Chapter 7 The Pricing of Second Generation Exotics by JuÈrgen Hakala, Ghislain Perisse and Tino Senge After vanilla options and the ®rst generation exotics some more exotic options are of special interest for some clients. Here we present a formula catalogue for computing the Theoretical Value (TV) of such options in the Black±Scholes model. 7.1 Introduction The pricing and hedging of the second generation exotic options in the Black± Scholes model works the same way as in the case of ®rst generation exotics. One takes a geometric Brownian motion with a risk-neutral drift and computes the discounted expected value of the respective option payos. Computing the expectation results in the TV of the option. Trading at the TV is subject to some model risk. However, for second generation exotics, the bid-ask spreads are usually wider. Here we outline the valuation of some exotics such as forward-start options in Section 7.2, ratchet options in Section 7.3, power options in Section 7.4, instalment options in Section 7.5, stairs options in Section 7.6, compound options on a forward-start strategy in Section 7.7, options on the minimum/maximum in Section 7.8 and their generalisation in Section 7.9. All options are valued in the model for the exchange rate dSt St r d r f dt sdWt 7:1 7.2 Forward-start options A forward-start plain vanilla option is an option where the strike of the option is derived at some date in the future relative to the spot at that date. It can be seen as an option where it is paid for now but will start at some time in the future. Let us consider two dates TF and Te , TF < Te , where TF is the forward-start date, Te is the expiry date. The holder of the option receives at time TF an option with expiration date Te . The strike of this option will be ®xed at TF to aSTF , where a is a constant which FOREIGN EXCHANGE RISK 58 Chapter 7 is speci®ed at inception t 0 of the trade. The payo of a forward-start option is de®ned as 7:2 f STe aSTF 7.2.1 Pricing In order to price forward-start options we have to distinguish between the time intervals 0; TF and TF ; Te . First we consider the value of the option during interval TF ; Te . The price of a call option (f 1) is given by v t vBS St ; aSTF ; Te t; s1;2 ; r d1;2 ; r f1;2 ; t 2 TF ; Te 7:3 where vBS is the value of an European call option with spot St , strike aSTF , and time to maturity equal to Te t. We now go on pricing the option within interval 0; TF . We start considering the value of the option at time TF . At this time the value is equal to an ordinary European option. In case of a call option (f 1) we get TF ; s1;2 ; r d1;2 ; r f1;2 v TF vBS STF ; aSTF ; Te f er 1;2 Te TF STF N d STF vBS 1; a; Te d er 1;2 Te aSTF N d 7:5 TF ; s1;2 ; r d1;2 ; r f1;2 where " STF 1 r d1;2 d p ln s1;2 Te TF aSTF TF 7:4 # r f1;2 Te TF 7:6 p 1 s1;2 Te TF 2 7:7 Using risk-neutral valuation the value of a forward-start call option at time t 0 is given by h d i 7:8 v 0 IEQ1 e r1 T1 STF vBS 1; a; Te TF ; s1;2 ; r d1;2 ; r f1;2 d f is a martingale. where Q1 is the probability measure such that e r1 r1 t St t20;TF Since vBS 1; a; Te TF ; s1;2 ; r d1;2 ; r f1;2 is deterministic, we use the martingale property and obtain v0 e rf1 T1 S0 vBS 1; a; Te TF ; s1;2 ; r d1;2 ; r f1;2 7:9 More generally, for t 2 0; TF , we have