Arch. Geflügelk. 2002, 66 (6), 274 – 279, ISSN 0003-9098. Verlag Eugen Ulmer GmbH & Co., Stuttgart The functional properties of muscles from force fed Mulard ducks. 2. The thermal properties of muscle proteins. Funktionelle Eigenschaften der Muskeln von zwangsgefütterten Mulardenten. 2. Thermische Eigenschaften der Muskelproteine Janina Wołoszyn1 Manuskript eingegangen am 14. November 2001, angenommen am 9. Februar 2002 Introduction The texture, appearance and flavour of meat are changed during heat treatment. The most intense changes in meat during heating are due to changes in muscle proteins. The important process induced by heat is thermal denaturation of muscle proteins a process which initiates various other molecular processes as e.g. protein to protein aggregations (Stabursvik and Martens, 1980). Differential scanning calorimetry (DSC) is a thermo-analytical technique for monitoring changes in physical or chemical state and properties of materials as a function of temperature, by detecting the heat changes associated with such processes. In meat technology the DSC technique can monitor phase transitions and chemical reactions occuring within a muscle and can be successfully applied to measuring thermal transitions or denaturation temperatures of proteins (Kijowski and Mast, 1988; Kijowski, 1989). The most commonly specified parameters are onset temperature, temperature of maximum peaks and enthalpy changes. In the DSC the heat denaturation of a protein is detected by an endothermal peak as a function of increasing sample temperature – a D.S.C. thermogram. Information about the thermal stabilities of the major muscle proteins at different pH and salt levels may yield practical information with regard to meat processing. It is the basic information on individual muscle proteins and their interactions. The DSC technique is used for studies on the thermal transitions of proteins in muscle tissue as well as in isolated muscles proteins. The thermal characteristics of purified proteins often differ from those occurring in natural systems. It depends on physiological state and pH of muscles, thermal stabilities of proteins, and kind of muscles (Wright et al., 1977; Stabursvik et al., 1984; Kijowski, 1989; Synowiecki and Grabowska, 1984; Ndi and Brekke, 1992). The addition of NaCl to the meat causes considerable modifications of physicochemical features of myofibrillar proteins, the fraction mainly responsible for meat quality. The effect of ions Cl on heat stability of myofibrillar proteins of different animals was monitored in studies by Quinn et al. (1980), Stabursvik and Martens (1980), Wright and Wilding (1984), Kijowski and Mast (1988a) using DSC technique. 1 Department of Animal Food Technology, University of Economics, Wrocław, Poland The aim of this work was to characterize the thermal properties of breast and leg muscles (raw meat and with addition of 2.5% NaCl to meat) from force fed Mulard ducks and drakes. The onset temperature (T0), maximum thermal transition temperatures (Tmax) and denaturation enthalpy (DH) were evaluated. These parameters can provide valuable information not only on the intrastinic stability of the protein, its internal bonding and structure, but also on its process behaviour. Materials and methods The information on breed and age of Mulard ducks was described, previously (Wołoszyn, 2002; Report 1). The material for examination were the breast (BM) and leg (LM) muscles cut out 24 h after killing from industrially slaughtered male and female force fed ducks. In the present work 8 pieces of each kind of muscles were investigated. For each of the eight pieces of muscles three repetitions were made and the average values are presented in tables. The pH values of raw muscles regardless of sex were 5.70–5.97 (BM) and 6.02–6.22 (LM) and with addition of 2.5% NaCl 