u s l y introduced by 24) f o r t h e phosphodiester method. The B-cynoethyl group Tener has only t e c t i n g pared p r e l i m i n a r i l y group when as reactive s t a b i l i t y o f phoramidites reactive Preparation Three compounds synthesis. have very o f as a phosphorous ( I I I )p r o - monochiorophosphites . they Due t o have In c o n t r a s t , promising deoxynucl eoside deoxynucleotide used intermediates these oligonuc1eotide been r i b o n u c l e o s i d e n o t found and low a p p l i c a t i o n t h e corresponding and a t t r a c t i v e intermediates a r e p r e - t h e s e n s i v i t y f o r p r o p e r t i e s polymer as support o l i g o - synthesis. monochiorophosphoramidites d i f f e r e n t B-cyanoethyl monochiorophosphoramidites N,N-dimethylamine, N-morpholine and N,N-diiso propylamine prepared in phos- by t r e a t i n g B-cyanoethyl t r i m e t h y l s i l y l - N , N - d i m e t h y l a m i n e , N,N-diisopropylamine, r e s p e c t i v e l y , phosphordichi o r i d i t e o f were with N - t r i m e t h y l s i l y l m o r p h o l i n e f o l l o w i n g Scheme ( I ) Nand accor- 15 2 0 2 1 ) ding t ot h e literature ' . The B-cyanoethyl monochiorophosphoramidites o f H,N-dimethylamine and N,H-diiso propylamine were obtained a s clear liquids inhigh yield after distillation under reduced pressure. The monochloro morpholino derivative o b 4541 Nucleic Acids Research •Idltti 3b 31 •oiling 90 -92° C/0 ( point Chealctl shift for It II) J-KMB ! • CHjCH ChtBlcil for l 4 . 0 1 , 4 . 17 thiftt (t. I n COClj 2 . 7 (d. -«(CH,)j , 6 H) 12 H) (d. Ha In p t i k t 1n 182 - ) * . 136 110 ' 201 )*. 236 (J)*. (HIE, i ) \ 166 (!l£, 136 [ '* ) 238 t 145 (t . 3.67 « ( C H ) j . 2H) 3.80 ( • . -CHjCH, 3.96 , 4 . 1 2H) 4.02 , 4. 2 ( 2 t . f-OCHj P-OCH?, 2H) (2t, 168.22 179.82 ppa p pa 175.97 H-«Nl (pp») 103-105° C/0.08 • • u pp> (2t. P-OCHj, O(CHj)2, 4H) 4H) 3.17 (• . IIICHjlj. 2.74 (t , C H j - C H . 2H) 2H) 224 . H7 I CJHJIIO,* 136 - nitril.11': Phoiphoraaidtttt of 145.43 144.97 142.57 142.17 145.61 137.51 135.33 147.57 146.01 147.44 142.62 142.44 142.30 142.17 1) II) tained a f t e r thermal reaction t h e t i c purposes. cyanoethyl t i o n o f B-cyanoethyl morpholine They n o t be d i s t i l l e d present phosphorodichloridite d e r i v a t i v e . 3 1 could but was s u f f i c i e n t l y The impurities l i n e 50 work-up decomposition, might i n t h i s (<~5I) be removed and concentrating be ^ - N M R , stable under d e r i v a t i v e s t r i n g e n t compared the a n d mass t h e reaction d r y and inert was found anhydrous with The 4542 o f and inert 5'-O-N-protected r e a c t i v e c o n d i t i o n s over work-up were i n protected B- o f t h e morphot h e propor- i n vacuo a t characterized I ) . They The s y n - were N - t r i m e t h y l s i 1 y l - were found by t o N,N-dimethylamino a n d hence required f o r i t s handling two phosphoramidites. a r e shown s u i t a b l y (Table c o n d i t i o n s . t o be v e r y t h e other m o n o c h l o r i d i t e s Preparation spectra case a n d traces phosphorodichloridite duet o f o r o u r by adjusting C. A l l t h e m o n o c h l o r o p h o s p h o r a m i d i t e s P-NMR, pure P-NMR when spectra o f Figure 1A. deoxynucleoside phosphoramidites deoxynuc1eoside-3'-O-B-cyanoethyl - N , N - Nucleic Acids Research Figure 1A: P-NMR spectra phoramid ites o fmonochloro 3-cyanoethyl phos- OMTrdO -OOCH^CH^CM .b ^ DMTfdQ -O-P /KIZ(CHICMI>IO IK 144.000 ppm WB.4If (Km Figure IB: I4M7I ppm ULttt PP*n P-NMR s p e c t r a o f d e o x y g u a n o s i n e B - c y a n o e t h y l - N , Ndialkylamino-/N-morpholino phosphoramidites dimethyl amino-/N,N-diisopropylamino-/H-morpholino tes prepared were dered form fication Thus TLC yield developed offers material phitylated a simple and Scheme procedure was i n d i s t i l l e d method and t o detect t o follow quality using dried o f modi- these P-NMR and ethylacetate. t h epresence o f decomposed those i n pow- ( I ) by a slight . The controlled a n dh y d r o l y s e d , products phosphoramidi- monochiorophosphoramidites following phosphoramidites g e l TLC starting high these o f t h el i t e r a t u r e nucleoside silica and from o r oxidised reactions. In a l l phosi n - 4543 Nucleic Acids Research s t a n c e s , i t w a s found oxynuc 1eosides side This P-N(C H. )side most The were some extent i n less t h e t w o d i a s t e r e o m e r s from were o f deoxynuc1eoside n o n - d i s t i l l e d group as i n d i c a t e d f r e q u e n t found d e r i v a t i v e s exposure t e m p e r a t u r e t o i s t o o f p r e p a r a t i o n The 3 1 o f compounds P-NMR o f A f t e r vacuo, f o l l o w e d t h e case purine 4544 w i t h t h e a c t i v e equ.) t o o f a n d 4? even argon these a t l o w were 5 ' - 0 - N - p r o - type CPG bound r e a c t o r be m a i n t a i n e d washing n u c l e o s i d e o r ZnBr- p y r i m i d i n e f i t t e d a f t e r be t h e i r s a t i s f a c t o r y . d e r i v a t i v e s . w i t h i n o f a ( J t o s i n t e r e d serum t o avoid o f i n glass c a p . The i n 1% u n d e s i r a b l e syringe t o t h e g l a s s powdered t e t r a z o l e w a s 3 a a c c o r d i n g I S w a t e r - n i t r o m e t h a n e o l i g o d e o x y n u c 1 e o t i d e d e r i v a t i v e a 3% C C 1 C O O H i n order w a s added m l ) w i t h w i t h e i t h e r a n d d r y i n g b y a d d i t i o n ( 1 . 