Karin Öberg

Ice evolution during star formation
Karin Öberg
#"
$"
!"
Ewine van Dishoeck
Harold Linnartz
Adwin Boogert
Sandrine Bottinelli
Herma Cuppen
Edith Fayolle
Rob Garood
Jes Jørgensen
Klaus Pontoppidan
Ruud Visser
'"
%"
&"
Hubble fellowship, NOVA, NWO, EARA, Sackler family, RadioNet, Spitzer Space Telescope, IRAM 30m, SMA
From simple ices to complex gas
(i) Simple ices
#"
(ii) Complex ices?
$"
(i)
(ii)
(iii)
CH3OH
2-30
H2O
100
CO
10-200
CH4 NH3
3-10 3-15
CO2
20-40
(iii)
Evaporated ices >100 K
Boogert et al, Pontoppidan et al., Öberg
et al. 2008, Bisschop et al. A&A 2007
From simple ices to complex gas
(i) Simple ices
#"
(ii) Complex ices?
$"
(i)
(ii)
(iii)
(iii)
Evaporated ices >100 K
Boogert et al, Pontoppidan et al., Öberg
et al. 2008, Bisschop et al. A&A 2007
UV induced complex ice formation
CH3OH
Complex ice
chemistry from
photodissociation
fragments of
simple ices (e.g.
CH3, OH) at
luke-warm
temperatures
HCOOCH3
CH3OCH3
C2H6
Garrod et al. ApJ 2006, 2008
Quantifying the CH3OH UV chemistry
OH
CO
UV
HCOOH
OH
HCO
CO2
OCH3
UV
CH3OCH3
CH3
OCH3
H2O
HCOOCH3
H
CHO
OH
CH3CHO
CHO
UV
CH4
H
UV
H2CO
OCH3
UV
HCO
CH2OH
UV
UV
HCOCH2OH
CHO
UV
CH3OH
CH2OH CH3
UV
CH2OH
CH3
CH3
CH3CH3
CH3CH2OH
CH2OH
?
(CH2OH)2
Öberg et al. A&A 2009d
Quantifying the CH3OH UV chemistry
OH
CO
UV
HCOOH
OH
HCO
CO2
OCH3
UV
CH3OCH3
CH3
OCH3
H2O
HCOOCH3
H
CHO
OH
CH3CHO
CHO
UV
CH4
H
UV
H2CO
OCH3
UV
HCO
CH2OH
UV
UV
HCOCH2OH
CHO
UV
CH3OH
1.
UV
CH2OH
CH3
CH3
CH2OH CH3
CH3CH3
CH3CH2OH
CH2OH
?
(CH2OH)2
Öberg et al. A&A 2009d
Quantifying the CH3OH UV chemistry
OH
CO
UV
HCOOH
OH
HCO
CO2
OCH3
UV
CH3OCH3
CH3
OCH3
H2O
HCOOCH3
H
CHO
OH
CH3CHO
CHO
UV
CH4
H
UV
H2CO
OCH3
UV
HCO
CH2OH
UV
UV
HCOCH2OH
CHO
UV
CH3OH
1.
UV
CH2OH
CH3
CH2OH
?
CH3
CH2OH CH3
CH3CH3
CH3CH2OH
2.
(CH2OH)2
Öberg et al. A&A 2009d
Quantifying the CH3OH UV chemistry
OH
CO
UV
HCOOH
OH
HCO
CO2
OCH3
UV
CH3OCH3
CH3
OCH3
H2O
HCOOCH3
H
CHO
OH
CH3CHO
CHO
UV
3.
CH4
H
UV
H2CO
OCH3
UV
HCO
CH2OH
UV
UV
HCOCH2OH
CHO
UV
CH3OH
1.
UV
CH2OH
CH3
CH2OH
?
CH3
CH2OH CH3
CH3CH3
CH3CH2OH
2.
(CH2OH)2
Öberg et al. A&A 2009d
Quantifying the CH3OH UV chemistry
4.
