Ref. p. 59] 1.5.4 3d elements and C, Si, Ge, Sn or Pb 2.5 55 1.0 0.8 1.5 0.6 2 –1 cg Tg 1.0 0.4 s 0.5 0.2 –1 5 TN –3 1 Inv. susceptibility cg [10 g cm ] 2.0 3 –1 Magnetization s [G cm g ] Co 3.75 Mn3.25 Ge6.2 Q 0 0 200 400 600 Temperature T [K] 800 Fig. 109. Co3.75Mn3.25Ge6.2. Temperature dependence of the mass magnetization σ in a magnetic field H = 9.0 kOe, as well as the inverse magnetic mass 0 1000 susceptibility χ g−1 . Measurements were carried out on heating, after cooling from 80 K to 4.2 K (1) in a field of 9.5 kOe and (2) in zero field [92H1]. 200 Co7-x Mnx Ge6 Temperature TN , Q [K] 160 Q 120 TN 80 40 0 2.0 2.4 2.8 3.2 Mn content x 3.6 4.0 Fig. 110. Co7–xMnxGe6. Composition dependence of Néel temperature TN and the paramagnetic Curie temperature Θ [92H1]. 1.5.4.7 MM'X ternary compounds The investigations on the ternary MM'X compounds or on the related MM'X1–xX'x compounds, where M and M' are different 3d elements and X and X' 4B element, include the effect of pressure on the magnetism of the pure Mn compounds. Landolt-Börnstein New Series III/32C 56 1.5.4 3d elements and C, Si, Ge, Sn or Pb [Ref. p. 59 Survey Composition x Properties Figure MnCoSixGe1–x 0.1 0...0.4, 0.7...1 TC(p) (1/TC)dTC/dp 111 112 MnNiSixGe1–x 0.05 0.2 0.2 p-T magnetic phase diagram M(H;p) p-T magnetic phase diagram 113 114 115 p-T magnetic phase diagram 116 χ −1 m (T ) pm,eff(x), pm(x) 117 118 ρ(H) a, TC, Θ, pm 119 Ti0.05Mn0.95NiGe TiCoxNi1–xSn 0.1...1 0...1 TiCoSn Table 11 Table 11. Supplement to Table 13 in LB III/19C, subsect. 1.5.4.7. Magnetic and related properties of MM'X compound TiCoSn [94P1]. TiCoSn Crystal structure a [Å] cubic, C1b (MgAgAs) 5.997 Magnetism TC [K] Θ [K] pm [µB/f.u.] pm,eff [µB/f.u.] ferro 134 176 0.357 at 0 K 1.25 400 MnCoSi0.1 Ge0.9 TR Temperature T [K] 390 P 380 370 F 360 350 0 0.25 0.50 0.75 1.00 1.25 Pressure p [GPa] 1.50 1.75 Fig. 111. MnCoSi0.1Ge0.9. Magnetic phase diagram in a pressure - temperature plane (P: paramagnet, F: ferromagnet). The Curie point is defined arbitrarily by the inflection point of the ac initial susceptibility curve against temperature [89N1]. For p >1.3 GPa, a magneto-structural transition (with hysteresis) to the hexagonal paramagnet is observed (open circles: increasing temperature, solid circles: decreasing temperature). TR: triple point. 1 GPa = 10 kbar. Landolt-Börnstein New Series III/32C Ref. p. 59] 1.5.4 3d elements and C, Si, Ge, Sn or Pb 520 0.12 MnCoSi x Ge1-x 500 0.08 480 0.06 460 0.04 440 0.02 0 0 0.2 0.4 0.6 Si content x 0.8 1.0 TiNiSi-type P 400 MnCoSi 450 TN 360 TiNiSi-type H1 210 H2 P 0 370 1.6 2.0 1.2 1.6 Fig. 115. MnNiSi0.2Ge0.8. Partial magnetic phase diagram in a pressure - temperature plane. The magnetic transition temperature was derived from ac initial susceptibility vs. temperature curves as in Fig. 111, except for the data shown by triangles which are derived from isothermal measurements [88D1]. P: paramagnet; F: (noncollinear) ferromagnet; H: helical. 1 GPa = 10 kbar. Fig. 114. MnNiSi0.2Ge0.8. Dependence of the mass magnetization σ on a magnetic field H: (1) under atmospheric pressure at 295 K, and (2) under a pressure of 1.5 GPa at 399 K [88D1]. 1 GPa = 10 kbar. 75 MnNiSi0.2 Ge0.8 60 2 3 –1 0.8 Pressure p [GPa] Magnetization σ [G cm g ] 0.4 0.8 1.2 Pressure p [GPa] Fig. 113. MnNiSi0.05Ge0.95. Magnetic phase diagram in a pressure - temperature plane [88D1]. The magnetic transition temperature was determined from ac initial susceptibility vs. temperature curve as in Fig. 111. Superscripts h and c stand for heating and cooling, respectively. P: paramagnet; H1: simple spiral; H2: cycloidal spiral; TR: triple point. 1 GPa = 10 kbar. H 45 1 30 15 0 Landolt-Börnstein New Series III/32C 0.4 F 410 0 h Ttr c 190 390 h Ttr MnNiSi0.2 Ge0.8 430 TR 380 Fig. 112. MnCoSixGe1–x. Composition dependence of the rate of change of the Curie temperature TC by pressure p, (1/TC)dTC/dp [89N1]. 