5 - 2 . 0 . T h e was performed fi ? ft \ n u c l e o s i d e ' ' a i r t i g h t using s o l u t i o n s a t u r a t e d o f mixed s i x months deoxyguanosine also monochloro w i t h t o a f t e r e o t i d e s w a s removed t h o r o u g h a c e t o n i t r i l e w a s checked 1 0 0 mg o f column could group d e p u r i n a t i o n In from o l i g o d e o x y n u c 1 e o t i d e s met h a n o l / n i t r o m e t h a n e 30 under and TLC a n d w a s found P-NMR ( I ) using i n a which 5'-0-DMTr t i o n . prepared p r e - P-NMR. d e r i v a t i v e s t o o u r o b s e r v a t i o n o l iqodeoxynuci s y n t h e s i s (imol) f r i t t these b y Scheme 7.5 when b y be s t a b l e storage The guanosine i n c o n t r a s t I B i n d i c a t e s Synthesis to P-NMR. g u a n o s i n e - 3 ' - m e t h y l - N - m o r p h o l i n o p h o s p h o r a m i d i t e s t a b i l i t y Figure t o In phosphor, 3% 3 ' - 3 ' - d i m e r s found a i r . However, s t a b l e p h o s p h o r a m i d i t e s t e c t e d were recommended. be q u i t e d e r i v a t i v e s m o n o c h i o r o - N - m o r - m a t e r i a l s o x i d i s e d other s p e c t r o s c o p y . B-cyanoethyl h y d r o l y s e d these these N - m o r p h o l i n o p h o s p h o r a m i d i t e s (crude) about o r a n d b y o n TLC a n d contained o f r e a c t i v e This t h e deoxynuc1eoside separated p h o l i n o p h o s p h o r a m i d i t e Most t h eT L C i n d i c a t e d i n polar o f t h e v e r y 5% a s d e - d e o x y n u c l e o - could l i n e b y i n f r a r e d o f c l e a r l y o f g e l p l a t e . than d e t e c t a b l e p r o t e c t e d t h e case a t t h e base o f t h e n i t r i l e e a s i l y o f d e r i v a t i v e s TLCo n t h e s i l i c a present d e r i v a t i v e s r e a c t i v e pared d u r i n g marker cases a m i d i t e t o T h e presence another i n m a y be d u e t o t h e h y d r o l y s i s bond products P-NMR. Only phosphoramidite be d e t e c t e d p l a t e . t h e p h o s p h o r y l a t i o n w a s q u a n t i t a t i v e . N , N - d i m e t h y l a m i n o m a t e r i a l is that (70-75 under s o l u - beads i n form ( 2 5 e q u . ) argon s y n t h e s i s 2 b y w e i g h t . a n d atmosphere. t h e r a t i o The o f c o n - Nucleic Acids Research Tabl e II- Suooary Step of thi dlfftrtnt Operation Sol»tnt/Rtagent 1 Dttr I tyla t Ion a) 31 C C K C O O H 2 Washing 3 Washing 4 Drying 5 Condensation perforncd In o n f a l o n g a t i o n VoluDe or t) 2 cyclf (al ) Ho. of or tlat/Duntion 5 tiats for 1 atnutfl b) ZnBr ? b) 3 a) CH-HO^ a) 5 3 tiaes b) n - B o O H / L u t i d i n t / T H F 1 " b) 2 2 tiaes 3 tint) for 3 nlnutes a) CH^Cfl a) 5 2 tiaes b) C H ; C 1 ; b) 10 2 High racoua tUts 5 ainutts Actire nucltosidts and tttrazole 1.5 25-35 ainutes ' In CH,C H 6 Washing CH } CH 3 10 tlats 7 Oildation 2 2 tiats for 1 ainute 8 Wishing 0.1 B Ij In T H F / P y r l d 1 m / HjO (80:40:2. »/•) a) Hethinol a) 2 2 tiaes b) THF b) 5 2 tiaes ACjO/ONAP/LutIdine/THF 2.5 2 tiats for 2 ainutts 9 Capping 10 As sttp 1 '' W h e n Ill) CCljCOOH 25 alnutes densation by tttpt Is u s t d . for pyriaidlnt yield "' and 3$ a i n u t e s was checked for purine after Whin ZnBr; 1i u s e d . nucleotidis. 30 t o 40 minutes i n each step determination has been o f t h ed i m e t h o x y t r i t y l cation concentration. I t 29) possible ' t o achieve a shorter condensation time (less than 5 minutes) sing agent with methyl-5'-0-N-protected which phosphoramidites b y using h a sv e r y 5-(4-nitrophenyl)-tetrazole recently been used i n a s conden- condensations deoxynucleoside-3'-0-N-morpholino- 25 ) . In t h e c a s e o f p u r i n e d e r i v a t i v e s , c o u p l i n g w a s f o u n d t o r e quire either slightly longer time o r higher concentrations than pyrimidine derivatives inorder t oafford more than 95J coupling yield. T h e steps involved i n t h e synthesis o fo l i g o m e r s o f d e sired sequences a r e summarized i nTable ( I I ) . T h e average coupling yield per elongation step w a s found t o b egreater than 9 2 % . The deoxynucleoside N,N-dimethylaminophosphoramidites were used for t h e synthesis o fd(GGGATCCC) resulting in 6 3 % overall yield for the synthesized product. N-morpholino derivatives used f o r t h e synthesis o fd ( G G G A T A T C C C ) gave 5 5 % o ft h e p r o d u c t . N,N-diisopropylamino d e r i v a t i v e s had been used f o r t h e synthesis of d(TCAGTTGCAGTAG) a n d t w o mixed