6.02–6.07 (BM) and 6.21–6.37 (LM), respectively. The Seiko Instrument Inc. DSC 22 C Differential Scanning Calorimeter was used. The samples (app. 14.4– 19.9 mg) were taken from central part of Pectoralis Major (PM) and Semitendinosus muscles (SE) and placed in DSC hermetic aluminium pans. The hermetic capsule with distilled water was used as reference. Calibration of the instrument was carried out with high purity metals (stannum, indium and gallium) with accurately known melting point and enthalpy (stannum – DH ¼ 60.62 mJ mg1, Tm ¼ 232 C; indium – DH ¼ 28.59 mJ mg1, Tm ¼ 156.6 C; gallium – DH ¼ 80.17 mJ mg1, Tm ¼ 29.8 C). The heating conditions of samples were programmed and fully controlled by microcomputer within the range of 30–90 C. The heating rate (HR) amounted 3 /min for all samples. The analysis was conducted according to the Operator’s Handbook – Seiko Instr. DSC (1995). Before statistical analysis gross errors were eliminated in data. The T-Student’s test was used to establish significant differences between means of experimental results. The statistical analysis was conducted with the application of the SCIENTIST PC program. Archiv für Geflügelkunde 6/2002 WOŁOSZYN, Functional properties of muscles from force fed Mulard ducks. 2. thermal properties 275 Figure 1. Thermal transitions of muscle (PM) proteins from Mulard ducks Thermische Zustandsänderungen der Muskelproteine im Brustmuskel (PM) von Mulardenten Results The raw PM and SE muscles of both sexes exhibited a complex thermogram with three major areas of endothermic transitions. The thermal curve covered nine peaks in case of PM muscles (Figure 1). The first area with the major peak at a maximum thermal transition temperature of Tmax I ¼ 55.8 C was characteristic for both sexes (Table 1). In this area additional peaks for duck’s and (no significant differences) for drake’s muscles were observed. This area corresponded with the denaturation of myosin and its subfragments and parts of sarcoplasmic proteins. The thermal curve covered six peaks in case of SE musTable 1. Peaks in thermograms of PM muscles for ducks and drakes Peak-Temperaturen des Brustmuskels von Enten und Erpeln Tmax Peak number Duck Drake t-Test I 1 2 3 4 5 6 7 8 9 55.8 58.0 61.0 62.5 64.0 66.4 67.7 72.8 76.8 55.8 57.8 60.9 62.9 64.0 66.1 69.7 72.0 76.7 0.000 0.241 0.104 0.487 0.000 0.306 3.703* 0.898 0.121 II III * – significant difference between means (P < 0.05) Archiv für Geflügelkunde 6/2002 cles (Figure 2). The first area was displayed only as one peak for both sexes (Table 2). The second area was recognized as the sarcoplasmic and connective tissue proteins denaturation. There were no significant differences between Tmax II for both sexes. The third areas of the thermograms were assigned to actin denaturation (no significant differences for both kinds of muscles and sexes). It was stated that most differences in thermal transition of the PM muscle proteins in comparison with the SE muscle proteins were in the first area which corresponded to the denaturation of myosin and its subfragments and parts of sarcoplasmic proteins. In this area, not only the additional peaks were observed for PM muscles but significant differences in values of Tmax I of the major peaks of the PM and SE muscles, as well. Table 2. Peaks in thermograms of SE muscles for ducks and drakes Peak-Temperaturen des Schenkelmuskels von Enten und Erpeln Tmax Peak number Duck Drake t-Test I II 1 2 3 4 5 6 58.7 66.2 67.8 70.3 71.2 76.7 58.7 65.5 67.4 70.0 71.4 76.0 0.000 2.163* 0.421 0.341 0.221 0.636 III * – significant difference between means (P < 0.05) 276 WOŁOSZYN, Functional properties of muscles from force fed Mulard ducks. 