1.5.4.7 - Extras Springer

Ref. p. 59]
1.5.4 3d elements and C, Si, Ge, Sn or Pb
2.5
55
1.0
0.8
1.5
0.6
2
–1
cg
Tg
1.0
0.4
s
0.5
0.2
–1
5
TN
–3
1
Inv. susceptibility cg [10 g cm ]
2.0
3 –1
Magnetization s [G cm g ]
Co 3.75 Mn3.25 Ge6.2
Q
0
0
200
400
600
Temperature T [K]
800
Fig. 109. Co3.75Mn3.25Ge6.2. Temperature dependence
of the mass magnetization σ in a magnetic field
H = 9.0 kOe, as well as the inverse magnetic mass
0
1000
susceptibility χ g−1 . Measurements were carried out on
heating, after cooling from 80 K to 4.2 K (1) in a
field of 9.5 kOe and (2) in zero field [92H1].
200
Co7-x Mnx Ge6
Temperature TN , Q [K]
160
Q
120
TN
80
40
0
2.0
2.4
2.8
3.2
Mn content x
3.6
4.0
Fig. 110. Co7–xMnxGe6. Composition dependence of
Néel temperature TN and the paramagnetic Curie temperature Θ [92H1].
1.5.4.7 MM'X ternary compounds
The investigations on the ternary MM'X compounds or on the related MM'X1–xX'x compounds, where
M and M' are different 3d elements and X and X' 4B element, include the effect of pressure on the
magnetism of the pure Mn compounds.
Landolt-Börnstein
New Series III/32C
56
1.5.4 3d elements and C, Si, Ge, Sn or Pb
[Ref. p. 59
Survey
Composition x
Properties
Figure
MnCoSixGe1–x
0.1
0...0.4, 0.7...1
TC(p)
(1/TC)dTC/dp
111
112
MnNiSixGe1–x
0.05
0.2
0.2
p-T magnetic phase diagram
M(H;p)
p-T magnetic phase diagram
113
114
115
p-T magnetic phase diagram
116
χ −1
m (T )
pm,eff(x), pm(x)
117
118
ρ(H)
a, TC, Θ, pm
119
Ti0.05Mn0.95NiGe
TiCoxNi1–xSn
0.1...1
0...1
TiCoSn
Table
11
Table 11. Supplement to Table 13 in LB III/19C, subsect. 1.5.4.7.
Magnetic and related properties of MM'X compound TiCoSn [94P1].
TiCoSn
Crystal structure
a [Å]
cubic, C1b (MgAgAs)
5.997
Magnetism
TC [K]
Θ [K]
pm [µB/f.u.]
pm,eff [µB/f.u.]
ferro
134
176
0.357 at 0 K
1.25
400
MnCoSi0.1 Ge0.9
TR
Temperature T [K]
390
P
380
370
F
360
350
0
0.25
0.50
0.75 1.00 1.25
Pressure p [GPa]
1.50
1.75
Fig. 111. MnCoSi0.1Ge0.9. Magnetic phase diagram in
a pressure - temperature plane (P: paramagnet, F:
ferromagnet). The Curie point is defined arbitrarily
by the inflection point of the ac initial susceptibility
curve against temperature [89N1]. For p >1.3 GPa, a
magneto-structural transition (with hysteresis) to the
hexagonal paramagnet is observed (open circles:
increasing temperature, solid circles: decreasing
temperature). TR: triple point. 1 GPa = 10 kbar.
Landolt-Börnstein
New Series III/32C
Ref. p. 59]
1.5.4 3d elements and C, Si, Ge, Sn or Pb
520
0.12
MnCoSi x Ge1-x
500
0.08
480
0.06
460
0.04
440
0.02
0
0
0.2
0.4
0.6
Si content x
0.8
1.0
TiNiSi-type
P
400
MnCoSi
450
TN
360
TiNiSi-type
H1
210
H2
P
0
370
1.6
2.0
1.2
1.6
Fig. 115. MnNiSi0.2Ge0.8. Partial magnetic phase
diagram in a pressure - temperature plane. The
magnetic transition temperature was derived from ac
initial susceptibility vs. temperature curves as in
Fig. 111, except for the data shown by triangles
which are derived from isothermal measurements
[88D1].
P:
paramagnet;
F:
(noncollinear)
ferromagnet; H: helical. 1 GPa = 10 kbar.
Fig. 114. MnNiSi0.2Ge0.8. Dependence of the mass
magnetization σ on a magnetic field H: (1) under atmospheric pressure at 295 K, and (2) under a pressure
of 1.5 GPa at 399 K [88D1]. 1 GPa = 10 kbar.
75
MnNiSi0.2 Ge0.8
60
2
3 –1
0.8
Pressure p [GPa]
Magnetization σ [G cm g ]
0.4
0.8
1.2
Pressure p [GPa]
Fig. 113. MnNiSi0.05Ge0.95. Magnetic phase diagram
in a pressure - temperature plane [88D1]. The
magnetic transition temperature was determined from
ac initial susceptibility vs. temperature curve as in
Fig. 111. Superscripts h and c stand for heating and
cooling, respectively. P: paramagnet; H1: simple
spiral; H2: cycloidal spiral; TR: triple point. 1 GPa =
10 kbar.
H
45
1
30
15
0
Landolt-Börnstein
New Series III/32C
0.4
F
410
0
h
Ttr
c
190
390
h
Ttr
MnNiSi0.2 Ge0.8
430
TR
380
Fig. 112. MnCoSixGe1–x. Composition dependence of
the rate of change of the Curie temperature TC by
pressure p, (1/TC)dTC/dp [89N1]. 1 GPa = 10 kbar.