ol1gonuc1eotides 4545 Nucleic Acids Research d(GG^TGpAT^TApAC) b 45*. u b 40%, of a l l three used use, types t h e ease lino with form. we p r e f e r which they could d i m e t h y l a m i no n o t be o b t a i n e d and storage. t h e desired groups support without The ethyl group mixture o r one step To explore above, three andcleavage model Treatment incubation with cone. i i ) treatment with 20% cone. i i i ) with The each the reverse case with phase suggesting B-cyanoethyl thus causing to acertain of t h edimer HPLC 4546 that were t l only and subjected ' ; group, with by followed cone. a q . outlined using a t 50 t h e dimer when cone. venom followed C, f o r 2 hours f o r 16 hours profile only followed a t 50 by C alone. wasidentical cone. removed was no 3 - 3 ' d i m e r with either Et.N/Pyridine) f o r 15 minutes internucleotidie t o snake t h e B-cyano- a t 5 0 ° C ,a n d is selectively treated t h e polymer a q . NH^ alone. performed chromatographic there pro- ^T-0-P a q . NH.. no detectable ( o r o f t h e deprotections f o r 16 hours even from with t h e polymer Et-N/Pyridine that good various m a y be a c h i e v e d : N H ,f o r 1 6 h o u r s cone. group cleaved strategy 10% t B u N H . / P y r i d i n e a q .NH-incubation incubation synthesis, by cone. DHTr-C i) t o ensure o f B-cyanoethyl from experiments by phosphoramidites r e - t-BuNH2/Pyridine deprotections t h e r e l i a b i l i t y a n d t h e N,N- reaction. protection, where f o r t h e removal N-deacylation NHj after i n our synthetic as phosphate i s used and very purity condition andthen anyside deprotections, because oligodeoxynuc1eotides product be removed causing deprotection, stepwise by must f o r B-cyano- monomers i n pure i n 100% and inert o f t h e synthetic tecting a s active deoxynuc1eoside anhydrous Deprotection isolate been s u c - o f oligodeoxynucleotides, c a n be obtained condensation To o f t h e monochioro-B-cyanoethoxy-N-morpho- B-cyanoethyl stringent have t h e N , M - d i i s o p r o p y l a m i no phosphoramidites In contrast, phosphine quired o f phosphoramidites f o r t h e synthesis however, deoxynucl eoside stable yield 38*. cessfully ethyl i n respective T Although routine a n d d(GGATG^ATATAAAC) o a q . N H ,i s by i n used, B-elimination, cleavage. formation In , an a q . N H ,w a s i s o l a t e d phosphodiesterase order aliquot from (SVDP) d i - Nucleic Acids Research E c 1O IS 2O 29 3O o 5 1O t(min) Figure 19 2O 2S 3O 39 t(min) a 2 : HPLC chromatograms b) m i x e d primer b of a ) 13-mer, d(TCAGTTGCAGTAG) , and G 14., d(GGATG^ATATAAAC). 1 T T g e s t i o n a t 37° C for 2 h o u r s , 4 hours and 2 6 h o u r s . The digested s a m p l e s w e r e c h r o m a t o g r a p h e d u n d e r the same c o n d i t i o n s (RP 1 8 ) as for D M T r - C T . Only two peaks were o b s e r v e d , one having t h e same r e t e n t i o n time a s d p T , the other o f D M T r - ( d C ) . This d e m o n strates that DMTr-dimer was completely digested b y SVDP. It is therefore evident, that incubation with cone. aq. NH, alone completely d e p r o t e c t s the o l i g o n u c l e o t i d e under the c o n d i t i o n s used without any side r e a c t i o n s . The oligomer synthesized on the C P Gbeads possessing dimethoxytrityl group a t 5'-end was thus d e p r o t e c t e d and removed from the polymer b y treatment with cone. aq. ammonia a t room t e m p e r a t u r e for 3 0 m i n u t e s and f i n a l l y incubated a t 50° C o v e r night under sealed conditions. After cooling to room temperature, CPG b e a d s w e r e centrifuged and the s u p e r n a t a n t l i q u i d was e v a p o r a ted to d r y n e s s . Removal o f B - c y a n o e t h y l g r o u p s from the intern u c l e o t i d i c p h o s p h a t e t r i e s t e r s , d e - N - a c y l a t i o n and cleavage from the p o l y m e r i c s u p p o r t were p e r f o r m e d in o n e step taking less than 1 6 hours. Purification and analysis o f o l i g o d e o x y n u c l e o t i d e s Purification has been performed by reversed phase (RP 1 8 ) H P L C 30) . T h e c r u d e o l i g o n u c 1 e o t i d e o b t a i n e d a f t e r e v a p o r a t i o n w a s 4547 Nucleic Acids Research X L d(pT). Figure 3 Figure F1gure 3: E l e c t r o p h o r e s i s o f t h e o l i g o m e r s : 8-mer, lane 1 ; 10-mer, lane 3 ; 13-mer, lane 4 ; 1 4 , - m e r , lane 6 ; 14,-mer, lane 7 a n d 8 i n r e l a t i o n t o homo-ol1go-dT l e n g t h standard (lane 2 , 5 a n d 9 r e s p e c t i v e l y ) , on 2 0 % p o l y a c r y l a m i d e g e l a f t e r HPLC s e p a r a t i o n , d e t r i t y l a t i o n a n d phos p h o r y 1at i o n w i t h (.f32_p)ATP a n d T. p o l y n u c l e o t i d e k i n a s e . Lane 7 c o n t a i n s t h e main m a t e r i a l from 1 4 j a n d lane 8 c o n t a i n s t h e r . !-,. s . o f the d e s i r e d peak o n F i g u r e 2 b . Figure 4 : Sequence a n a l y s i s o f 13-mer b y " m o b i l i t y s h i f t " method. + : x y l e n e cyanol marker. 