2. thermal properties Figure 2. Thermal transitions of muscle (SE) proteins from Mulard ducks Thermische Zustandsänderungen der Muskelproteine im Schenkelmuskel (SE) von Mulardenten A higher onset temperature (T0) of the first transition was observed for SE muscles of both sexes than for PM ones. Furthermore, regardless of sex the denaturation enthalpy for the SE muscle proteins was significantly higher than for the PM ones (Table 3). All these differences may as well result from different contents of connective tissues and different heat stability of breast and leg muscle proteins. The various thermal stability between red and white muscles is ascribed to a different contribution of each subfragments of myosin in these muscles, what previously was shown by Wu (1969), Lowey and Risby (1971) and Pelloni-Müller et al. (1976). The addition of 2.5% NaCl to meat reduced the number of peaks on thermograms of both kinds of muscles. The major peak and three additional peaks (which corresponded to denaturation of myosin and its subfragments and parts of sarcoplasmic proteins) in case of the PM raw muscles were reduced to one peak with Tmax I ¼ 51.9 C for ducks and with Tmax I ¼ 52.7 C for drakes, after addition of NaCl to the meat. However, the addition of NaCl to meat caused a decrease in the value of Tmax I from 58.7 C (for both sexes) to values of 55.1 C for duck’s and 55.4 C for drake’s SE muscles. In the second area (corresponding to denaturation of sarcoplasmic and connective tissue proteins) the number of peaks was reduced to one with Tmax II ¼ 66.9 C, 67.3 C for the PM duck’s and drake’s muscles, and 68.7 C, 68.9 C for the SE muscles, respectively. The third area (denaturation of actin) was characterized by lower values of Tmax III, as well. They were decreased from 76.8 C (duck PM), 76.7 C (drake PM), 76.7 C (duck SE), 76.0 C (drake SE) to values of 71.4 C, 72.1 C, 73.2 C, 72.9 C, respectively (Figure 3). The addition of NaCl caused the decrease of the onset temperature of transitions. At the same time with Table 3. Onset temperatures (T0) and total denaturation enthalpy (DH) Anfangstemperaturen (T0) und gesamte Denaturierungenthalpie (DH) Parameter T0 [ C] T0 [ C] with NaCl DH [ J/g protein] DH [ J/g protein] with NaCl Duck Drake PM SE t-Test 47.9 42.5 14.5 10.9 49.6 47.1 18.8 13.3 2.173 3.167 3.468 2.683 (*) (*) (*) (*) PM SE t-Test 48.3 43.4 13.4 9.8 51.8 46.2 18.7 13.1 2.576* 3.178* 2.871* 2.717* * – significant difference between means (P < 0.05) Archiv für Geflügelkunde 6/2002 WOŁOSZYN, Functional properties of muscles from force fed Mulard ducks. 2. thermal properties 277 Figure 3. Thermal transitions of muscle (PM and SE) proteins from Mulard ducks (with 2.5% NaCl) Thermische Zustandsänderungen der Muskelproteine in Brust- und Schenkelmuskeln (PM und SE) von Mulardenten (mit Zusatz von 2.5% NaCl) KAP, KAN ¼ PM and SE Duck; KRP, KRN ¼ PM and SE Drake lower maximum thermal transition temperatures a significant decrease in the total enthalpy occurred (Table 3). Also, treating muscles with NaCl decreased heat stability of myosin and actin. A higher onset temperature of the first transition was observed for the SE muscle of proteins of both sexes, as well as a significantly higher total denaturation enthaply in comparison with the PM muscle proteins, as in the case of muscles without NaCl. Disscusion The own results which present thermal transitions of force fed duck PM and SE muscle proteins of both sexes indicate three major areas of these transitions with different numbers of peaks. Previously, the DSC method was used for analysis on the thermal transitions of proteins in muscle tissue of rabbit (Wright et al., 1977; Wright and Wilding, 1984), beef (Stabursvik and Martens, 1980; Quinn et al., 1980; Findlay and Stanley, 1984; Wagner and Anon, 1985), pork (Stabursvik et al., 1984), chicken (Kijowski and Mast 1988), turkey (Trziszka et al., 1995; Popiel et al., 1997), goose (Popiel et al., 1997). The published thermograms of muscle tissues of