Ice evolution during star formation Karin Öberg #" $" !" Ewine van Dishoeck Harold Linnartz Adwin Boogert Sandrine Bottinelli Herma Cuppen Edith Fayolle Rob Garood Jes Jørgensen Klaus Pontoppidan Ruud Visser '" %" &" Hubble fellowship, NOVA, NWO, EARA, Sackler family, RadioNet, Spitzer Space Telescope, IRAM 30m, SMA From simple ices to complex gas (i) Simple ices #" (ii) Complex ices? $" (i) (ii) (iii) CH3OH 2-30 H2O 100 CO 10-200 CH4 NH3 3-10 3-15 CO2 20-40 (iii) Evaporated ices >100 K Boogert et al, Pontoppidan et al., Öberg et al. 2008, Bisschop et al. A&A 2007 From simple ices to complex gas (i) Simple ices #" (ii) Complex ices? $" (i) (ii) (iii) (iii) Evaporated ices >100 K Boogert et al, Pontoppidan et al., Öberg et al. 2008, Bisschop et al. A&A 2007 UV induced complex ice formation CH3OH Complex ice chemistry from photodissociation fragments of simple ices (e.g. CH3, OH) at luke-warm temperatures HCOOCH3 CH3OCH3 C2H6 Garrod et al. ApJ 2006, 2008 Quantifying the CH3OH UV chemistry OH CO UV HCOOH OH HCO CO2 OCH3 UV CH3OCH3 CH3 OCH3 H2O HCOOCH3 H CHO OH CH3CHO CHO UV CH4 H UV H2CO OCH3 UV HCO CH2OH UV UV HCOCH2OH CHO UV CH3OH CH2OH CH3 UV CH2OH CH3 CH3 CH3CH3 CH3CH2OH CH2OH ? (CH2OH)2 Öberg et al. A&A 2009d Quantifying the CH3OH UV chemistry OH CO UV HCOOH OH HCO CO2 OCH3 UV CH3OCH3 CH3 OCH3 H2O HCOOCH3 H CHO OH CH3CHO CHO UV CH4 H UV H2CO OCH3 UV HCO CH2OH UV UV HCOCH2OH CHO UV CH3OH 1. UV CH2OH CH3 CH3 CH2OH CH3 CH3CH3 CH3CH2OH CH2OH ? (CH2OH)2 Öberg et al. A&A 2009d Quantifying the CH3OH UV chemistry OH CO UV HCOOH OH HCO CO2 OCH3 UV CH3OCH3 CH3 OCH3 H2O HCOOCH3 H CHO OH CH3CHO CHO UV CH4 H UV H2CO OCH3 UV HCO CH2OH UV UV HCOCH2OH CHO UV CH3OH 1. UV CH2OH CH3 CH2OH ? CH3 CH2OH CH3 CH3CH3 CH3CH2OH 2. (CH2OH)2 Öberg et al. A&A 2009d Quantifying the CH3OH UV chemistry OH CO UV HCOOH OH HCO CO2 OCH3 UV CH3OCH3 CH3 OCH3 H2O HCOOCH3 H CHO OH CH3CHO CHO UV 3. CH4 H UV H2CO OCH3 UV HCO CH2OH UV UV HCOCH2OH CHO UV CH3OH 1. UV CH2OH CH3 CH2OH ? CH3 CH2OH CH3 CH3CH3 CH3CH2OH 2. (CH2OH)2 Öberg et al. A&A 2009d Quantifying the CH3OH UV chemistry 4. OH CO UV HCOOH OH HCO CO2 OCH3 UV CH3OCH3 CH3 OCH3 H2O HCOOCH3 H CHO OH CH3CHO CHO UV 3. CH4 H UV H2CO OCH3 UV HCO CH2OH UV UV HCOCH2OH CHO UV CH3OH 1. UV CH2OH CH3 CH2OH ? CH3 CH2OH CH3 CH3CH3 CH3CH2OH 2. (CH2OH)2 Öberg et al. A&A 2009d Simulating protostellar chemistry in the lab Simulating protostellar chemistry in the lab Mass spectrometry UV lamp Infrared spectroscopy of ice 107 cm-3 15 - 200 K CH3OH (mix) gas Ices are irradiated at 20-70 K, followed by warm-up to 200 K Simulating protostellar chemistry in the lab 2. Determining branching ratios CH3 + OCH3 CH3 + CH2OH 20 K 70 K 3. Diffusion