1 . d i m e n s i o n : e l e c t r o p h o r e s i s , 2 . d i m e n s i o n : homochromatography. taken u p i n a p p r o x i m a t e l y f o l l o w e d b y f i l t r a t i o n 1 . 0 m l o f b u f f e r using The sample were i n j e c t e d and e l u t e d w i t h a g r a d i e n t Typical s e p a r a t i o n s The HPLC p r o f i l e s the DMTr o l i g o m e r i c ted n u d e o t i d i c m i l l i p o r e onto shewn t h e reversed a c c o r d i n g a r e shown well RP1 8 - H P L C p u r i f i c a t i o n A f t e r c o l l e c t i o n o f t h e d e s i r e d pure 4548 sample phase a n d t h e sample s i n g l e separated o l i g o m e r , from b i d i s t i l l e d column i n Figure sharp t h e n o n t r i t y l a y i e l d s o f 23%t o 36% 80%a c e t i c water 2 . peaks f o r T h e o v e r a l l t h e e l u t i o n w i t h 7 . 0 ) s i z e ) . a n d Methods. from a r e i n t h e range d e t r i t y l a t e d w a s l y o p h i l i s e d (RP 1 8 ) a n d 14-mer a n d non-nucl eot i di c m a t e r i a l . a f t e r e v a p o r a t e d 2 gave pH ( 1 . 2 u pore t o M a t e r i a l s f o r 13-mer i n Figure m a t e r i a l s ( 0 . 1 M TEAA, f i l t e r 4 0 ^. b u f f e r w a s a c i d . T h e a n d a small Nucleic Acids Research amount phoretic phosphoryla ted with ( r - P)ATP. I t s purity a n d electro31 ) mobility were determined by 2 0 1 polyacrylamide gel electrophoresis (Figure 3 ) . The presence of trace amounts of longer chain oligonucleotidic material might be d u e to side r e actions, whereby some DMTr group is removed (acidic effect o f tetrazole) giving rise to additional condensation reactions during a single condensation step. This problem might arise during repetition o r longer condensation time, which we have r e cently overcome with 3 - 4 minutes condensation time using p-nitrophenyltetrazole. The sequence analysis of all t h e oligonucleotides w a s performed using either "mobility shift" ' (Figure 4) or M a x a m - G i 1 b e r t ' method (Figure 5 ) . "Haxam-Gi1bert" sequence analysis o f "mixed oligomers" The sequence analysis o f mixed synthetic oligodeoxynuc1eotides is a f o r m i d a b l e t a s k , e s p e c i a l l y i f o n e w a n t s t o r e c e i v e i n f o r m a tion on t h e relative amounts o f t h e different oligomers within a m i x e d p r o b e . In special c a s e s o n e w a s a b l e t o s e p a r a t e some oligomers o u t o f t h e mixture by complicated HPLC procedures a n d to s e q u e n c e t h e m i n d i v i d u a l l y b y t h e " m o b i l i t y s h i f t " method * '. W e i n v e s t i g a t e d t h e p o s s i b i l i t y o f u s i n g t h e "Maxam-Gi1bert" method directly for sequencing t h e oligonucleotide mixture. We were particularly interested in examining whether all required sequences were present in t h e mixture a n d if the intensity o f t h e bands at t h e mixed positions could be used to e s t i m a t e t h e r a t i o o f t h e o l i g o n u c l e o t i d e s w i t h i n t h e m i x t u r e . After HPLC purification o f t h e 5'-dimethoxytrityla ted mixed oligomers on RP 18 (e.g. Figure 2 b ) , detritylation a n d phosphorylation, t h e mixture w a s isolated from 2 0 %po1yacrylamide gel electrophoresis (Figure 3) and directly subjected to t h e MaxamGilbert sequencing protocol. It c o u l d b e s e e n f r o m r t h e a u t o r a d i o g r a m f o r t h e a n a l y s i s o f the 14-mer d ( G G A T G T A T A T A A A C ) , that t h e correct sequence had been established (Figure 5A). T h emixed positions 6 (A,T) a n d 12 (G,A,T) reading from t h e 5'-end a r e also clearly visible a n d it is e v i d e n t t h a t t h e i n t e n s i t y o f t h e s e b a n d s i s r e l a t i v e l y w e a k e r than that o f t h e "unmixed" positions d u e to t h e distribution o f the radioactivity over more than o n e oligonuc1eotide . In c o m p a r i n g the intensities of the bands for the mixed posi- 4549 o 01 01 A>G C TiC G A>G C T+C F i g u r e 5A: S e q u e n c i n g of m i x e d p r o b e G A d ( G G A T G "1 A T A T A A A C ) a c c o r d i n g to M a x a m - G 1 1 b e r t . T In t h e l e f t e l e c t r o p h o r e s 1 s b r o m o p h e n o l - b l u e ( B P B ) w a s run f o r 2 0 c m , in t h e r i g h t o n e for 8 cm . ' 'I r G A A»- G B .G,* _ A>G C "i T*C Gm- G A>G C T+C Gi1bert. F i g u r e 5A. S e e a l s o l e g e n d to Figure 5B: Sequencing of mixed probe d ( G G r T G r A T r T A p A C ) according to Maxam- It G z O 3" V) •J3 CD a. c Nucleic Acids Research tion 1 2 , o n e can see that G,A and T n u c l e o t i d e i n t e n s i t i e s a r e q u i t e s i m i l a r . At p o s i t i o n 6 t h e A n u c l e o t i d e is s l i g h t l y s t r o n g e r t h a n T , b u t in g e n e r a l it m a y be s t a t e d t h a t a l l e x p e c t e d o l i g o n u c 1 e o t i d e s a c c o r d i n g to the sequence are c l e a r l