vt e e rf1 TF t rf1 TF t St vBS 1; a; Te vBS St ; aSt ; Te TF ; s1;2 ; r d1;2 ; r f1;2 TF ; s1;2 ; r d1;2 ; r f1;2 The same calculation can be done for a forward-start put option (f 7:10 7:11 1). REMARK 7.1 The rates r d1 and r f1 are the instantaneous interest rates. These rates are used for discounting the option value within interval 0; TF . REMARK 7.2 The rates r d1;2 and r f1;2 are forward rates for interval TF ; Te . These rates will be used in the option pricing formula. In the same way s1;2 is the forward volatility for time period TF ; Te . RISK BOOKS The Pricing of Second Generation Exotics 59 7.2.2 Greeks As in pricing we have to distinguish between two time intervals 0; TF and TF ; Te . During the interval TF ; Te the sensitivity parameters are the same as in the case of a plain vanilla option. Let us focus on interval 0; TF . Within this period of time the sensitivity parameters delta, gamma and theta for call options are t e t r f1 TF t TF ; s1;2 ; r d1;2 ; r f1;2 vBS 1; a; Te 7:12 0 t 7:13 e r f1 TF t f r 1 St TF ; s1;2 ; r d1;2 ; r f1;2 vBS 1; a; Te 7:14 In order to calculate vega (V) and rho we have to consider dependencies in the forward rates and forward volatility. First we recall the de®nition of the forward volatility. Let s1 be the volatility for the interval 0; TF and let s2 be the volatility within 0; Te . The forward volatility s1;2 within TF ; Te is given by s s22 T2 s21 T1 7:15 s1;2 Te TF if the term under the square root is non-negative. Using @s1;2 1 s1 T1 p p Te TF s22 T2 s21 T1 @s1 @s1;2 1 s2 T2 p p 2 Te TF s2 T2 s21 T1 @s2 7:16 7:17 we can calculate the vegas V s1 t e rf1 TF t St V s1;2 BS 1;a;Te V s2 t e rf1 TF t s1 TF t 1 p p Te TF s22 Te t s21 TF t TF ;s1;2 ;r d1;2 ;r f1;2 s2 Te t 1 St p p Te TF s22 Te t s21 TF t V s1;2 BS 1;a;Te ! ! 7:18 7:19 TF ;s1;2 ;r d1;2 ;r f1;2 d=f Next we recall the de®nition of the forward rate. Let r1 be the rates for d=f d=f interval 0; TF and let r2 be the rates for interval 0; Te . The forward rates r1;2 are given by d=f d=f r T r1 TF d=f r1;2 2 e 7:20 Te TF Recalling d=f @r1;2 d=f @r1 d=f @r1;2 d=f @r2 FOREIGN EXCHANGE RISK TF Te TF Te Te TF 7:21 7:22 60 Chapter 7 d=f we get as derivatives with respect to the rates r1 f TF t rhor d BS 1;a;Te rhord t e r 1 TF t St 1 1;2 Te TF f TF t rhor f BS 1;a;Te rhorf t e r 1 TF t St 1 1;2 Te TF f er 1 TF t TF tSt PBS 1; a; Te TF ;s1;2 ;r d1;2 ;r f1;2 7:23 TF ;s1;2 ;r d1;2 ;r f1;2 TF ; s1;2 ; r d1;2 ; r f1;2 7:24 d=f As derivatives with respect to the rates r2 we can derive f Te t rhord t e r 1 TF t St rhor d BS 1;a;Te TF ;s1;2 ;r d ;r f 2 1;2 1;2 1;2 Te TF f Te t rhor f BS 1;a;Te TF ;s1;2 ;r d ;r f rhor f t e r 1 TF t St 1;2 1;2 2 1;2 Te TF 7:25 7:26 REMARK 7.3 From Equation (7.12) it can be seen that in the case of a forwardstart option the deltas of calls and puts are always positive on time interval 0; TF . 7.3 Ratchet options A ratchet option consists of a series of forward-start options. The strike for the next exercise date is set relative to the spot at the previous exercise date. Ratchet options can be presented as a sum of forward-start options. The exercise date of the ®rst component will be the forward-start date of the second, the exercise date of the second component will be the forward-start date of the third, . . . . Sometimes this type of option is called moving strike option or cliquet option. Ratchet options can be priced as the a sum of forward-start options. The price of an n-period Ratchet option is given by vRatchet f; t n X i1 vFPV f; t; TFi ; Tei ; ai 7:27 where TF1 t; TFi1 Tei ; 1 4 i 4 n 1 7:28 and vFPV is the price of a forward-start plain vanilla as presented in Section 7.2. 