Seismometer – The basic Principles x0 xr x x x0 xm um u ug u xr x0 Seismology and the Earth’s Deep Interior ground displacement displacement of seismometer mass mass equilibrium position Seismometry Seismometer – The basic Principles The motion of the seismometer mass as a function of the ground displacement is given through a differential equation resulting from the equilibrium of forces (in rest): x0 xr x Fspring + Ffriction + Fgravity = 0 for example Fsprin=-k x, k spring constant . Ffriction=-D x, D friction coefficient .. Fgravity=-mu, m seismometer mass Seismology and the Earth’s Deep Interior ug Seismometry Seismometer – The basic Principles using the notation introduced the equation of motion for the mass is &x&r (t ) + 2εx&r (t ) + ϖ 02 xr (t ) = −u&&g (t ) D ε= = hϖ 0 , 2m x0 x k 2 ϖ0 = m From this we learn that: - for slow movements the acceleration and velocity becomes negligible, the seismometer records ground acceleration xr ug - for fast movements the acceleration of the mass dominates and the seismometer records ground displacement Seismology and the Earth’s Deep Interior Seismometry Seismometer – examples x x0 x r u g Seismology and the Earth’s Deep Interior Seismometry Seismometer – examples x x0 x r u g Seismology and the Earth’s Deep Interior Seismometry Seismometer – examples x x0 x r u g Seismology and the Earth’s Deep Interior Seismometry Seismometer – examples x x0 x r u g Seismology and the Earth’s Deep Interior Seismometry Seismometer – examples x x0 x r u g Seismology and the Earth’s Deep Interior Seismometry Seismometer – examples x x0 x r u g Seismology and the Earth’s Deep Interior Seismometry Seismometer – Questions 1. How can we determine the damping properties from the observed behavior of the seismometer? x x0 x r u g 2. How does the seismometer amplify the ground motion? Is this amplification frequency dependent? We need to answer these question in order to determine what we really want to know: The ground motion. Seismology and the Earth’s Deep Interior Seismometry Seismometer – Release Test 1. How can we determine the damping properties from the observed behavior of the seismometer? x x0 x r u g &x&r (t ) + hϖ 0 x& r (t ) + ϖ 02 xr (t ) = 0 xr (0) = x0 , x& r (0) = 0 we release the seismometer mass from a given initial position and let is swing. The behavior depends on the relation between the frequency of the spring and the damping parameter. If the seismometers oscillates, we can determine the damping coefficient h. Seismology and the Earth’s Deep Interior Seismometry Seismometer – Release Test F0= 1Hz , h= 0 F0= 1Hz , h= 0.2 1 x x0 1 Dis plac em ent x 0.5 0.5 0 0 u g -0.5 -0.5 -1 -1 0 1 2 3 4 5 0 1 F0= 1Hz , h= 0.7 Dis plac em ent r 2 3 4 5 4 5 F0= 1Hz , h= 2.5 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 0 1 2 3 Tim e (s ) Seismology and the Earth’s Deep Interior 4 5 0 1 2 3 Tim e (s ) Seismometry Seismometer – Release Test The damping coefficients can be determined from the amplitudes of consecutive extrema ak and ak+1 We need the logarithmic decrement Λ ak ak+1 x x0 x r u g ⎛ ak ⎞ ⎟⎟ Λ = 2 ln⎜⎜ ⎝ ak +1 ⎠ The damping constant h can then be determined through: h= Seismology and the Earth’s Deep Interior Λ 4π 2 + Λ2 Seismometry Seismometer – Frequency x x0 ak T x r u g ak+1 The period T with which the seismometer mass oscillates depends on h and (for h<1) is always larger than the period of the spring T0: Seismology and the Earth’s Deep Interior T= T0 1 − h2 Seismometry Seismometer – Response Function 2. How does the seismometer amplify the ground motion? Is this amplification frequency dependent? To answer this question we excite our seismometer with a monofrequent signal and record the response of the seismometer: x x0 x r u g &x&r (t ) + hϖ 0 x&r (t ) + ϖ 02 xr (t ) = ϖ 2 A0 e iϖt the amplitude response Ar of the seismometer depends on the frequency of the seismometer w0, the frequency of the excitation w and the damping constant h: Ar 1 = 2 A0 2 2 ⎞ ⎛T T ⎜⎜ 2 − 1⎟⎟ + 4h 2 2 T0 ⎠ ⎝ T0 Seismology and the Earth’s Deep Interior Seismometry Seismometer – Response Function Ar 1 = 2 A0 2 2 ⎞ ⎛T T ⎜⎜ 2 − 1⎟⎟ + 4h 2 2 T0 ⎠ ⎝ T0 Seismology and the Earth’s Deep Interior x x0 x r u g Seismometry Sampling rate Sampling frequency, sampling rate is the number of sampling points per unit distance or unit time. Examples? Seismology and the Earth’s Deep Interior Seismometry Data volumes Real numbers are usually described with 4 bytes (single precision) or 8 bytes (double precision). One byte consists of 8 bits. That means we can describe a number with 32 (64) bits. We need one switch (bit) for the sign (+/-) -> 32 bits -> 231 = 2.147483648000000e+009 (Matlab output) -> 64 bits -> 263 = 9.223372036854776e+018 (Matlab output) (amount of different numbers we can describe) How much data do we collect in a typical seismic experiment? Relevant parameters: Sampling rate 1000 Hz, 3 components Seismogram length 5 seconds 200 Seismometers, receivers, 50 profiles 50 different source locations