y p r e s e n t . In t h e a u t o r a d i o g r a m f o r t h e a n a l y s i s o f t h e 1 4 » - m e r d ( G G p T G - A T - T A - A C ) , which contains four mixed positions resulting in a m i x t u r e o f 1 6 o l i g o n u c 1 e o t i d e s , i t m a y b e o b s e r v e d t h a t bands derived from o l i g o n u c 1 e o t i d e of the same length but whose base c o m p o s i t i o n is d i f f e r e n t have been s e p a r a t e d ( F i g u r e 5 B ) . This phenomenon arises from the fact that oligonuc1eotides of the same c h a i n l e n g t h b u t d i f f e r i n g in b a s e c o m p o s i t i o n s e x h i b i t d i f f e r e n t m o b i l i t e s . This is d u e to a b a s e - s p e c i f i c m o b i l i t y u n d e r t h e s e e l e c t r o p h o r e t i c c o n d i t i o n s in t h e o r d e r C > A > T > G , t h e e f f e c t b e i n g p a r t i c u l a r l y s t r o n g in s e q u e n c e s w i t h h i g h G c o n t e n t . From this c o n s i d e r a t i o n one expects separation into two bands at position 4 , 5 and 6 from 5'-end (mixture of 2 o l i g o n u c i e o t i d e s ) a n d t h r e e b a n d s a t p o s i t i o n 7 , 8 a n d 9. T h e f o u r hexanucleotides (pGGATGAp, pGGGTGAp, pGGGTGGp) representing p o s i t i o n 7 d i f f e r in t h e i r G / A c o n t e n t , g i v i n g r i s e t o t h e t h r e e ratios 3G/2A, 4G/1A, and 5G. As two of the four h e x a n u c 1 e o t i d e s c o n t a i n t h e s a m e G / A r a t i o o n l y t h r e e b a n d s c a n be e x p e c t e d a s v i s u a l i s e d . T h e s a m e d i f f e r e n c e in G / A c o n t e n t r e s u l t s 1n t h r e e b a n d s f o r p o s i t i o n s 8 a n d 9. A p p a r e n t l y t h e b a n d s c o r r e s p o n d i n g to l o n g e r o l i g o n u c l e o t i d e s a r e n o t so w e l l s e p a r a t e d d u e to t h e g r e a t e r n u m b e r o f d i f f e r e n t o l i g o n u c 1 e o t i d e s p r e s e n t in t h e m i x t u r e and the shorter d i s t a n c e which they have travelled on t h e g e l . S i m i l a r t o 1 4 , - m e r , h o w e v e r , it m a y be p o i n t e d o u t t h a t again all n u c l e o t i d e s r e p r e s e n t i n g the desired sequences a r e visible. CONCLUSIONS As d e m o n s t r a t e d , the B-cyanoethyl group has many a d v a n t a g e s w h e n u s e d in t h e p h o s p h i t e t r i e s t e r m e t h o d w i t h C P G a s p o l y m e r support : 1 ) D i c h l o r o - B - c y a n o e t h o x y p h o s p h i n e ' c a n e a s i l y b e p r e p a r e d in p u r e f o r m a n d is s t a b l e f o r l o n g e r t i m e s . T h e r e p e a t e d d i s t i l l a t i o n very often necessary for the complete removal of phosphorus trichloride during preparation of dichloro-methoxyphos- 4551 Nucleic Acids Research phine is u n n e c e s s a r y in this c a s e . 2) The B-cyanoethylmonochlorophosphoramidites of N, N-dimethylamine, N,N-diisopropylam1ne and N-morpholine can easily be o b tained. 3) The 5'-0-,N-protected deoxynucleoside-3'-O-B-cyanoethyl-N,Ndialkylamino-/N-morpholinophosphoramidites c a n be prepared as pure white precipitates stable for many months. Their purity (and thus their reactivity) c a n be routinely checked simply by thin layer chromatography. Especially useful a r e the N,N-diisopropylaminophosphoramidites. 4) T h e r e a c t i v i t y o f t h e d e o x y n u c l e o s i d e p h o s p h o r a m i d i t e s is comparable to that of t h e corresponding methoxy derivatives. With 4 ' -nitrophenyltetrazole , h o w e v e r , c o u p l i n g times a r e in t h e range o f 2 to 5 minutes. 5) The main advantage of these new active deoxynucleoside derivatives is their influence on t h e simplification a n d time-reduction o f t h e final work-up procedure o f synthesized oligodeoxynucleot1des. can easily be removed 24 2 6 2 7^ by B - e l i m i n a t i o n using mild a l k a l i n e c o n d i t i o n s ' . Therefore, t h e deprotection of t h e oligodeoxynucleotide chain can be performed in o n e step at t h e heterocyclic bases, the phosphotriester moiety and t h e linkage to t h e polymer support by treatment with e.g. concentrated aqueous ammonia. After evaporation, the r e s i d u e c a n d i r e c t l y be taken u p in t h e starting buffer f o r reversed phase (RP 18 ) HPLC, filtrated a n d purified by HPLC. After detritylat1on with 8 0 S acetic acid and subsequent lyophili z a t i o n t h e o l i g o n u c l e o t i d e is ready f o r p h o s p h o r y l a t 1 o n with T 4 polynucleot1de kinase and ATP. T h e total time required f o r this w o r k - u p s e q u e n c e is less t h a n 2 4 h o u r s . T h e loss o f valuable oligonucleotidic material is significantly reduced as there a r e no t r a n s f e r s o f m a t e r i a l a n d n o e x t r a c t i o n o r thin layer o r p a p e r chromatographic steps necessary prior to HPLC purification. During t h e whole deprotection a n d purification step only volatile reagents a r e used. 6) Mixed sequences c a n also efficiently be prepared by these n e w reactive intermediates. 