7.4 Power options A power option pays o the square of a plain vanilla with strike KS . Since this would in general make the power option very expensive, it is capped at a level KC . The power call pays 2 IIfKS <STe <KC g STe KS IIfKC 4 STe g KC KS 2 7:29 the power put has payo IIfKC <STe <KS g KS 2 STe IIfSTe 4 KC g KS KC 2 7:30 RISK BOOKS The Pricing of Second Generation Exotics 61 with expiration date Te and delivery date Td 5 Te . We denote by t the valuation date (horizon) and assume that the premium is paid at the premium value date Tp . We model the exchange rate by dSt mt;Te St dt st;Te St dW 7:31 or equivalently by STe St e mt;Te 4 1 s2 2 t;Te Te tsWTe 7:32 t r ft;Te . with mt;Te rdt;Te Risk-neutral valuation leads to the price of the power call d v t ert;Tp Tp t h d IEt e rTp ;Td Td d Tp IIfKS <STe <KC g STe 2 KS IIfKC 4 STe g KC KS 2 i d ert;Tp Tp t rTp ;Td Td Tp i h 2KS IEt IIfKS <STe <KC g STe IEt IIfKS <STe <KC g S2Te h i h i K2S IEt IIfKS <ST <KC g KC KS 2 IEt IIfKC 4 ST g e e 7:33 De®ning 1 S p ln t mt;Te st;Te Te t KS 1 St 4 mt;Te p ln st;Te Te t KC p 4 d 0KS st;Te Te t p 4 d 0KC st;Te Te t p 4 d 0KS 2st;Te Te t p 4 d 0KC 2st;Te Te t 4 d 0KS d 0KC d1KS d1KC d 2KS d 2KC 1 2 st;Te Te 2 1 2 Te s 2 t;Te t 7:34 t 7:35 7:36 7:37 7:38 7:39 we can compute the expected values and obtain for the price of the power option d d v t ert;Tp Tp t rTp ;Td Td Tp n 2 N fd2KC S2t e 2mt;Te st;Te Te t N fd2KS 2KS St emt;Te Te t N fd1KS N fd1KC N fd 0KC K2S N fd 0KS o KC KS 2 N fd 0KC where the binary variable f takes the values 1 in case of a call and of a put. FOREIGN EXCHANGE RISK 7:40 1 in case 62 Chapter 7 7.5 Instalment options An instalment option is an iterative compound option with . N working dates T1 , T2 , . . ., TN (T0 t is the horizon date), . N strikes, K1 , K2 , . . . ;KN (Ki KTi ), . N put±call indicators, f1 , f2 , . . . ;fN taking the values 1 in case of a call and 1 in case of a put. On each period Ti ; Ti1 , the spot Si STi is modelled by dSi mi 1;i Si dt si 1;i Si dW 7:41 4 where the numbers mi 1;i ri 1;i d ri 1;i f are the forward drifts and si 1;i the forward volatilities of the asset, which we take to be s s2i Ti s2i 1 Ti 1 7:42 si 1;i Ti Ti 1 r T ri 1 Ti 1 ri 1;i i i 7:43 Ti Ti 1 The quantities r di ,r fi and si denote the usual forward rates and volatilities. For N 2, this option is a regular compound option as discussed in Chapter 9. The valuation of instalment options can be carried out using ®nite dierences. We describe this in detail in Section 7.3 of Chapter 22. Here we show how to determine the value of an instalment option by iterative integration. We introduce the notation 1 Si 1 2 p ln mi1 si1 Ti1 si1 Ti1 Ti 2 x p 4 i i d 2 x d 1 x si1 Ti1 Ti 4 d i1 x and denote by V N SN 1 ; KN IETN 1 fN SN fN SN 1 emN 1;N TN KN TN 1 Ti 7:44 7:45 N fN dN 1 KN fN KN N fN dN 2 KN the value of an undiscounted vanilla option at time TN maturity TN when the spot is at SN 1 . 