- ColumbiaGrid

Noxon Rapids Reactor Project
Scott Wilson
Tracy Rolstad
June 9, 2016
Voltage Performance at Noxon (ALIS)
0.000 MW
0.000 Mvar
48287
NOXON34
0.000 MW
0.000 Mvar
ID 3
CKT 1
ID 4
0.9350 tap
0.000 MW
0.000 Mvar
48285
NOXON12
0.000 MW
0.000 Mvar
ID 1
0.000 MW
0.000 Mvar
ID 2
CKT 1
48283
NOXON 5
CKT 1
1.0696 tap
ID 5
1.0696 tap
NOXON
Bus: NOXON (48281)
Nom kV: 230.00
Area: NORTHWEST (40)
Zone: AVA: Coeur D'Alene (441)
0.0 MW
0.0 Mvar
0.0 MVA
1.0529 pu
242.17 KV
55.36 Deg
Not Valid $/MWh
33.8 MW
3.8 Mvar
34.0 MVA
0.0 MW
0.0 Mvar
0.0 MVA
59.1 MW
-9.0 Mvar
59.8 MVA
73.8 MW
10.9 Mvar
74.6 MVA
27.5 MW
-6.4 Mvar
28.2 MVA
HOT SPR
40553
DIXON MV
40348
TROUT CR
41091
LAKESD F
47367
PLACID LAKE
629104
System State
CKT 1
LANCASTR
40624
1.0460 pu
240.59 KV
BELLAN11
40626
RATHDRUM
48357
BOULDER
48524
LANCAS G
47568
LANCAS S
47569
32.7 MW
4.6 Mvar
33.0 MVA
53.8 MW
-3.9 Mvar
53.9 MVA
CKT 1
NOXONCON
CKT 2
HOT SPR
40551
1.0424 pu
239.75 KV
0.0 MW
0.0 Mvar
0.0 MVA
48289
CKT 1
LIBBY
40657
1.0414 pu
239.53 KV
HASKILL
40513
LIB PH1
44200
LIB PH2
44201
LIBBY
40655
CKT 1
CAB GORG
48059
1.0528 pu
242.15 KV
LAKEVIEW
48179
CAB GORG
48057
CABGOR12
48061
CABGOR34
48063
TROUT CR
41091
HOT SPR
40551
1.0424 pu
239.75 KV
HOT SPR
40553
DIXON MV
40348
LAKESD F
47367
NOXON
48281
PLACID LAKE
629104
CKT 1
PINE CRK
48317
1.0477 pu
240.97 KV
BENEWAH
48037
PINE CRK
48315
PINECRKX
48316
Voltage Performance at Noxon (HS Rx)
0.000 MW
0.000 Mvar
48287
NOXON34
0.000 MW
0.000 Mvar
ID 3
CKT 1
ID 4
0.9350 tap
0.000 MW
0.000 Mvar
48285
NOXON12
0.000 MW
0.000 Mvar
ID 1
0.000 MW
0.000 Mvar
ID 2
CKT 1
48283
NOXON 5
CKT 1
1.0696 tap
ID 5
1.0696 tap
NOXON
Bus: NOXON (48281)
Nom kV: 230.00
Area: NORTHWEST (40)
Zone: AVA: Coeur D'Alene (441)
0.0 MW
0.0 Mvar
0.0 MVA
1.0574 pu
243.21 KV
55.28 Deg
Not Valid $/MWh
34.2 MW
-2.0 Mvar
34.2 MVA
59.3 MW
-6.2 Mvar
59.6 MVA
0.0 MW
0.0 Mvar
0.0 MVA
73.8 MW
12.8 Mvar
74.9 MVA
27.6 MW
-2.9 Mvar
27.8 MVA
HOT SPR
40553
DIXON MV
40348
TROUT CR
41091
LAKESD F
47367
PLACID LAKE
629104
System State
CKT 1
LANCASTR
40624
1.0475 pu
240.93 KV
BELLAN11
40626
RATHDRUM
48357
BOULDER
48524
LANCAS G
47568
LANCAS S
47569
33.0 MW
-1.2 Mvar
33.0 MVA
54.1 MW
-0.5 Mvar
54.1 MVA
CKT 1
NOXONCON
CKT 2
HOT SPR
40551
1.0524 pu
242.06 KV
0.0 MW
0.0 Mvar
0.0 MVA
CKT 1
LIBBY
40657
1.0441 pu
240.14 KV
HASKILL
40513
LIB PH1
44200
LIB PH2
44201
LIBBY
40655
48289
CKT 1
CAB GORG
48059
1.0564 pu
242.97 KV
LAKEVIEW
48179
CAB GORG
48057
CABGOR12
48061
CABGOR34
48063
TROUT CR
41091
HOT SPR
40551
1.0524 pu
242.06 KV
HOT SPR
40553
DIXON MV
40348
LAKESD F
47367
NOXON
48281
PLACID LAKE
629104
CKT 1
PINE CRK
48317
1.0502 pu
241.54 KV
BENEWAH
48037
PINE CRK
48315
PINECRKX
48316
Charging Susceptance & Elegance of pu
Noxon Capabilities
Line
B (Charging Susceptance)
B*Sbase
Distance (miles)
Noxon—Hot Springs #1
0.19181
19.18 MVAr
68.30
Noxon—Hot Springs #2
0.20452
20.45 MVAr
70.10
Noxon—Lancaster
0.20294
20.29 MVAr
72.70
Noxon—Libby
0.19883
19.88 MVAr
70.20
Noxon—Cabinet Gorge
0.08521
5.2 MVAr
18.50 (47.20)
Noxon—Pine Creek
0.12652
12.65 MVAr
43.10
Totals
1.01
101 MVAr
343
Noxon Voltage Profile
High Generation
Usually Spring Runoff
Lower Voltage
Closer to Nominal
Voltage Control
• Condense 2 Generators
at Noxon HED
– Currently not enough VAR
capability (50MVAR max)
to control voltage as
needed; Significant plant
alternations required to
increase capability
– When condensing ~2-3
MW’s per unit are
consumed in losses;
Condensing 4,000 hours
per year could cost
~$1M/year (assumes
$50/MWH)
Equipment Ratings
• HV Breakers – Rated Maximum Voltage
– RMV is highest rms voltage designed to operate
– ANSI C37.06: 242kV became 245kV in 2000
• HV Switches – Rated Maximum Voltage
– ANSI C37.32: 242kV became 245kV in 2002
• Transformers – Rated Winding Voltage
– Overvoltage capability within certain limits
Breaker Issues
• No overvoltage operation provisions in
standards
• Manufacturers support < rating