7) T h e Maxam-G11bert sequencing method c a n successfully be used 4552 The B-cyanoethyl group Nucleic Acids Research to s i m p l y characterize synthetic mixed ol 1g o d e o x y n u c l e o t i d e frag- ments . We tide phite believe that the introduction phosphoramidites triester of B-cyanoethyl is a s i g n i f i c a n t improvement deoxynucleoof the phos- approach. MATERIALS AND METHODS The following chemicals were purchased from commercial sources: deoxynucleos1des from Pharma Haldhof ( M a n n h e i m ) , CPG from Serva ( H e i d e l b e r g ) , Z n B r 2 from Riedel de Haen ( S e e l z e ) , 4-N, N-dimethylamino pyridine, aminopropyltriethoxysi1 a n e, tetrazole, N,N-diisopropylamine, N , N , N-diisopropylethyl amine from EGA (Steinheim), N-trimethylsilyl-N,N-dimethylamine from Fluka (Neu-Ulm). Tetrazole w a s purified by s u b l i m a t i o n , 2 . 6 - l u t i d i n e w a s purified a c cording to the literature . Ether, THF were distilled from benzophenone/sodium under nitrogen. Acetronitri1e was first d i s tilled over P , 0 c and then C a H , under inert atmosphere. Dimeth3 6 ); o x y t r i t y l c h l o r i d e , N - t r i m e t h y l s i 1 yl m o r p h o l 1 ne and dimethoxytritylated amino protected deoxynucleosides were prepared following standard published methods. The B-cyanoethylphosphord i c h l o r i d i t e w a s p r e p a r e d by m o d i f y i n g t h e p u b l i s h e d m e t h o d . Thin l a y e r s i l i c a gel p l a t e s w e r e d e v e l o p e d in e t h y l a c e t a t e . H-NMR spectra were recorded either with T-60 (Varian) or 270 31 MHz (Bruker). P-NMR were measured with 80 mHz (Bruker). Visible and UV-spectroscopic measurements were performed with Beckman model 35. HPLC-purification was carried out with Altex RP U l t r a s p h e r e O D S c o l u m n ( 4 . 6 x 2 5 0 ) o n a B e c k m a n m o d e l 3 4 4 o r L.D.C. dialog dual pump Instrument. B-Cyanoethylphosphorodichloridite: A three-necked flask (1.0 1) fitted with addition funnel, mechanical stirrer and argon delivery system was charged with phosphorus trichloride (1.0 m o l ) , dry e t h e r ( 2 0 0 m l ) a n d d r y p y r i d i n e ( 1 . 0 m o l ) (2 e q u i v a l e n t s o f p y r i d i n e h a d been u s e d in t h e l i t e r a t u r e ' ) . T h e m i x t u r e w a s cooled to - 7 8 C with a d r y i c e / a c e t o n e bath under argon a n d f r e s h l y d i s t i l l e d B - c y a n o e t h a n o l ( 1 . 0 m o l ) d i s s o l v e d in e t h e r (100 m l ) w a s added d r o p w i s e over 1 to 1 1/2 h o u r s . After addition of the alcohol the m i x t u r e w a s stirred at room t e m p e r a t u r e for 3 hours and kept at 5° C overnight. Pyridinium hydrochi oride was 4553 Nucleic Acids Research removed by filtration, the filtrate w a s concentrated to a small volume and t h e residue distilled under reduced pressure to give B - c y a n o e t h y 1 p h o s p h o r o d i c h i o r i d i t e ( 9 5 g ) i n 55% y i e l d . General method for the preparation of B-cyanoethyl monochlorophosphorami di tes : A two-necked flask fitted with a d d i t i o n funnel, magnetic stirrer and argon delivery systems w a s charged with Bcyanoethyldichiorophosphite (17.2 g, 100.0 mmol) and d r y ether (60 m l ) . To this a solution o f N-trimethylsi1yl derivatives of N , N - d i m e t h y l a m i n e o r N - m o r p h o l i n e (1 e q u . , 1 0 0 m m o l ) o r N - N - d i isopropyl a m i n e (2 equ., 2 0 0 m m o l ) in ether ( 3 0 m l ) w a s a d d e d a t -20° C over 1.5 hours with constant stirring. After this a d dition t h e mixture w a s stirred for an additional 20 hours at room temperature under argon. In t h e c a s e o f t h e N , N - d i i s o p r o p y l a m i n e reaction, its hydrochi oride was filtered prior to concentration of solvent under reduced pressure at room t e m p e r a t u r e . The concentrates from N,N-dimethylamine and N,N-d1isopropy1 amine reactions were distilled in vacuo to give B-cyanoethyl monochloro N,N-dimethylaminophosphoramidite (15.3 g) at 90-92° C/0.6 mm and B-cyanoethylmonochloro-N.N-diisopropylamino phosphoramidite (16.5 g ) a t 103-104° C/0.08 m m , respectively. N-morpholino derivative w a s used without distillation as attempted distillation decomposed the product. Synthesis of B-cyanoethyl-5'-0,N-protected deoxynucleoside-3 ' O-N,N-dialkylamino/-N-morpholinophosphoramidites : T h e 5'-0,Nprotected deoxynuc 1eoside (3.0mmol) was dried by coevapora11 on with pyridine, toluene and T H F . The dried residue w a s dissolved in d r y T H F ( 1 5 m l ) i n p r e s e n c e o f N , N , N - d 1 i s o p r o p y l e t h y l a m i n e (12.0 mmol) a n d e . g . B-cyanoethylmonochioro N,N-dia1kylaminophosphoramidite ( 6 . 