different animals generally had three major distinguishable peaks (52–60 C – myosin and its subfragments, 63–70 C – sarcoplasmic and connective tissue proteins, 70–80 C – actin), but they vary greatly in details. The interpretations of the peaks also vary. The probable causes of differences in muscle tissue thermograms and their interpretations may be: pH of muscles, Archiv für Geflügelkunde 6/2002 contents of connective tissue, type of muscle (red/white, mammalian/avian), rates of heating, and kind and susceptibility of the instrument used. In own results, a higher onset temperature (T0) of the first transition for SE muscles was observed for both sexes. Furthermore, it was found that regardless of sex the denaturation enthalpy for the SE muscle proteins was significantly higher than for the PM ones. The same regularity was stated by Kijowski and Mast (1988) for chicken muscle and skin proteins. Chicken breast and leg muscle proteins started to denaturate at lower temperatures than skin proteins. The enthalpy to induce denaturation of skin collagen was significantly higher than that necessary for denaturation muscle proteins. Findlay and Stanley (1984) observed, that the total enthalpy to induce denaturation of beef muscle semimembraneosus proteins was higher than for denaturation muscle psoas major proteins. They suggested that this may result from the different content of connective tissue. In the present study a destabilizing effect of NaCl on duck muscle proteins by reduction of the number of peaks on thermograms and by lowering the Tmax and the total enthalpy of denaturation was stated. The destabilizing effect of Cl ions on myofibrillar proteins was observed in previous studies with purified proteins from rabbit and beef muscles (Wright et al., 1977; Stabursvik and Martens, 1980; Wright and Wilding, 1984), and with beef, rabbit, pork and chicken muscle tissue (Quinn et al., 1980; Kijowski and Mast, 1988a), too. They observed in their studies that the typical thermogram which consisted of a few peaks was severely reduced to one or two peaks. 278 WOŁOSZYN, Functional properties of muscles from force fed Mulard ducks. 2. thermal properties The presence of Cl ions dramatically altered the heat stability of proteins by lowering the temperature of denaturation and total enthalpy of thermal transitions. Salt can decrease the heat stability of the muscle proteins, so that they denature and coagulate at lower temperature. According to the suggestions of Von Hippel and Schleich (1969) binding the ion Cl (from NaCl) to potentially active sites on a protein causes displacement of the water molecules which stabilize protein structures. Thus, there is a presumably competition between water molecules and added neutral salts for the potential binding sites causing a lowering of temperature as well as energy of denaturation. This phenomenon can be very important for the poultry processing industry (Kijowski and Mast, 1988a). In conclusion, the PM and SE muscles from force fed Mulard ducks exhibited a complex thermogram with three major endothermic transitions. The SE muscle proteins required more heat energy to denature compared to the PM muscles. This indicated that the PM muscle proteins were more sensitive to the thermal process than the SE ones. The process of heat treatment for breast muscle’s products may require to conduct in a lower final temperature than leg muscle’s products. The addition of 2.5% NaCl to meat decreased the onset temperature, the maximum thermal transition temperatures and total denaturation enthalpy. This means, that the force fed duck muscle’s products which incorporate salts will require lower final temperature than products with no salt, but no lower temperature than needed to preserve products free from the bacterials. Zusammenfassung Funktionelle Eigenschaften der Muskeln von zwangsgefütterten Mulardenten. 