1 with strike KN and Introducing the two functionals 4 IOfi 1 F Si 1 IE F Si Ki jSi 1 1 y2 i 1 F Si yi p e 2 dyi 2p xi1 4 IOfi 1 F Si 1 IE Ki F Si jSi 1 xi 1 y2 i 1 F Si yi p e 2 dyi 2p 1 7:46 7:47 RISK BOOKS The Pricing of Second Generation Exotics 63 with Si yi Si 1 e mi xi1 xi 1 1;i 1 s2 2 i 1;i Ti Ti 1 si 1;i p Ti Ti 1 yi 7:48 inffyi jF Si yi Ki g 7:49 supfyi jF Si yi Ki g 7:50 we can write down the price of an instalment option in the form v t IOf1 . . . IOfN 1 V N . . . 7:51 7.6 Stairs options A stairs option is an option which is working on N periods t; T1 T1 ; T2 ; :::;TN 1 ; TN , with one, two or no knock-out barrier(s) on each period and ®nal time payo 7:52 f STN K with a strike K. On each period Ti 1 ; Ti we de®ne a lower barrier Li and a higher barrier Hi . The asset spot is modelled by Equations (7.41), (7.42) and (7.43). Let Si denote STi with T0 t. In the sequel we recall the formulae for values of vanilla and barrier options as used in the setup of this section. For a derivation see Chapters 1 and 6. 7.6.1 Last period functionals Let us introduce 1 Si 1 2 p ln mi1 si1 Ti1 si1 Ti1 Ti 2 x p 4 i i d 2 x d 1 x si1 Ti1 Ti 1 x 1 4 2 i d 3 x p ln mi1 si1 Ti1 si1 Ti1 Ti Si 2 p 4 i i d 4 x d 3 x si1 Ti1 Ti 4 d i1 x Ti 7:53 Ti 7:54 7:55 7:56 No barrier The value function of a non-discounted vanilla option is given by V N SN 1 ; K IETN 1 f SN K fSN 1 emN 1;N TN TN 1 N fdN fKN fdN 7:57 1 K 2 K One barrier The value function of a non-discounted up-and-out call is given by h i UOCN SN 1 ; K IETN 1 SN K IIfmaxTN 1 ;TN Ss <HN g KN dN SN 1 emN 1;N TN TN 1 N dN 1 K 2 K N SN 1 emN 1;N TN TN 1 N dN 1 HN KN d2 HN 2mN 1;N 1 HN s2N 1;N mN 1;N TN TN 1 SN 1 e SN 1 2mN 1;N 1 2 HN s2N 1;N N HN N N d3 K K N d3 K SN 1 2 HN N dN N dN 7:58 4 4 HN K FOREIGN EXCHANGE RISK 64 Chapter 7 The value function of a non-discounted down-and-out put is given by DOPN SN 1 ; K IETN 1 h K SN IIfinfTN SN 1 emN 1;N TN TN 1 SN 1 emN 1;N TN TN 1 SN 1 e mN 1;N TN TN N 1 N i Ss >LN g 1 ;TN dN dN 1 K KN 2 K dN KN dN 1 LN 2 LN LN SN 1 2m2N s 1;N 1 N 1;N 2 2mN 1;N LN s2N 1;N N LN N N d3 N d3 K K K SN 1 L2N N N dN L N d N 4 4 K Two barrier given by 1 7:59 The value function of a non-discounted double-knock-out call is DKOC STN " 1 X e lN sN STN 1 1;N p TN TN 1 2nALHN mN 1;N TN TN 1 n 1 n N A HN N AK 1 X p TN TN 1 2nALHN lN sN lN sN e lN sN 1;N 1;N o p TN TN 1 2nALHN 1;N p TN TN 1 2AHN 2nALHN mN n 1 n N AHN 2nALHN lN sN N AK " K 1 X lN sN e N AK lN TN 1 p TN TN 1 1;N # o p TN 1 2AHN 2nALHN 1;N TN p lN TN TN 1 2nALHN n 1 1;N TN n N AHN o p TN TN 1 2nALHN lN 1 X p TN TN 1 2nALHN elN p TN TN 1 2AHN 2nALHN n 1 n p N AHN 2nALHN lN TN TN 1 N AK o p lN TN TN 1 2AHN 2nALHN # 7:60 and similarly for the non-discounted double-knock-out put RISK BOOKS The Pricing of Second Generation Exotics 65 DKOP STN " 1 p X e lN TN TN 1 2nALHN K n 1 n p N AK lN TN TN 1 2nALHN o p N ALN lN TN TN 1 2nALHN 1 X e lN p TN TN 1 2AHN 2nALHN n 1 n N AK N ALN " 1 X St p TN TN 1 # o p lN TN TN 1 2AHN 2nALHN 2AHN 2nALHN lN e lN sN p TN TN 1 2nALHN mN 1;N 1;N TN TN 1 n 1 n p N AK lN sN 1;N TN TN 1 2nALHN o p N ALN lN sN 1;N TN TN 1 2nALHN 1 X e lN sN 1;N p TN TN 1 2AHN 2nALHN mN n 1 n N AK N AL 1;N TN 1 p TN TN 1 # o p TN 1 2AHN 2nALHN 1;N TN 2AHN 2nALHN lN sN lN sN TN 1;N 7:61 with sN ln SNK 1 p TN 1 1;N TN 7:62 sN ln SLNN 1 p TN 1 1;N TN 