0mmol) w a s added dropwise through a syringe with constant stirring under argon at room temperature over 2 minutes. After 35 minutes of stirring, the hydrochi oride, which precipitated out during reaction was filtered and the filtrate was concentrated to remove THF and excess amine. The residue was d i s s o l v e d 1n a r g o n s a t u r a t e d e t h y l a c e t a t e ( 1 5 0 m l ) , w a s h e d with ice-cold 1 0 2 N a . C 0 3 solution ( 5 0 ml twice) a n d dried over Na.SO.. C o n c e n t r a t i o n o f t h e dried o r g a n i c e x t r a c t r e s u l t e d in a foam, which w a s dissoved in toluene (15-20 m l ) ( f o r p y r i m i d i n e s ) or e t h y l a c e t a t e ( 2 0 m l ) ( f o r p u r i n e s ) , then precipitated into 4554 Nucleic Acids Research hexane ( 2 5 0 m l ) at -78 C. T h e precipitates were removed by f i l t r a t i o n a n d d r i e d i n a d e s i c c a t o r o v e r C a C1 - u n d e r r e d u c e d pressure overnight. General coupling procedure on the polymer (CPG): Usually 100 mg o f t h e controlled pore glass beads ( C P G )containing 5 ' - 0 dimethoxytritylated aminoprotected deoxynucleoside was detrit y l a t e d w i t h e i t h e r 3 % C C 1 - C 0 0 H i n 1% m e t h a n o l - n i t r o m e t h a n e o r s a t u r a t e d Z n B r - i n 1% w a t e r - n i t r o m e t h a n e a n d a f t e r w a s h i n g a c c o r d i n g to T a b l e ( I I ) w a s dried in v a c u o f o r 5 m i n u t e s . T h e solid active nucleoside ( 1 5 0 m g , 25 equ.) and tetrazole (50-60 mg) were placed into t h e column type reactor containing t h e d e tritylated polymer. T h e reactor w a s capped with a serum c a p , flushed with argon and acetonitrile (1.5 m l ) w a s added with a syringe. The suspension of CPG beads w a s shaken gently for 25-35 minutes. The excess of reagents w a s removed by flushing with argon and washing with suitable solvents (Table II). T h e condensation yield w a s determined at this stage by taking o u t a small sample of C P G beads a n d by measuring t h e c o n c e n t r a t i o n of DMT-cation on the polymer. When t h e desired high coupling yield was obtained, oxidation w a s performed with 2 m l , 0.1 M I- s o l u t i o n in a m i x t u r e o f T H F , p y r i d i n e , w a t e r ( 8 0 : 4 0 : 2 , v / v )f o r 2 minutes. The oxidising reagent was removed with argon pressure and washing with methanol followed by d i c h i o r o m e t h a n e . Then t h e p o l y m e r w a s s u s p e n d e d in a m i x t u r e o f a c e t i c a n h y d r i d e ( 0 . 5 g ) , 2 . 6 - l u t 1 d i n e ( 0 . 5 5g ) a n d 4 - N , N - d i m e t h y l a m i n o p y r i d i n e ( 0 . 3 g ) in 5 m l T H F f o r 5 m i n u t e s t o b l o c k t h e u n r e a c t e d 5' - O H g r o u p o f nucleoside or olIgonucleotide linked to CPG. The repetition of the above cycle with appropriate active nucleotide gave the d e sired sequence of oligonucleotide. Removal of t h e oligomer from t h e CPG-beads and deprotection of all p r o t e c t i n g g r o u p s b u t D M T a t 5 ' - e n d : After the final elongation step of the desired sequence, the CPG beads, which were thoroughly washed and dried, were transfered to a flask (25 m l ) and treated with c o n c e n t r a t e d aqueous N H - (5 m l ) f o r 3 0 m i n u t e s at r o o m t e m p e r a t u r e a n d f i n a l l y a t 5 0 C o v e r n i g h t . After cooling, the supernatant liquid w a s removed and the polymer was washed with bidistilled water ( 3 x 1 m l ) . The combined supernatant a n d washings were c o n c e n t r a t e d to a small volume a n d t h e 4555 Nucleic Acids Research insoluble material resulting from t h eB-elimination a n d polymerization of CH?=CH-CN w a s removed by filtering through millipore filter. T h e filtrate w a s evaporated to near dryness a n d r e d i s s o l v e d in a small a m o u n t o f 0 . 1 M TEAA b u f f e r , pH 7 . 0 . Purification of t h e oliqomer by RP-HPLC: T h e chromatographic p u r i f i c a t i o n o f t h e ol 1 g o n u c l e o t i d e w a s c a r r i e d o u t o n a B e c k man dual pump model 3 4 4 HPLC a p p a r a t u s in c o n j u n c t i o n with an Altex R P U l t r a s p h e r e O D S c o l u m n a n d a n UV d e t e c t o r (filter 254 n m ) . T h emobile phases used were 0.1 M TEAA buffer pH7.0 in p u m p A a n d C H - C N i n p u m p B . A s t e p l i n e a r g r a d i e n t f r o m 1 0 - 2 5 $ pump B in 5 m i n u t e s f o l l o w e d b y 2 5 - 2 9 1 pump B in 3 0 minutes w a s performed. I n j e c t i o n v o l u m e s w e r e t y p i c a l l y 2 0 yl of solution. Polyacrylamide gel electrophoresis a n d sequencing were performed according to published procedures " . Acknowledgement This work h a s been financially supported by t h e Deutsche F o r s c h u n g s g e m e i n s c h a f t a n d t h e B u n d e s m i n i s t e r flir F o r s c h u n g u n d Technologle. REFERENCES 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 4556 No. XVII in this s e r i e s : S1nha, N . D . , B i e r n a t , J . , and K S s t e r , H. ( 1 9 8 3 ) , T e t r a h e d r o n L e t t . 