1 GPa = 10 kbar. Temperature T [K] Ni2In-type P 420 MnCoGe 350 MnNiSi 0.05 Ge0.95 Temperature T [K] –1 (dTC /dp )/TC [GPa ] 0.10 57 5 10 15 Magnetic field H [kOe] 20 25 58 1.5.4 3d elements and C, Si, Ge, Sn or Pb 490 [Ref. p. 59 Ti0.05 Mn0.95Ni Ge 470 Ni2In-type P 450 Temperature T [K] 430 410 TiNiSi-type P TR TN h 350 h TiNiSi-type H 0 –3 300 Inv.susceptibility χm [mol cm ] 400 –1 500 0.8 Pressure p [GPa] 1.2 1.6 2000 TiCox Ni1-x Sn x = 0.5 0.6 0.75 0.8 0.9 200 1.0 100 0 a 0.4 c Ttr 50 100 150 200 Temperature T [K] 1600 1200 Inv.susceptibility χm [mol cm ] 330 310 Ttr Fig. 116. Ti0.05Mn0.95NiGe. Magnetic phase diagram in a pressure - temperature plane. The magnetic transition temperature was determined from ac initial susceptibility vs. temperature curve, as its maximum at lower pressure or as its inflection points at higher pressure. The latter with a hysteresis of about 10 K is a magneto-structural transition of first order [88D1]. The superscripts h and c stand for heating and cooling, respectively. TR means triple point. P: paramagnet; H: helical (simple spiral). 1 GPa = 10 kbar. –3 370 –1 390 250 300 Fig. 117. TiCoxNi1–xSn. Temperature dependence of the reciprocal molar magnetic susceptibility χ −1 m. Some irregular spacing of the curves in (a) was x = 0.1 0.3 800 400 0 b 0.2 20 40 60 Temperature T [K] 80 100 attributed to deviation of the composition from the nominal one. The curves in (b) are fits to the expression χ = χ0 + C/(T – Θ) [94P1]. Landolt-Börnstein New Series III/32C 1.5.4 3d elements and C, Si, Ge, Sn or Pb peff ps 0.4 0 0.2 0 0.2 TiNiSn 0.4 0.6 Co content x 0.1 0.8 0 1.0 TiCoSn Fig. 118. TiCoxNi1–xSn. Composition dependence of the effective magnetic moment and of the spontaneous magnetic moment per formula unit [94P1]. Ti CoSn 55 Resistivity ρ [µΩcm] 0.3 –1 1.2 0.8 65 0.4 Ti Cox Ni1-x Sn Magnetic moment ps [µB(f.u. ) ] –1 Magnetic moment peff [µB(f.u. ) ] 1.6 59 45 35 25 0 10 20 30 40 Magnetic field H [kOe] 50 60 Fig. 119. TiCoSn. Dependence of the electrical resistivity ρ at 1.6 K on an applied magnetic field H parallel (continuous curve) or perpendicular (open circles) to the electric current [94P1]. 1.5.4.8 References for 1.5.4 General references 58p 90m 91v 92b Pearson, W.B.: A Handbook of Lattice Spacings and Structures of Metals and Alloys, London: Pergamon Press (1958). Massalski, T.B. (editor-in-chief): Binary Alloy Phase Diagrams, 2nd ed. (in 3 volumes), Ohio: ASM International (1990). Villars, P., Calvert, L.D.: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (in 4 volumes), Ohio: ASM International (1991). Brandes, E.A., Brook, G.B. (editors): Smithells Metals Reference Book, 7th ed., Oxford: Butterworth-Heinemann (1992). Special references 63W1 67J1 67R1 71D1 71K1 72F1 72F2 73M1 78F1 78F2 78Y1 79M1 Watanabe, H., Yamamoto, H., Ito, K.: J. Phys. Soc. Jpn. 18 (1963) 995. Jaccarino, V., Wertheim, G.K., Wernick, J.H., Walker, L.R., Arajs, S.: Phys. Rev. 160 (1967) 476. Richardson, M.: Acta Chem. Scand. 21 (1967) 2305, through [78F1]. Dusausoy, Y., Protas, J., Wandji, R., Roques, B.: Acta Crystallogr., Sect. B 27 (1971) 1209 (in French). Kádár, G., Krén, E.: Int. J. Magn. 1 (1971) 143. Fruchart, E., Lorthioir, G., Fruchart, R.: C.R. Seances Acad. Sci. (Paris) Ser. C 275 (1972) 1415 (in French). Fukamichi, K., Saito, H.: J. Phys. Soc. Jpn. 33 (1972) 1485. Moriya, T., Kawabata, A.: J. Phys. Soc. Jpn. 34 (1973) 639; 35 (1973) 669. Forsyth, J.B., Wilkinson, C., Gardner, P.: J. Phys. F (UK) 8 (1978) 2195. Fruchart, D., Bertaut, E.F.: J. Phys. Soc. Jpn. 44 (1978) 781. Yasuoka, H., Jaccarino,V., Sherwood, R. C., Wernick, J. H.: J. Phys. Soc. Jpn. 44 (1978) 842. Moriya, T.: J. Magn. Magn. Mater. 14 (1979) 1. Landolt-Börnstein New Series III/32C
© Copyright 2026 Paperzz