7:63 sN ln SHNN1 p TN 1 1;N TN 7:64 sN ln HLNN p TN 1 1;N TN 7:65 4 AK 4 ALN 4 AHN 4 ALHN 7.6.2 Within period functionals No barrier We de®ne the functional Qi F Si 1 IETi 1 F Si 1 1 F Si yi p e 2p 1 y2 i 2 dyi 7:66 Ti 7:67 One barrier We de®ne for s 2 Ti ; Ti1 1 4 Zli i FOREIGN EXCHANGE RISK si 1;i ln Si li s Si 1 Ti 1 Ws 1 66 Chapter 7 1 4 Ai y 4 li si mi si 1;i ln 1;i 1;i y Si 1 1 si 2 7:68 7:69 1;i and use the joint density 1 IPQZ f max Zls 5 A and Zls 2 y; y dyg p e s2t;tT 2pT 2A y2 2T eyl 1 l2 T 2 dy 7:70 We now de®ne the up-and-out functional by 4 UOi F Si 1 IETi 1 IETi 1 h h F Si IIfsupTi i 1 ;Ti S<Hi g i F Si IIfSi <Hi g IIfsupTi 1 ;Ti S<Hi g IETi 1 F Si IIfSi <Hi g h i IETi 1 F Si IIfSi <Hi g IIfsupTi 1 ;Ti S 5 Hi g IETi 1 F Si IIfSi <Hi g h li IETQiZ 1 F Si 1 esi 1;i Zi IIfZli <A H g IIfmax i i Ti i d i2 1 Hi y2 i 1 F Si yi c p e 2 dyi 2p 1 2m2i 1;i 1 d i 1 Hi 4 Hi si 1;i 1 F Si yi p e Si 1 2p 1 i l Zi 1 ;Ti i y2 i 2 dyi 5 Ai Hi g 7:71 where in the ®rst integral Si yi Si 1 e mi 1;i 1 s2 2 i 1;i Ti Ti Ti Ti 1 si 1;i p Ti Ti 1 yi 7:72 and in the second integral Si yi H2i mi e Si 1 1;i 1 s2 2 i 1;i 1 si 1;i p Ti Ti 1 yi 7:73 Similarly we de®ne the down-and-out functional by h i DOi F Si 1 IETi 1 F Si IIfinfTi 1 ;Ti S>Li g h i IETi 1 F Si IIfSi >Li g IIfinfTi 1 ;Ti S>Li g h i IETi 1 F Si IIfSi >Li g IETi 1 F Si IIfSi >Li g IIfinfTi 1 ;Ti S 4 Li g IETi 1 F Si IIfSi >Li g h i li IETQiZ 1 F Si 1 e si 1;i Zi IIfZ li < A L g IIfmax li 5 Ai Li g i i Ti 1 ;Ti Zi i 1 y2 i 1 F Si yi p e 2 dyi i 1 2p d 2 Li 2m2i 1;i 1 1 y2 i Li si 1;i 1 F Si yi p e 2 dyi 7:74 Si 1 2p d i4 1 Li RISK BOOKS The Pricing of Second Generation Exotics 67 where in the ®rst integral Si yi Si 1 e mi 1;i 1 s2 2 i 1;i Ti Ti Ti Ti 1 si 1;i p Ti Ti 1 yi 7:75 and in the second integral Si yi L2i mi e Si 1 1 s2 2 i 1;i 1;i 1 si 1;i p Ti Ti 1 yi 7:76 Two barriers The distribution of STi conditioned on the event that the path reached neither an upper limit Hi nor a lower one Li on Ti 1 ; Ti is known to be e 1 l2 T i 2 i Ti 1 s ST i Ti 1 ln S 0 !2 1 S 1 1 H p 4exp@ ln Ti 2n ln i A 2 2s T T S Li 2p i i 1 Ti 1 n 1 i 1;i 0 1 !2 3 2 Hi 1 H 2n ln i A5IIfLi <STi <Hi g exp@ ln 2s2i;i 1 Ti Ti 1 STi STi 1 Li 1 X 2 li i 1;i 7:77 We de®ne the double-knock-out functional by h i 4 7:78 DKOi F Si 1 IETi 1 F Si IIfLi <infTi 1 ;Ti S<supTi 1 ;Ti S<Hi g Hi ST li 1 l2 T T ln S i i i 1 s Ti 1 i 1;i F Si e 2 i Li 2 0 !2 1 1 X STi 1 4 @ 1 Hi A p exp 2n ln ln 2s2i 1;i Ti Ti 1 STi 1 Li 2p n 1 0 1 3 !2 2 H 1 H i i A5IIfL <S <H g 2n ln exp@ ln i Ti i 2s2i;i 1 Ti Ti 1 STi STi 1 Li AH p 1 2 p i F Si 1 esi 1;i Ti Ti 1 x e 2 li Ti Ti 1 li Ti Ti 1 x ALi 1 1 2 p exp x 2nALHi 2 2p n 1 1 2 dx x 2AHi 2nALHi exp 2 1 h p X eli Ti Ti 1 2nALHi 1 X n 1 AH i p li Ti Ti 1 2nALHi F Si p ALi li Ti Ti 1 2nALHi p li Ti Ti 1 2AHi 2nALHi Hi Li 2n ! e p AHi li Ti Ti 1 2nALHi p ALi li Ti Ti 1 2 AHi 2nALHi F Si Hi Si 1 where in the integrals Si yi Si 1 e mi FOREIGN EXCHANGE RISK 1;i 1 s2 2 i 1;i Ti Ti 1 p e 2p 1 si 1;i 2 y2 i 2 Hi Li p Ti Ti 1 yi dyi 2n ! 