OH
CO
UV
HCOOH
OH
HCO
CO2
OCH3
UV
CH3OCH3
CH3
OCH3
H2O
HCOOCH3
H
CHO
OH
CH3CHO
CHO
UV
3.
CH4
H
UV
H2CO
OCH3
UV
HCO
CH2OH
UV
UV
HCOCH2OH
CHO
UV
CH3OH
1.
UV
CH2OH
CH3
CH2OH
?
CH3
CH2OH CH3
CH3CH3
CH3CH2OH
2.
(CH2OH)2
Öberg et al. A&A 2009d
Simulating protostellar chemistry in the lab
Simulating protostellar chemistry in the lab
Mass spectrometry
UV lamp
Infrared
spectroscopy of ice
107 cm-3
15 - 200 K
CH3OH (mix) gas
Ices are irradiated at 20-70 K, followed by warm-up to 200 K
Simulating protostellar chemistry in the lab
2. Determining branching ratios
CH3 + OCH3
CH3 + CH2OH
20 K
70 K
3. Diffusion barriers
Formation during
irradiation
depends on
CH3OH
dissociation
ratios
Formation during
warm-up
governed by
thermal diffusion
of radicals
Quantifying the CH3OH UV chemistry
OH
CO
UV
HCOOH
OH
HCO
CO2
OCH3
UV
CH3OCH3
CH3
OCH3
H2O
HCOOCH3
H
OH
CHO
CH3CHO
CHO
UV
CH4
H
UV
H2CO
OCH3
UV
HCO
CH2OH
UV
~1
UV
HCOCH2OH
CHO
UV
CH3OH
~5
UV
CH2OH
<1
CH3
CH3
CH2OH CH3
CH3CH3
CH3CH2OH
CH2OH
(CH2OH)2
Radical diffusion barriers: CH2OH>OCH3>HCO>CH3>H
Öberg et al. ApJ 2009d
Quantifying the CH3OH UV chemistry
OH
CO
UV
HCOOH
OH
HCO
CO2
OCH3
UV
CH3OCH3
CH3
OCH3
H2O
HCOOCH3
H
OH
CHO
CH3CHO
CHO
UV
CH4
H
UV
H2CO
OCH3
UV
HCO
CH2OH
UV
~1
UV
HCOCH2OH
CHO
UV
CH3OH
~5
UV
CH2OH
<1
CH3
CH3
X-CHO
CH2OH CH3
CH3CH2OH
CH3CH3
CH3OCH3
CH2OH
(CH2OH)2
CH3OH:CO
Radical diffusion barriers: CH2OH>OCH3>HCO>CH3>H
Öberg et al. ApJ 2009d
An ice evolution scenario
CH2OH
CH3OH
CO2
CO
CO
CH4
H2O
CO
H2O
CH3
OH
CO
CO
CH4
OH
CH3
HCO
HCO
H2O CO
H2CO
CH3O
HCOOCH3
CH3O H2O
CO
+ UV
10 K
CH3OCH3
CO
HCOOCH3
CO
CH3OH
CH2OH CH4
CH3CHO
(CH2OH)2
H2O
CO
H2CO
CH3OCH3
CH3CH2OH
CO
HOCH2CHO
HCOOH
CH3
OH
CH3
H2O
CO
H2CO
HCO
CH4
H2CO
H2O
CH3OH
<50 K
HCOOCH3
HOCH2CHO
(CH2OH)2
H2O
HO
2
20 K
CH3CH2OH
HOCH2CHO
CH3OH
(CH2OH)2
H2O
CH3CHO
H2O
HCOOH
CH3CH2OH
H2CO
50-90 K
HCOOH
>90 K
An ice evolution scenario
HCOOCH3
CH3CHO
CH3OH
CH2OH
CH3OH
CO2
CO
CH4
H2O
CO
H2O
CO
H2O
CH3
OH
CO
CH4
OH
CH3
HCO
HCO
H2O CO
H2CO
CH3O
HCOOCH3
CO
+ UV
10 K
HCOOCH3
CO
CH3OH
CH2OH CH4
CH3CHO
(CH2OH)2
H2O
CO
H2CO
CH3OCH3
CH3CH2OH
CO
HOCH2CHO
CH3CH2OH
CO
CH3O H2O
CH3OCH3
CO
HCOOH
CH3
OH
CH3
H2O
CO
H2CO
HCO
CH4
H2CO
CH3OH
CO
<50 K
HCOOCH3
HOCH2CHO
(CH2OH)2
H2O
HO
2
20 K
CH3CH2OH
HOCH2CHO
CH3OH
(CH2OH)2
H2O
CH3CHO
H2O
HCOOH
CH3CH2OH
H2CO
50-90 K
HCOOH
>90 K
Quantifying UV photodesorption
Mass
spectrometry
UV lamp
107 cm-3
15 - 200 K
Infrared
spectroscopy
of ice
CO, N2, CO2, H2O,
CH3OH gas
Öberg et al. ApJ 2007, 2009b,c
A cold complex chemistry discovered
Only X-CHO
species
detected
The
predicted
signature
of cold ice
chemistry
observed!