• Certified test data availability at higher voltages
– Cap/Reactor Switching, Short Circuit, SLF
• Failure to interrupt scenario disastrous
Possible Solutions
• Renameplate
– Test data limitations – retesting
– MEPPI option of 253kV
– Older oil breakers 242kV and no longer made
• Next larger breaker class
– Class separation issue
ANSI/IEEE (IEC) Standard Ratings
•
•
•
•
•
•
•
123kV
145kV – very similar/same as 123kV
170kV
245kV
362kV
550kV
800kV
Transmission Operations Requirements
• 2 – 50MVAR, 245kV, 121A Switched Reactor
Banks
• 2kV reduction per bank for control
Types of Reactors
Oil-immersed, Iron Core
Dry-type, Air Core
• Oil cooled, similar to power
transformer
• Bushings, gauges, sudden
pressure, etc
• Magnetic field within tank
• Air cooled
• Simple, lightweight
construction
• Magnetic field in air
Reactor Decision – Dry-type, Air Core
• No oil, so no
environmental concerns
or containment needed
(river proximity)
• Reduced fire hazard
• Reduced maintenance
Trench - Toronto
• 4 coils in series per phase
– 2 stacks of 2 coils
• Aluminum windings
• Epoxy fiberglass resin covering
• 210kW losses per bank vs. 2-3MW
Impulse Testing
Design Issues
• Reactor Loads
– 29,282 lbs operational weight
– Seismic Base Shear: 5.25 kips (17.5% W)
– Seismic Overturning: 101.2 k-ft
• Frost Heave/Settling
• Magnetic Field
– Rebar: No closed conductive loops
• Foundation Options:
– Individual Pad: 11.5 yards of concrete ea
(or 69 yards total)
– Matt Foundation: 194.5 yards
Foundation Design
• 10’ x 10’ footing x 3’ deep
– Below frost depth
– Resist overturning
• Fiberglass Rebar (FRP)
• Anchor Bolt Template
– 48 anchor bolts per reactor
– Have to be exactly located
Anchor Bolt Template
Non-Magnetic Fence
Air Core Reactor Protection –
IEEE Std. C37.109 (2006)
The following two basic shunt reactor configurations are considered:
a) Dry-type, connected ungrounded wye to the impedance-grounded tertiary of a
power/auto transformer
b) Oil-immersed, wye-connected, with a solidly-grounded or impedance-grounded
neutral, connected to the transmission system
Our installation = NEITHER!
Air Core Reactor Bank Protection - REF
CT
REF
Reactor
Bank #1
CT
Air Core Reactor Bank Protection –
the Hard Fault!
CT
67N
Reactor
Bank #1
Turn-to-Turn
CT
Air Core Reactor Bank Protection –
Challenges & Solutions
• First installation of REF protection at Avista
• First use of 1 Amp (A) Relays at Avista
• With 5A CT’s  Required extensive performance
analysis of CTs
• 1A Relays needed for sensitivity
• Challenge of detecting Turn-to-Turn Faults in air-core
reactors
• Not many references in the industry
Breaker Considerations
Device Requirements
• GCB’s capable of short circuit and reactor
switching requirements
• Special circuit switcher considered but still
required breaker for fault current
• 245kV, 3000A, 40kA
• Reactor switching requirements outside of C37.06
& C37.09 standards
Reactor Switching Considerations
• Closing operations
• High current peaks due to
large inductive (3H)
component (X/R = 313
vs. 17)
• Opening operations
• Current chopping due to
small current creating
large voltage transients
(V = L*di/dt)
Solutions
• Closing
• Independent pole
operation (IPO) with
synchronous closing
control
• Opening
• Independent pole
operation (IPO) with
synchronous opening
control
• Arresters
GCB Selection Process
• Only experience with MEPPI using sync control and
IPO for capacitor switching at 115 & 230kV
• Siemens approved alternate for line breakers has
breaker with IPO and sync controller
• IEEE Guide for Reactor Switching C37.015
Result
Before Reactor
3/15/16
After Reactors
3/16/16
GIC Instrumentation
• NERC Requirement
• Recently engineered here
for our large XFMR’s
• Support to System
Planning
• No fear of damage to
reactor since air core ☺
• Scott Wilson – Substation Apparatus Engineer
[email protected]
509-495-2889
• Tracy Rolstad – Sr. Power System Consultant
[email protected]
509-495-4538