2. Thermische Eigenschaften der Muskelproteine Bei zwangsgefütterten Mularden wurden die thermischen Eigenschaften von Brust- (Pectoralis Major – PM) und Schenkelmuskeln (Semitendinosus – SE) für beide Geschlechter untersucht. Ferner wurde auch die Auswirkungen einer Zugabe von 2.5% NaCl zu Muskeln anaylsiert. Hierzu wurde die Differential-Scanning-Kalorimetrietechnik (DSC) eingesetzt. Die Anfangs- (T0) und Maximaltemperaturen (Tmax) der thermischen Zustandsänderungen und der gesamten Denaturierungsenthalpie (DH) wurden bestimmt. An Hand der Thermogramme der Brust- und Schenkelmuskeln wurden drei Bereiche endothermer Veränderungen beobachtet. Der erste Bereich der Zustandsänderungen (ein Hauptpeak und drei zusätzlich Peaks für Brustmuskeln – PM; nur ein Peak für die Schenkelmuskeln – SE) korrespondierte mit der Denaturierung von Myosin, seiner Subfragmente und eines Teils der sarkoplasmatischen Proteine. Der zweite Bereich (vier Peaks bei beiden Muskelpartien und bei beiden Geschlechtern) korrespondierte mit der Denaturierung der sarkoplasmatischen Proteine und der Proteine des Bindegewebes. Der dritte Bereich (ein Peak bei beiden Muskelpartien und bei beiden Geschlechtern) wurde als die Denaturierung des Aktins identifiziert. In diesen Untersuchungen wurden höhere T0 und DH-Werte für Schenkelmuskeln (SE) im Vergleich zu Brustmuskeln (PM) bei beiden Geschlechtern beobachtet. Die Zugabe von 2.5% NaCl zu den Muskeln reduzierte die beobachtete Peakanzahl in den Thermogrammen. Es wurde auch eine Reduzierung der To, Tmax und DH-Werte festgestellt. Stichworte Summary The thermal properties of breast (Pectoralis Major – PM) and leg (Semitendinosus – SE) muscles from force fed Mulard ducks of both sexes were investigated. The effects of an addition of 2.5% of NaCl to meat on thermal properties of muscle proteins were investigated, too. In these experiments the diferrential scanning calorimetry (DSC) technique was used. The onset temperature (T0), maximum thermal transition temperatures (Tmax) and total denaturation enthalpy (DH) were evaluated. The breast and leg muscles of both sexes exhibited complex thermograms with three major endothermic transitions. The first area (one major and three additional peaks for the PM muscles) corresponded to the denaturation of myosin and its subfragments and parts of sarcoplasmic proteins. The first area displayed only one peak in case of leg (SE) muscles. The second area (four peaks for both kinds of muscles and sexes) was assigned to sarcoplasmic and connective tissue proteins denaturation. The third area (one peak for both kinds of muscles and sexes) was recognized as the actin denaturation. The higher onset temperature and total denaturation enthalpy for leg (SE) than breast (PM) muscles of both sexes was observed. The addition of 2.5% NaCl to meat caused a reduction in number of peaks on the thermograms. A decrease of onset temperature, maximum thermal transition temperatures and total denaturation enthalpy was found, as well. Keywords Ducks, meat, muscles, differential scanning calorimetry, thermal transition, protein, onset temperature, maximum temperature, enthalpy Ente, Muskeln, Differential-Scanning-Kalorimetrie, thermische Zustandsänderung, Protein, Anfangstemperatur, Maximaltemperatur, Enthalpie References Findlay, C. J. and D. W. Stanley, 1984: Differential scanning calorimetry of beef muscle. J. Food Sci. 49, 1523–1516. Kijowski, J. and M. G. Mast, 1988: Thermal properties of proteins in chicken broiler tissues. J. Food Sci. 53, 363–366. Kijowski, J. and M. G. Mast, 1988a: Effect of sodium chloride and phosphates on the thermal properties of chicken meat protein. J. Food Sci. 53, 367–370. Kijowski, J., 1989: Application of differential scanning calorimetry to the study of thermodynamic properties of food