HYPERBOLIC FUNCTIONS Synopsis : 1. i) sinhx = ex − e− x 2 ii) coshx = ex + e− x 2 iii)tanhx = iv) cothx = v) sechx = e x − e− x ex + e− x ex + e− x ex − e− x 2 ex + e− x vi) cosechx = 2 e − e− x x are called hyperbolic functions. Note : sin(ix) = isinhx, cos(ix) = coshx, tan(ix) = itanhx. 2. cosh2x – sinh2x = 1 3. 1 – tanh2x = sech2x 4. coth2x – 1 = cosech2x 5. i) sinh (α + β) = sinh α cosh β + cosh α sinh β ii) sinh (α – β) = sinh α cosh β – cosh α sinh β iii)cosh (α + β) = cosh α cosh β + sinh α sinh β iv) cosh (α – β) = cosh α cosh β – sinh α sinh β 6. v) tanh (α + β) = tanh α + tanh β 1 + tanh α tanh β vi) tanh (α – β) = tanh α − tanh β 1 − tanh α tanh β i) sinh 2x = 2sinhx coshx ii) cosh 2x = cosh2x + sinh2x iii)cosh 2x = 2 cosh2 x – 1 or cosh2x = iv) cosh 2x = 1 + sinh2x or 2sinh2x = v) tanh 2x = 2 tanh x 1 + tanh2 x 1 + cosh 2x 2 cosh 2x − 1 2 Hyperbolic Functions vi) sinh 3x = 3sinhx + 4sinh3x vii) cosh 3x = 4cosh3x – 3coshx viii) tanh 3x = 7. 3 tanh x + tanh3 x 1 + 3 tanh2 x Values of inverse hyperbolic functions as logarithms functions : i) Sinh−1x = loge ( x + x 2 + 1) ii) Cosh−1x = log( x + x 2 − 1), x ≥ 1 1+ x ⎞ ⎟, x ∈ (-1, 1) ⎝ 1− x ⎠ iii) Tanh −1x = log⎛⎜ 1 2 x + 1⎞ ⎟, | x |> 1 ⎝ x − 1⎠ iv) Coth−1x = log⎛⎜ 1 2 ⎛ 1± 1− x2 x ⎝ v) Sech−1x = log⎜⎜ ⎞ ⎟, 0 < x ≤ 1 ⎟ ⎠ ⎛ 1+ 1+ x2 x ⎝ vi) Co sec h−1x = log⎜⎜ ⎛ 1− 1+ x2 log⎜ ⎜ x ⎝ ⎞ ⎟, x > 0 or ⎟ ⎠ ⎞ ⎟, x < 0 ⎟ ⎠ 2
© Copyright 2026 Paperzz