1 p e 2p y2 i 2 dyi 7:79 68 Chapter 7 7.6.3 Price We introduce ST ai i , where ai is taken from the set ai fLi ; Hi g, and consider the following four cases . If Li 0, ST . If Hi 1, ST ai i DOi (Moreover, if i N, ST aNN DOPN ), . If Li 0 and Hi 1, ST ai i Qi (Moreover, if i N, ST aNN V N ), . If Li 6 0 and Hi 6 1, ST ai i DKOi (Moreover, if i N, ST aNN DKOPN or DKOCN ). ai i UOi (Moreover, if i N, ST aNN UOCN ), Consequently each stair product is described by fai ji 1; :::; Ng and its price is v t e ra TN t ST a11 . . . ST aNN 7:80 7.7 Compound on forward-start strategy This product is a variant of the compound option on a strategy which will include a strategy of forward-starting options all ®xing at the maturity of the root option. A compound option's intrinsic value is the dierence of the strike and the Market Value (MV) of the underlying option strategy f MV K 7:81 This means that the holder of the options receives the underlying option strategy for the price K at the maturity of the root option on exercise of the root option. The relation is valid for both the option strategy being forwardstarting or a regular ®xed strategy. In order to price a compound option on a forward-starting option strategy we model the exchange rate by dSt mt St dt st St dW 7:82 Next we consider the horizon date Th , the value date for the horizon Tv , the maturity of the root option Tm , and the delivery date for the strike Td . The ®xing date for the forward-start strategy is the same as the maturity Tm . For each option of the strategy there can be a dierent maturity T and delivery Tid . The product has a price " !! # N X Th rTv ;Td Td Tv 7:83 f P STim K v Th IE e i1 We assume that the forward-start strategy is ®xed at maturity of the root option and hence depends only on the spot at maturity. In particular, the price of a forward-start option at the ®xing date is homogeneous of order one in the spot (see Section 7.2) and can be written as v STm STm v 1 7:84 RISK BOOKS The Pricing of Second Generation Exotics 69 In such a case the price of the compound is given by v vf vf N X i0 ! K STh ; ; Tm ; Td ; rdTv Td ; r fTv Td ; sTh Tm vf Pf 7:85 vf 1; ~ a; Tm ; Td ; T im ; T id ; r dTd T i ; r fTd T i ; sTm T im 7:86 d d where vf denotes the value function of a plain vanilla, vf the unity-price of the forward-start strategy at ®xing date and ~ a a vector of ®xing parameters relative to the spot at maturity using the corresponding forward rates and volatilities. This formula is valid for all strategies with a positive forward-start unity-price bounded away from zero. Examples of forward-start options which have a homogeneous price of order one in the ®xing spot are . plain vanilla options with the strike ®xed with K aS, . single barrier options with the strike ®xed with K aS and the barrier ®xed with B bS, . double barrier options with the strike ®xed with K aS and the barriers ®xed with L bS and H gS. After maturity of the root option the product is either worthless (if expired) or the sum of the ®xed forward-start options (if exercised). 7.8 Options on the minimum/maximum This section concerns the products whose underlying is the maximum or minimum of a basket of spots or exotic products. In the ®rst part, we introduce the forward contracts on the maximum or the minimum of a basket of currencies. 