barriers Formation during irradiation depends on CH3OH dissociation ratios Formation during warm-up governed by thermal diffusion of radicals Quantifying the CH3OH UV chemistry OH CO UV HCOOH OH HCO CO2 OCH3 UV CH3OCH3 CH3 OCH3 H2O HCOOCH3 H OH CHO CH3CHO CHO UV CH4 H UV H2CO OCH3 UV HCO CH2OH UV ~1 UV HCOCH2OH CHO UV CH3OH ~5 UV CH2OH <1 CH3 CH3 CH2OH CH3 CH3CH3 CH3CH2OH CH2OH (CH2OH)2 Radical diffusion barriers: CH2OH>OCH3>HCO>CH3>H Öberg et al. ApJ 2009d Quantifying the CH3OH UV chemistry OH CO UV HCOOH OH HCO CO2 OCH3 UV CH3OCH3 CH3 OCH3 H2O HCOOCH3 H OH CHO CH3CHO CHO UV CH4 H UV H2CO OCH3 UV HCO CH2OH UV ~1 UV HCOCH2OH CHO UV CH3OH ~5 UV CH2OH <1 CH3 CH3 X-CHO CH2OH CH3 CH3CH2OH CH3CH3 CH3OCH3 CH2OH (CH2OH)2 CH3OH:CO Radical diffusion barriers: CH2OH>OCH3>HCO>CH3>H Öberg et al. ApJ 2009d An ice evolution scenario CH2OH CH3OH CO2 CO CO CH4 H2O CO H2O CH3 OH CO CO CH4 OH CH3 HCO HCO H2O CO H2CO CH3O HCOOCH3 CH3O H2O CO + UV 10 K CH3OCH3 CO HCOOCH3 CO CH3OH CH2OH CH4 CH3CHO (CH2OH)2 H2O CO H2CO CH3OCH3 CH3CH2OH CO HOCH2CHO HCOOH CH3 OH CH3 H2O CO H2CO HCO CH4 H2CO H2O CH3OH <50 K HCOOCH3 HOCH2CHO (CH2OH)2 H2O HO 2 20 K CH3CH2OH HOCH2CHO CH3OH (CH2OH)2 H2O CH3CHO H2O HCOOH CH3CH2OH H2CO 50-90 K HCOOH >90 K An ice evolution scenario HCOOCH3 CH3CHO CH3OH CH2OH CH3OH CO2 CO CH4 H2O CO H2O CO H2O CH3 OH CO CH4 OH CH3 HCO HCO H2O CO H2CO CH3O HCOOCH3 CO + UV 10 K HCOOCH3 CO CH3OH CH2OH CH4 CH3CHO (CH2OH)2 H2O CO H2CO CH3OCH3 CH3CH2OH CO HOCH2CHO CH3CH2OH CO CH3O H2O CH3OCH3 CO HCOOH CH3 OH CH3 H2O CO H2CO HCO CH4 H2CO CH3OH CO <50 K HCOOCH3 HOCH2CHO (CH2OH)2 H2O HO 2 20 K CH3CH2OH HOCH2CHO CH3OH (CH2OH)2 H2O CH3CHO H2O HCOOH CH3CH2OH H2CO 50-90 K HCOOH >90 K Quantifying UV photodesorption Mass spectrometry UV lamp 107 cm-3 15 - 200 K Infrared spectroscopy of ice CO, N2, CO2, H2O, CH3OH gas Öberg et al. ApJ 2007, 2009b,c A cold complex chemistry discovered Only X-CHO species detected The predicted signature of cold ice chemistry observed! Öberg et al. ApJ 2010a Conclusions a) Early ice formation a) Early ice formation H2O c) Cold (<20 K) UV-processing b) Cloud core ice formation b) Cloud core ice formationCH3OH CO CH3OH CH2OH c) Cold (<20 K)CH3CHO UV-processing CO CH3OH CO OH H CO O HCO CO CO c) Cold (<20 K) UV-processing b) Cloud core ice formation CO2 CO2 CO2 CH2OH CH3OH H2O CH3OH CH3OH CH3CHO CO CO CO Silicate CO Silicate Silicate O H2O CH3 CH3OH H2O H2O CO OH H2O H2O CO CH2OH CH3OH CO H CO2 CH3OH CH3OH HCO CO CO2 CH3CHO c) Cold (<20 K)CO2 UV-processing H2O formationH2O b)H2O Cloud core ice formation H2O a) Early iceCO2 CO2 O H2O CO NH2 OH H H2O H2O CO CO CO2 HCO COH2O CO2 NH3 CO CO Silicate CO H2O H2O Silicate H2O CO Silicate H2OCO2 CO2H2O