DN1.5: CHAIN RULE The ‘chain rule’ is used to differentiate a function which is the composition of two simpler functions If y = g[u] where u = h(x) dy dy du = × dx du dx Then Examples Differentiate y = (2x - 1)4 1) Let u = 2x – 1, then y = u4 du dy = 2 and = 4u3 dx du dy dy du = × dx du dx = 4u3 . 2 = 8u3 [since u = 2x – 1] = 8(2x – 1)3 2) Find the derivative of y = y = (5t2 + 2t + 1) 1 3 −1 3 5t + 2t + 1 2 [change to index form for easier differentiation] Let u = 5t2 + 2t + 1, then y = 1 =u 3 u −1 3 −4 du dy −1 3 = u = 10t + 2 and dt du 3 dy dy du = × dt du dt = = = DN1.5 –Chain Rule −1 3 −1 3 u −4 3 . (10t + 2) (5t2 + 2t + 1) −4 3 . (10t + 2) −4 − (10t + 2) 2 (5t + 2t + 1) 3 3 Page 1 of 3 [since u = 5t2 + 2t + 1] [after simplifying] June 2012 Differentiate y = sin5x 3) y = sin5x Let y = sin(u) where u = 5x dy du = cos(u) and =5 du dx Then dy dy du = × dx du dx = cos(u). 5 = 5cos(5x) 4). If f(x) = cos3x find f'(x) y = cos3x = [cos(x)]3 Let y = u3 where u = cos(x) dy du = 3u2 and = -sin(x) du dx Then f'(x) = dy dy du = × dx du dx = 3u2.(-sinx) = 3cos2x.(-sinx) = -3sinxcos2x 5) Differentiate (loge4x)3 Let y = u3 where u = logev and v = 4x [The chain rule can be extended to three or more functions!!] dy dv du 1 = 3u2 , = and =4 du dx dv v dy dy du dv = . . dx du dv dx 1 = 3u2. .4 v 1 = 3(logev)2. .4 4x 1 = 3(loge4x)2. .4 4x 3 = (loge4x)2 x DN1.5 –Chain Rule Page 2 of 3 June 2012 Exercise Find the derivatives of the following functions 1) y = tan3x 3) y = sin 5) f(x) = e x 2 2) f(x) = loge π − 2x 4 4) y = cos2x sin x 6) y = 1− cos 5 x Answers 1) 3sec23x 2) 1 x 3) -2cos ( π − 2 x) 4) -2 sinx cosx 4 5) esinx cosx DN1.5 –Chain Rule 6) 5 sin 5 x 2 1 − cos 5 x Page 3 of 3 June 2012
© Copyright 2026 Paperzz