7.8.1 Best-of and worst-of currencies forwards Best-of forward Let us consider n exchange rates with the same base currency and n dierent foreign currencies with their normalisers Ni . The payo of this product is S S 1 7:87 max 1 ; ::; n N1 Nn We model the spots by dSi mi Si dt si Si dW yi 7:88 where the Brownian increments dW yi are correlated (ie < dW yi ; dW yj > T ij dt rij si sj dt). After a Cholesky decomposition, we can rewrite this as dSi mi Si dt FOREIGN EXCHANGE RISK N X j1 ij dWj 7:89 70 Chapter 7 where the Brownian increments dWi are independent. This implies ! N X 1 2 Si T Si t exp mi ij dWj s T t 2 i j1 7:90 In the following calculations we use the replacement Wi T txi . The price is given by S1 T Sn T t rpd Td Tp 1 max ; ::; v t IE e N1 Nn e rpd Td Tp IEt S1 TIIfS1 T>S2 T;::;Sn Tg . . . IEt Sn TIIfSn T>S1 T;::;Sn 1 Tg 1 7:91 For the ®rst expectation we get IEt S1 TIIfS1 T>S2 T;::;Sn Tg t 1 1 2 s1 T exp m1 S1 t 2 x1 ;::;xn 1 1 IIfS1 T>S2 T;...;S1 T>Sn Tg pn exp 2p p t s1 T tx1 1 2 x1 :: x2n dx1 . . . dxn 2 7:92 We solve this integral by ®rst working on the region where S1 > S2 and hence d 12 x1 > x2 with p S1 t 2 2 1 ln m m s s T t T t 11 21 x1 1 2 1 2 4 2 t S 2 p d12 x1 7:93 22 T t Moreover, S1 > S3 gives d 13 x1 ; x2 > x3 with 4 d 13 x1 ; x2 ln SS13 t m1 t m3 1 2 s21 p t T t 11 p 33 T t s23 T 31 x1 32 x2 (7.94) Again, S1 > S4 gives d 14 x1 ; x2 ; x3 > x4 with 4 d4 x1 ; x2 ; x3 ln SS14 t m1 t m4 1 2 s1 2 s24 T p t T t 11 p 44 T t 41 x1 42 x2 (7.95) Continuing this way, we get the price of the forward contract d i2 xi 1 d i2 x1 ;...;xn n p X 1 2 Si t e mi 2 si T tsi T txi ... v t e rpd Td Tp xi 1 i1 1 N d i4 x1 ; . . . ; xn 1 pn exp 2p x1 1 1 2 x . . . x2n 2 1 1 xn dx1 . . . dxn 1 xi 1 1 N d i4 x1 ; . . . ; xn 1 pn exp 2p x1 1 1 2 x . . . x2n 2 1 1 1 1 Worst-of forward In the case of a worst-of forward, the value is S1 Sn rpd Td Tp t v t e IE 1 min ;...; N1 Nn d i2 xi n 1 p X 1 2 e rpd Td Tp 1 Si t e mi 2 si T tsi T txi ... i1 43 x3 2 1 7:96 d i2 x1 ;...;xn xn 1 2 1 dx1 . . . dxn 1 7:97 RISK BOOKS The Pricing of Second Generation Exotics 71 7.8.2 Best-of call and worst-of put Best-of call The value is given by v t e rpd Td Tp S1 Sn IE max ; ::; N1 Nn 1 t 7:98 De®ning for i 1; . . . ; n 4 d i1 ln NSii mi 12 s2i T p T tsi t 7:99 we obtain for the value v t e rpd Td Tp n X Si t 1 e mi 1 s2 2 i T p tsi T txi xi d i1 i1 1 N d i4 x1 ; . . . ; xn 1 pn exp 2p 1 2 x1 . . . x2n 2 1 d i2 xi 1 x1 1 ... d i2 x1 ;...;xn xn 1 dx1 . . . dxn 2 1 7:100 1 We list a numerical example in Table 7.1. Table 7.1 Values of a one-year best-of call with spot US$/DM 1:6573, s 10:7%, r d 3:1953%, r f 5:0223% and £/DM 2:754173, s 8:5%, r d 3:1953%, r f 5:4923% for different numbers of steps using Gauss± Legendre integration. The normalisers are the spot values, the strike is 1. The Monte-Carlo simulation used 10 000 000 paths. Number of Steps Value 49 417.7713 99 416.7085 149 416.7879 199 416.8573 249 416.6880 299 416.8171 349 416.7681 399 416.7847 Monte Carlo 416.8990 Worst-of put Similarly, we obtain for the value of a worst-of put v t e e S1 Sn IE 1 min ; ::; N1 Nn i n d p X 1 1 2 Tp Si t 1 e mi 2 si T tsi T txi rpd Td Tp rpd Td t i1 xi 1 1 N d i4 x1 ; . . . ; xn 1 pn exp 2p x1 1 ... d i2 x1 ;...;xn xn 1 2 2 x1 . . . xn 1 dx1 . . . dxn 2 We list a numerical example in Table 7.2. FOREIGN EXCHANGE RISK d i2 xi 1 1 2 1 7:101 72 Table 7.2 Chapter 7 Values of a one-year worst-of put with spot US$/DM 1:6573, s 10:7%, r 3:1953%, r 5:0223%, spot £/DM 2:754173, s 8:5%, r d 3:1953%, r f 5:4923% and spot Sfr/DM 1:211774, s 5%, r d 3:1953%, r