CH3 HCO UV-processing COformation CO2H2O CH3OH c) Cold (<20 K)CO a) Early ice formation b) Cloud core ice CH2OH H2O CH3OH CH3OH CH3O CH3OH H2O H2O CH3CHO H2O CO CH3OH CO HCOOCH3 Silicate H2O Silicate CH3 CO Silicate CO H2O H2O CH3OH NH2 O H2O CH3OH H2O CO H2O OH H H2O CO CO CO2 HCOOCH NH3 CO CO2 CH2OH H2O H2O #" CH3OH H2O H2O HCO H2O CO H2O H2O H2O CH3OH CH3OH CO H2O CH3CHO CO CO CH3OH CO2 CH3CHO CO2 NH2 H2O H2O CH3O O H2O CO NH3 CO HCOOCH3 CO CO2 H2O H2O HCO HCO CO OH H CO CO COCH3OH Silicate CO2 H2O H2O H2O Silicate CO Silicate CO H CH3OH H2O CO2HCOOCH3 CO2 CH3OH e) Protostellar hot core >100 K CH3O d) Lukewarm protostellar envelope >20 K CO2 H2O CH3OHH2O HCOOCH3 H2O CH3OH H2O CH3CHO CO CO Silicate Silicate CH3 Silicate NH2 H2O CH3OH CH3OH H2O H2O $" HCOOCH3 H2O CO NH3 CO H2O H2O CO H2O H2O H2O COCH3CHO H2O H2O CH3OH H2O >20 K CO H2O e) Protostellar hot core >100 K H2O d) Lukewarm protostellar envelope CO CH3 NH2CH3CH2OH H2O HCOOCH3 CH3O CH3CH2OH H2O CH3 CH3OH NH3 H2O H2O H2O CO CH3OCH3 CH3OCH3 CH3CHO HCO e) Protostellar hot core CO>100 K CH3CHO CO d)H2O Lukewarm protostellar envelope >20 K CO CH3OH H CO CH3O CO2 H2O CO2CH3OH H2O CH3OH CH3CHO SilicateHCOOCH3 Silicate CO CH3CH2OH CO CH3O H2O CH3 CH3CH2OH CH3O H2O CH3 CH3OH CO HCOOCH3 CH3OCH3H2OH2O CH3OCH3H2OH2O CH3CHO OH CH3CHO OH CH3OH e) Protostellar hot core CH3CHO >100 K CH3OH d) Lukewarm envelope >20 K CO CH3CH2OH CH3OH CH3HCOOCH3 CH3CH2OH protostellar CH3HCOOCH3 CO2 CO2 H2O H2O CH3OCH3 NH2CH2OH CH3OCH3 Silicate NH2CH2OH CH3CHO Silicate CH3CHO CH3O H2O CH3O H2O CO NH2 e) Protostellar hot core >100 K NH2 d) Lukewarm protostellar(CH2OH)2 envelope >20 K (CH2OH)2 CO CO2 CO2 H2O H2O OH H2O CH3OH H2O OH Silicate CH3OH Silicate CO CH3O H2OCH3CH2OH CO CH3O CO CH3OCH3 H2O CH3 CH3CH2OH CH3 CH3CH2OH HCOOCH3 HCOOCH3 H2O H2O CO NH2CH2OH H2O OH CH3OCH3 CH3CHO H2O OH H2O CH3OCH3 CH3OH CH3CHO CONH2CH2OH CH3OH NH2 NH2H2O (CH2OH)2 (CH2OH)2 CO HCOOCH3 CH3CH2OH CH3 H2O HCOOCH3 CO2 CH3CH2OH CH3 H2O CO2 NH2CH2OHSilicate NH2CH2OHSilicateCO CH3OCH3 CH3OCH3 CH3O H2O CH3CHO NH2 (CH2OH)2 CH3O CH3OCH3 NH2 (CH2OH)2 H2O CH3CHO CH3CH2OH CO2 CO H2O OH H2O OH CO2 CO CH3OH CH3OH Silicate Silicate CH3OCH3 CH3O H2O CH3O HCOOCH3 CH3CH2OH H2O HCOOCH3 H2O NH2CH2OH H2O NH2CH2OH CO OH H2O OH NH2CH3OH H2O NH2CH3OH (CH2OH)2 (CH2OH)2 HCOOCH3 HCOOCH3 %" H2O H2O NH2CH2OH NH2CH2OH CO CH3OCH3 NH2 NH2 (CH2OH)2 CH3CH2OH (CH2OH)2 CO CO CH3OCH3 CH3CH2OH CO CO2 a) Early ice formation H2O CO CO2 H2O Sticking probabilities, Haddition reactions, ice spectroscopy, photodesorption yields CO ? Ice photochemistry reaction, photodesorption rates, mm gas spectroscopy &" ? Thermal ice desorption, mm gas spectroscopy
© Copyright 2026 Paperzz