Öberg et al. ApJ 2010a
Conclusions
a) Early ice formation
a) Early ice formation
H2O
c) Cold (<20 K) UV-processing
b) Cloud core ice formation
b) Cloud core ice formationCH3OH
CO
CH3OH
CH2OH
c) Cold (<20 K)CH3CHO
UV-processing
CO
CH3OH
CO
OH H
CO O
HCO
CO
CO
c)
Cold
(<20
K)
UV-processing
b) Cloud core ice formation
CO2
CO2
CO2
CH2OH CH3OH
H2O
CH3OH CH3OH
CH3CHO
CO
CO
CO
Silicate CO
Silicate
Silicate
O
H2O CH3
CH3OH
H2O
H2O
CO
OH
H2O H2O
CO CH2OH CH3OH
CO
H
CO2 CH3OH CH3OH
HCO
CO
CO2
CH3CHO c)
Cold (<20 K)CO2
UV-processing
H2O
formationH2O
b)H2O
Cloud core ice
formation
H2O a) Early iceCO2
CO2
O
H2O
CO
NH2
OH H
H2O
H2O
CO
CO
CO2
HCO
COH2O
CO2
NH3
CO
CO
Silicate
CO
H2O
H2O
Silicate
H2O
CO
Silicate
H2OCO2
CO2H2O CH3 HCO
UV-processing
COformation CO2H2O CH3OH c) Cold (<20 K)CO
a) Early ice formation
b) Cloud
core
ice
CH2OH
H2O
CH3OH CH3OH
CH3O CH3OH
H2O
H2O
CH3CHO
H2O
CO
CH3OH
CO
HCOOCH3
Silicate
H2O
Silicate
CH3
CO
Silicate
CO
H2O
H2O CH3OH
NH2
O
H2O CH3OH
H2O
CO
H2O
OH H
H2O
CO
CO
CO2
HCOOCH
NH3
CO
CO2
CH2OH
H2O
H2O
#"
CH3OH
H2O
H2O
HCO
H2O
CO
H2O
H2O
H2O
CH3OH
CH3OH
CO
H2O
CH3CHO
CO
CO
CH3OH
CO2
CH3CHO
CO2
NH2
H2O
H2O
CH3O
O
H2O
CO
NH3
CO HCOOCH3
CO
CO2 H2O
H2O
HCO
HCO
CO OH H
CO
CO
COCH3OH
Silicate
CO2 H2O H2O H2O
Silicate
CO
Silicate
CO
H
CH3OH
H2O
CO2HCOOCH3
CO2 CH3OH e) Protostellar hot core >100 K CH3O
d) Lukewarm
protostellar
envelope
>20
K
CO2
H2O
CH3OHH2O
HCOOCH3
H2O
CH3OH
H2O
CH3CHO
CO
CO
Silicate
Silicate
CH3
Silicate
NH2 H2O
CH3OH
CH3OH
H2O
H2O
$"
HCOOCH3 H2O
CO
NH3
CO
H2O
H2O
CO H2O
H2O
H2O
COCH3CHO H2O
H2O CH3OH
H2O >20 K CO
H2O
e)
Protostellar
hot
core
>100
K
H2O
d) Lukewarm protostellar
envelope
CO
CH3 NH2CH3CH2OH
H2O HCOOCH3 CH3O
CH3CH2OH
H2O