2 4 , 5 8 4 3 . N o . XVI 1n t h i s s e r i e s : S 1 n h a , N . D . , B T e r n a t , J . , a n d K d s t e r , H. , N u c l e o s i d e s & N u c l e o t i d e s , s u b m i t t e d f o r p u b lication. L e t s i n g e r , R . L . , Finnan, J . L . , Heavner, G.A., Lunsford, W.B. ( 1 9 7 5 ) , J . Amer. Chem. S o c . 9 7 , 3 2 7 8 . Letsinger, R.L. and LunsforcTT W.B. ( 1 9 7 6 ) , J . Amer. Chem. Soc. 98, 3655. O g i l v T e " , K . K . , T h e r i a u l t , N . Y . , S e i f e r t , J . - M . , Pon , R . T . , and N e n e z , M . J . ( 1 9 8 0 ) , C a n . J . Chem. 5 8 , 2 6 8 6 . M a t t e u c d , M.D. and Caruthers, M.H. ( l W O ) , Tetrahedron Lett. 21, 719. TTnaka, T. and L e t s i n g e r , R.L. ( 1 9 8 2 ) , Nucleic A d d s Res. 1 0 , 3249. A l v a r a d o - U r b i n a , G. , S a t h e , G . M . , L i u , W . C . , G i l l e n , M . F . , Duck, P . O . , Bender, R., and O g i l v i e , K.K. (1981), Science 214, 270. L e t s i n g e r , R . L . , G r o o d y , E . P . , a n d T a n a k a , T. ( 1 9 8 2 ) , J . Amer. Chem. Soc. 1 0 4 , 6 8 0 5 . Chow, F . , Kempe, T 7 T and P a l m , G. ( 1 9 8 1 ) , N u c l e i c A d d s R e s . _9, 2807. E l m b i a d , A . , J o s e p h s o n , S. , a n d P a l m , G. ( 1 9 8 2 ) , Nucleic Acids Res. 10, 3 2 9 1 . H a t t e u c d , M7D. and C a r u t h e r s , M.H. ( 1 9 8 1 ) , J . Amer. Chem. Soc. 1£2, 3185. Nucleic Acids Research 1J) 14) 15) 16) 17) 18) 19) 20) 21) Fourrey, J . L . and S h i r e , D . J . (1981), Tetrahedron L e t t . 22, 729. ~ Beaucage, S.L. and Caruthers, M.H. (1981), Tetrahedron Lett. 22, 1859. JkfBride, L . J . and Caruthers, M.H. (1983), Tetrahedron Lett. 24, 245. M a m s , S . P . , Kavka, K . S . , Wykes, E . J . , Holder, S . B . , and G a l l u p i , G.R. ( 1 9 8 3 ) , J . Amer. Chem. S o c . 1 0 5 , 6 6 1 . Fourrey, J . L . and Varenne, J . (1983), TetrThTdron Lett. 24, 1963. ~~ D a u b , G . H . , van T a m e l e n , E . E . ( 1 9 7 7 ) , J . Amer. Chem. S o c . 9 9 , 3526. C a r u t h e r s , M . H . , i n : C h e m i c a l a n d E n z y m a t i c S y n t h e s i s o f Gene Fragments, Ed. by Gassen, H.G. and Lang, A . , Verlag Chemie, Weinheim, 1982, p 7 1 . Seliger, H., Klein, S . , Narang, Ch.K., Seemann-Preising, B., Eiband, J . , and Hanel, N . , i b i d . , page 8 1 . Dbrper, Th. and Hinnacker, E.-L. (1983), Nucleic Acids Res. 11, 22) 23) 24) 25) 26) 27) 28) 29) 30) 31) 32) 33) 34) 35) 36) 37) 38) 39) 40) 2575. Letsinger, R . L . , O g i l v i e , K . K . , and M i l l e r , P.S. (1969), J. Amer. Chem. S o c . £1_,3 3 6 0 , r e f . t h e r e i n related t o t h i s . C a t l i n , G. a n d C r a m e r , F. ( 1 9 7 3 ) , J . O r g . Chem. 7 6 7 . Tener, G.M. ( 1 9 6 1 ) , J . Amer. Chem. S o c . 8 3 , 1 5 9 . Froehler, B.C. and Matteucci , M.D. (198377 Tetrahedron Lett. 24, 3 1 7 1 . I T S o o d , A . K . a n d N a r a n g , S . A . ( 1 9 7 7 ) , N u c l e i c A c i d s R e s . 4_, 2757. b)Belagaje, R. a n d B r u s h , K. ( 1 9 8 2 ) , N u c l e i c A c i d s R e s . 1 0 , 6295. H s i u n g , H . , I n o u y e , S . , W e s t , J . , S t u r m , B . , a n d I n o u y e , M. (1983), Nucleic Acids Res. H , 3227. Koster, H . , Stumpe, A . , and H o l t e r , A. ( 1 9 8 3 ) , Tetrahedron Lett. 2 4 , 7 4 7 . J o n a t . T . and Koster, H. , u n p u b l i s h e d r e s u l t s . F r i t z , H . - J . , Belagaje, R. , B r o w n , E . L . , F r i t z , R . H . , Jones, R. , L e e , R . G . , a n d K h o r a n a , H . G . ( 1 9 7 8 ) , B i o c h e m i s t r y 1 7 , 1257. F r a n k , R. a n d K o s t e r , H . ( 1 9 7 9 ) , N u c l e i c A c i d s R e s . 6_, 2 0 6 9 . Blbcker, H. a n d K o s t e r , H. ( 1 9 7 8 ) , L i e b i g s A n n . Chem. 9 8 2 . M a x a m , A . M . a n d G i l b e r t , W. ( 1 9 8 0 ) , M e t h o d s 1 n E n z y m o l o g y , 65, 4 9 9 . TiTe, Y . , I k u t a , S . , S a b o , M. , H u a n g , T . , a n d I t a k u r a , K. ( 1 9 8 3 ) , N u c l e i c A c i d s R e s . 1 1 ,4 7 7 . Biddiscombe, D . B . , Cou1 s o n , ~ T . A . , H a n l e y , R . H . ,and Herington, E.F.G. ( 1 9 5 7 ) , J . Chem. S o c .1 9 5 4 . P 1 k e , R . A . a n d S c h a n k , R . L . ( 1 9 6 2 ) , J . O r g . C h e m . 2]_, 2 1 9 0 . S c h a l l e r , H . , W e i m a n n , G. , L e r c h , B . , a n d K h o r a n a , H . G . ( 1 9 6 3 ) , J . Amer. Chem. S c o . 8 5 , 3 8 2 1 . Koster, H . , K u H k o w s k i , K . , T T e s e , T h . , H e i k e n s , W. , a n d K o h H , V . ( 1 9 8 1 ) , T e t r a h e d r o n !]_, 3 6 3 1 . G a i t , M . J . , P o p o v , S . G . , S i n g h , M. , a n d T i t m a s , R . C . ( 1 9 8 0 ) , Nucleic A d d s R e s . Symp. S e r . N o . 7 , 2 4 3 . Determinations o f t h e overall y i e l d s a r e based on t h e material isolated f r o m HPLC a s 5'-DMTr-oligodeoxynucleotides with respect t o t h e total material obtained a f t e r t h e d e p r o t e c t i o n from t h e polymer. 4557
© Copyright 2025 Paperzz