Single precision accuracy How much (T/G/M/k-)bytes to we end up with? What about compression? Seismology and the Earth’s Deep Interior Seismometry (Relative) Dynamic range What Whatisisthe theprecision precisionof ofthe thesampling samplingof ofour ourphysical physicalsignal signal ininamplitude? amplitude? Dynamic Dynamicrange: range:the theratio ratiobetween betweenlargest largestmeasurable measurable amplitude to the smallest measurable amplitude Amin. . amplitudeAAmax max to the smallest measurable amplitude A min The Theunit unitisisDecibel Decibel(dB) (dB)and andisisdefined definedas asthe theratio ratioof oftwo two power powervalues values(and (andpower powerisisproportional proportionalto toamplitude amplitudesquare) square) In Interms termsof ofamplitudes amplitudes Dynamic /A )) dB Dynamicrange range==20 20log log1010(A (Amax dB max/Amin min Example: =1, Amax=1024) Example:with with1024 1024units unitsof ofamplitude amplitude(A (Amin min=1, A max=1024) 20 20log log1010(1024/1) (1024/1) dB dB¡ ¡60 60dB dB Seismology and the Earth’s Deep Interior Seismometry Nyquist Frequency (Wavenumber, Interval) The frequency half of the sampling rate dt is called the Nyquist frequency fN=1/(2dt). The distortion of a physical signal higher than the Nyquist frequency is called aliasing. The frequency of the physical signal is > fN is sampled with (+) leading to the erroneous blue oscillation. What happens in space? How can we avoid aliasing? Seismology and the Earth’s Deep Interior Seismometry A cattle grid Seismology and the Earth’s Deep Interior Seismometry Signal and Noise Almost Almostall allsignals signalscontain containnoise. noise.The Thesignal-to-noise signal-to-noiseratio ratioisis an animportant importantconcept conceptto toconsider considerininall allgeophysical geophysical experiments. experiments.Can Canyou yougive giveexamples examplesof ofnoise noiseininthe thevarious various methods? methods? Seismology and the Earth’s Deep Interior Seismometry Discrete Convolution Convolution Convolutionisisthe themathematical mathematicaldescription description of ofthe thechange change of ofwaveform waveformshape shapeafter afterpassage passagethrough throughaafilter filter (system). (system). There Thereisisaaspecial specialmathematical mathematicalsymbol symbolfor forconvolution convolution(*): (*): y (t ) = g (t ) ∗ f (t ) Here Herethe theimpulse impulseresponse responsefunction functionggisisconvolved convolvedwith with the input signal f. g is also named the „Green‘s function“ the input signal f. g is also named the „Green‘s function“ y k = ∑ g i f k −i gi i = 0,1,2,...., m k = 0,1,2, K , m + n fj j = 0,1,2,...., n m i =0 Seismology and the Earth’s Deep Interior Seismometry Convolution Example (Matlab) Impulse Impulseresponse response >> >>xx xx== 00 >> >>yy 00 00 System Systeminput input yy== 11 22 >> >>conv(x,y) conv(x,y) ans ans== 00 11 00 Seismology and the Earth’s Deep Interior 11 11 22 11 00 System Systemoutput output Seismometry Convolution Example (pictorial) „Faltung“ x 0 0 1 0 2 1 1 0 0 1 2 1 0 1 0 0 1 2 1 0 2 0 2 Seismology and the Earth’s Deep Interior 0 2 0 1 0 x*y 1 0 1 1 y 1 1 1 1 0 0 0 0 1 0 0 1 2 1 0 1 Seismometry Deconvolution Deconvolution Deconvolutionisisthe theinverse inverseoperation operationto toconvolution. convolution. When Whenisisdeconvolution deconvolutionuseful? useful? Seismology and the Earth’s Deep Interior Seismometry Digital Filtering Often Oftenaarecorded recordedsignal signalcontains containsaalot lotof ofinformation informationthat that we weare arenot notinterested interestedinin(noise). (noise).To Toget getrid ridof ofthis this noise noisewe wecan canapply applyaafilter filterininthe thefrequency frequencydomain. domain. The Themost mostimportant importantfilters filtersare: are: •• High Highpass: pass:cuts cutsout outlow lowfrequencies frequencies •• Low Lowpass: pass:cuts cutsout outhigh highfrequencies frequencies •• Band Bandpass: pass:cuts cutsout outboth bothhigh highand andlow lowfrequencies frequenciesand and leaves leavesaaband bandof offrequencies frequencies •• Band Bandreject: reject:cuts cutsout outcertain certainfrequency frequencyband bandand and leaves all other frequencies leaves all other frequencies Seismology and the Earth’s Deep Interior Seismometry Digital Filtering Seismology and the Earth’s Deep Interior Seismometry Low-pass filtering Seismology and the Earth’s Deep Interior Seismometry Lowpass filtering Seismology and the Earth’s Deep Interior Seismometry High-pass filter Seismology and the Earth’s Deep Interior Seismometry Band-pass filter Seismology and the Earth’s Deep Interior Seismometry Seismic Noise Observed seismic noise as a function of frequency (power spectrum). Note the peak at 0.2 Hz and decrease as a distant from coast. Seismology and the Earth’s Deep Interior Seismometry Instrument Filters Seismology and the Earth’s Deep Interior Seismometry Time Scales in Seismology Seismology and the Earth’s Deep Interior Seismometry
© Copyright 2026 Paperzz