f 1:6588 for different numbers of steps using GaussLegendre integration. The normalisers are the spot values, the strike is 1. The Monte-Carlo simulation used 25 000 000 paths. Number of Steps Value 9 605.7585 19 696.4858 29 699.7040 39 699.8150 49 699.5770 59 699.3771 69 699.0469 99 699.0175 Monte Carlo 699.0960 7.9 Generalised options on the minimum/maximum We discuss the pricing of generalised options on the minimum/maximum. Generalised means in this context an arbitrary set of spots with a possibly dierent overall payo currency. The instruments Si with a base Bi and underlying currency Ui , which have possibly no common base currency, enter a Foreign Exchange product with payo in a pay-out currency B, ie, the payo is S S~ S S~ K 7:102 Q max 1 1 ; ; n n N1 Nn where the numbers Ni are normalisers and S~i stands for the conversion into a common denominator currency and Q for conversion to the global base currency B. Under the corresponding risk-neutral measure with respect to their domestic measure Bi all the spots follow dSUi Bi mUi Bi SUi Bi dt sUi Bi SUi Bi dW yi 7:103 There are three distinct cases . The base currency Bi is the global base currency B. In this case the pricing formulae need not be altered. . The underlying currency Ui is the global base currency B. In this case the drift is adjusted. . Neither base nor underlying currency is the same as the global base currency. In order to derive expressions for the general case we will expand the number of spots for these contracts with the corresponding set of Ui B and Bi B spots. For these spots all of them share the same base currency and hence their dynamics are described in the base currency measure. The dierential equations are RISK BOOKS The Pricing of Second Generation Exotics 73 y ~ dSUi B mUi B SUi B dt sUi B SUi B dW i 7:104 y 7:105 ~ dSBi B mBi B SBi B dt sBi B SBi B dW i With the cross volatilities sUi Bj ; sUi Uj ; sBi Bj the correlation matrix of the expanded system can be calculated. From there the Cholesky decomposition leads to equations using orthogonal Brownian motions X ~k ik dW 7:106 dSUi B mUi B SUi B dt sUi B SUi B k dSBi B mBi B SBi B dt sBi B SBi B Hence the dynamics of the spots SUi Bi domestic measure mUi Bi mUi B sUi Bi sUj Bj rUi Bi =Uj Bj X SUi B SBi B sUi B sUj B ik jk k ~k Nik dW 7:107 k have correlation and drift in the 1 2 sUi B 2 mBi B X X s2Ui Bi X s2Bi B sBi B sBj B ik jk 7:108 7:109 k X sBi B sUj B ik jk k sUi B sBj B ik jk k Using this information one can derive a correlation matrix that gives rise again to a Cholesky decomposition and the pricing formula with these changed coecients and drifts can be used. 7.9.1 Example We consider the case that all the involved currencies have a common underlying currency which is the global base currency. The equation for the drift terms is mUi Bi mBi Ui s2Ui Bi 7:110 The correlations are determined as rUi Bi =Uj Bj rBi Ui =Uj Bj rUi Bi =Uj Bj rBi Ui =Bj Uj 7:111 7:112 and are the same as in the non-quanto case. For pricing the existing undiscounted formula is used with adapted risk-neutral drift for each currency Qe rB T Qe PriceGeneralisedBW Si ; rBi ; rUi ; mi rBi rB T PriceBW Si ; rBi ; rUi ; mi rBi FOREIGN EXCHANGE RISK rUi ; sUi Bi ; rUi Bi =Uj Bj rUi s2Ui Bi ; sUi Bi ; rUi Bi =Uj Bj 7:113
© Copyright 2026 Paperzz