Temperature T [K]
Ni2In-type
P
420
MnCoGe
350
MnNiSi 0.05 Ge0.95
Temperature T [K]
–1
(dTC /dp )/TC [GPa ]
0.10
57
5
10
15
Magnetic field H [kOe]
20
25
58
1.5.4 3d elements and C, Si, Ge, Sn or Pb
490
[Ref. p. 59
Ti0.05 Mn0.95Ni Ge
470
Ni2In-type
P
450
Temperature T [K]
430
410
TiNiSi-type
P
TR
TN
h
350
h
TiNiSi-type
H
0
–3
300
Inv.susceptibility χm [mol cm ]
400
–1
500
0.8
Pressure p [GPa]
1.2
1.6
2000
TiCox Ni1-x Sn
x = 0.5
0.6
0.75
0.8
0.9
200
1.0
100
0
a
0.4
c
Ttr
50
100
150
200
Temperature T [K]
1600
1200
Inv.susceptibility χm [mol cm ]
330
310
Ttr
Fig. 116. Ti0.05Mn0.95NiGe. Magnetic phase diagram
in a pressure - temperature plane. The magnetic transition temperature was determined from ac initial
susceptibility vs. temperature curve, as its maximum
at lower pressure or as its inflection points at higher
pressure. The latter with a hysteresis of about 10 K is
a magneto-structural transition of first order [88D1].
The superscripts h and c stand for heating and
cooling, respectively. TR means triple point. P:
paramagnet; H: helical (simple spiral). 1 GPa =
10 kbar.
–3
370
–1
390
250
300
Fig. 117. TiCoxNi1–xSn. Temperature dependence of
the reciprocal molar magnetic susceptibility χ −1
m.
Some irregular spacing of the curves in (a) was
x = 0.1
0.3
800
400
0
b
0.2
20
40
60
Temperature T [K]
80
100
attributed to deviation of the composition from the
nominal one. The curves in (b) are fits to the
expression χ = χ0 + C/(T – Θ) [94P1].
Landolt-Börnstein
New Series III/32C
1.5.4 3d elements and C, Si, Ge, Sn or Pb
peff
ps
0.4
0
0.2
0
0.2
TiNiSn
0.4
0.6
Co content x
0.1
0.8
0
1.0
TiCoSn
Fig. 118. TiCoxNi1–xSn. Composition dependence of
the effective magnetic moment and of the spontaneous magnetic moment per formula unit [94P1].
Ti CoSn
55
Resistivity ρ [µΩcm]
0.3
–1
1.2
0.8
65
0.4
Ti Cox Ni1-x Sn
Magnetic moment ps [µB(f.u. ) ]
–1
Magnetic moment peff [µB(f.u. ) ]
1.6
59
45
35
25
0
10
20
30
40
Magnetic field H [kOe]
50
60
Fig. 119. TiCoSn. Dependence of the electrical resistivity ρ at 1.6 K on an applied magnetic field H
parallel (continuous curve) or perpendicular (open
circles) to the electric current [94P1].
1.5.4.8 References for 1.5.4
General references
58p
90m
91v
92b
Pearson, W.B.: A Handbook of Lattice Spacings and Structures of Metals and Alloys,
London: Pergamon Press (1958).
Massalski, T.B. (editor-in-chief): Binary Alloy Phase Diagrams, 2nd ed. (in 3 volumes),
Ohio: ASM International (1990).
Villars, P., Calvert, L.D.: Pearson's Handbook of Crystallographic Data for Intermetallic
Phases, 2nd ed. (in 4 volumes), Ohio: ASM International (1991).
Brandes, E.A., Brook, G.B. (editors): Smithells Metals Reference Book, 7th ed., Oxford:
Butterworth-Heinemann (1992).
Special references
63W1
67J1
67R1
71D1
71K1
72F1
72F2
73M1
78F1
78F2
78Y1
79M1
Watanabe, H., Yamamoto, H., Ito, K.: J. Phys. Soc. Jpn. 18 (1963) 995.
Jaccarino, V., Wertheim, G.K., Wernick, J.H., Walker, L.R., Arajs, S.: Phys. Rev. 160
(1967) 476.
Richardson, M.: Acta Chem. Scand. 21 (1967) 2305, through [78F1].
Dusausoy, Y., Protas, J., Wandji, R., Roques, B.: Acta Crystallogr., Sect. B 27 (1971)
1209 (in French).
Kádár, G., Krén, E.: Int. J. Magn. 1 (1971) 143.
Fruchart, E., Lorthioir, G., Fruchart, R.: C.R. Seances Acad. Sci. (Paris) Ser. C 275 (1972)
1415 (in French).
Fukamichi, K., Saito, H.: J. Phys. Soc. Jpn. 33 (1972) 1485.
Moriya, T., Kawabata, A.: J. Phys. Soc. Jpn. 34 (1973) 639; 35 (1973) 669.
Forsyth, J.B., Wilkinson, C., Gardner, P.: J. Phys. F (UK) 8 (1978) 2195.
Fruchart, D., Bertaut, E.F.: J. Phys. Soc. Jpn. 44 (1978) 781.
Yasuoka, H., Jaccarino,V., Sherwood, R. C., Wernick, J. H.: J. Phys. Soc. Jpn. 44 (1978)
842.
Moriya, T.: J. Magn. Magn. Mater. 14 (1979) 1.
Landolt-Börnstein
New Series III/32C