CH3
CH3OH
NH3
H2O
H2O
H2O
CO
CH3OCH3
CH3OCH3
CH3CHO HCO
e)
Protostellar
hot
core
CO>100 K
CH3CHO
CO
d)H2O
Lukewarm
protostellar envelope
>20
K
CO
CH3OH
H
CO
CH3O
CO2
H2O
CO2CH3OH
H2O
CH3OH CH3CHO
SilicateHCOOCH3
Silicate
CO
CH3CH2OH
CO
CH3O
H2O
CH3
CH3CH2OH
CH3O
H2O
CH3
CH3OH
CO
HCOOCH3
CH3OCH3H2OH2O
CH3OCH3H2OH2O
CH3CHO
OH
CH3CHO
OH
CH3OH
e) Protostellar
hot core CH3CHO
>100 K
CH3OH
d) Lukewarm
envelope >20 K
CO
CH3CH2OH CH3OH
CH3HCOOCH3
CH3CH2OH protostellar
CH3HCOOCH3
CO2
CO2
H2O
H2O
CH3OCH3
NH2CH2OH
CH3OCH3
Silicate
NH2CH2OH
CH3CHO
Silicate
CH3CHO
CH3O
H2O
CH3O
H2O
CO
NH2
e)
Protostellar
hot
core
>100
K
NH2
d) Lukewarm protostellar(CH2OH)2
envelope
>20
K
(CH2OH)2
CO
CO2
CO2
H2O
H2O OH
H2O
CH3OH
H2O OH
Silicate
CH3OH
Silicate
CO
CH3O
H2OCH3CH2OH
CO
CH3O CO CH3OCH3
H2O
CH3
CH3CH2OH
CH3 CH3CH2OH
HCOOCH3
HCOOCH3
H2O
H2O
CO
NH2CH2OH
H2O OH
CH3OCH3
CH3CHO
H2O OH
H2O CH3OCH3 CH3OH
CH3CHO
CONH2CH2OH
CH3OH
NH2
NH2H2O
(CH2OH)2
(CH2OH)2
CO
HCOOCH3
CH3CH2OH
CH3 H2O
HCOOCH3
CO2
CH3CH2OH
CH3 H2O
CO2
NH2CH2OHSilicate
NH2CH2OHSilicateCO
CH3OCH3
CH3OCH3
CH3O
H2O
CH3CHO
NH2 (CH2OH)2
CH3O
CH3OCH3 NH2 (CH2OH)2
H2O
CH3CHO
CH3CH2OH
CO2
CO H2O OH
H2O OH
CO2 CO
CH3OH
CH3OH
Silicate
Silicate
CH3OCH3
CH3O
H2O
CH3O
HCOOCH3
CH3CH2OH H2O
HCOOCH3
H2O NH2CH2OH
H2O NH2CH2OH
CO
OH
H2O
OH
NH2CH3OH
H2O
NH2CH3OH
(CH2OH)2
(CH2OH)2
HCOOCH3
HCOOCH3
%"
H2O
H2O NH2CH2OH
NH2CH2OH
CO
CH3OCH3
NH2
NH2 (CH2OH)2
CH3CH2OH
(CH2OH)2
CO
CO
CH3OCH3
CH3CH2OH
CO
CO2
a) Early ice formation
H2O
CO
CO2
H2O
Sticking probabilities, Haddition reactions, ice
spectroscopy, photodesorption
yields
CO
?
Ice photochemistry reaction,
photodesorption rates, mm gas
spectroscopy
&"
?
Thermal ice desorption,
mm gas spectroscopy