proteins, particularly of poultry, red meat and egg proteins. Acta. Alim.Polonica 15 (39), 299–315. Lowey, S. and D. Risby, 1971: Light chains from fast and slow muscle myosins. Nature 234, 81–85. Ndi, E. E. and C. J. Brekke, 1992: Thermal aggregation properties of duck salt-soluble proteins at selected pH values. J. Food Sci. 57, 1316–1320. Operator’s Handbook – Seiko Instr. DSC 22C 1995. Pelloni-Müller, G., M. Ermini and E. Jenny, 1976: changes in myosin light and heavy chain stoichiometry during development of rabbit fast, slow and cardiac muscle. FEBS. Lett. 70, 113–117. Popiel, A. K., T. Smolińska and B. Zaja˛c, 1997: Thermal characteristics of myofibrillar proteins- comparative study of different poultry species. Proceedings of 13th European Symposium on the Quality of Poultry Meat, Poznañ, Poland, 305–309. Quinn, J. R., D. P. Raymond and V. R. Harwalker, 1980: Differential scanning calorimetry of meat proteins as affected by processing treatment. J. Food Sci. 45, 1146–1149. Stabursvik, E. and H. Martens, 1980: Thermal denaturation of proteins in post rigor muscle tissue as studied by differential scanning calorimetry. J. Sci. Food Agric. 31, 1034–1042. Archiv für Geflügelkunde 6/2002 WOŁOSZYN, Functional properties of muscles from force fed Mulard ducks. 2. thermal properties Stabursvik, E., K. Fretheim and T. Froystein, 1984: Myosin denaturation in pale, soft and exudative (PSE) porcine muscle tissue as studied by differential scanning calorimetry. J. Sci. Food Agric. 35, 240–244. Synowiecki, J. and J. Grabowska, 1984: Zastosowanie ró_znicowej analizy termicznej do badania cieplnych zmian białek. Przemysł Spo_zywczy 37, 9–11. Trziszka, T., W. Kopeć, T. Smolińska and M. Oziembłowski, 1995: Thermal characteristics of turkey muscle tissue proteins. Proceedings 12th European Symposium on the Quality of Poultry Meat, Zaragoza, Spain, 377–382. Von Hippel, P. H. and T. Schleich, 1969: Structure and stability of biological macromolecules. Eds. Dekker M. Inc. New York. 279 Wagner, R. J. and M. C. Anon, 1985: Denaturation kinetics of myofibrillar proteins in bovine muscle. J. Food Sci. 50, 1547– 1563. Wright, D. J., I. B. Leach and P. Wilding, 1977: Differential scanning calorimetric studies of muscle and its constituent proteins. J. Sci. Food. Agric. 35, 557–564. Wright, D. J. and P. Wilding, 1984: Differential scanning calorimetric studies of muscle and its proteins: myosin and subfragments. J. Food Agric. 35, 357–372. Wu, C. C., 1969: Comparative studies on myosin from breast and leg muscles of chicken. Biochem. 8, 39–48. Correspondence: Dr. Janina Wołoszyn, Department of Animal Food Technology, University of Economics, Komandorska 118/120, 53–345 Wrocław, Poland; e-mail: [email protected] Buchbesprechung Alles über Rassetauben, Band 6: Tümmlertauben, Hochflugtauben, Spielflugtauben Erich Müller (Hrsg.), Alles über Rassetauben, Band 6 Tümmlertauben, Hochflugtauben, Spielflugtauben; Verlag Oertel und Spörer, Reutlingen, Neuerscheinung 2002, 110 Farb- und 70 s/w-Abbildungen, 164 Seiten, Preis 28.–– EUR, ISBN 3-88627-606-6 Der sechste Band der Reihe „Alles über Rassetauben“ befasst sich mit den vielfältigen Rassen der Tümmlertauben, die insbesondere bei Freiflug-Wettkämpfen zum Einsatz kommen. Der Herausgeber Erich Müller hat in bewährter Art und Weise unter Hinzuziehung kompetenter Taubenzüchter für 90 in Deutschland anerkannte Tümmlertaubenrassen geschichtliche Hintergründe, rassenspezifische Anforderungen sowie umfassende Informationen zur Haltung und zur Ausstellungsvorbereitung, gespickt mir weiteren wertvollen Tipps, zusammengestellt. Die Unterteilung der Tümmlerrassen erfolgt dabei nach der Schnabellänge –– mittelschnäblig (63 Rassen), langschnäblig (8), kurzschnäblig (19). Für Leser, die sich bisher nicht so intensiv mit der Taubenzucht befasst haben, ist es allerdings etwas verwirrend, dass im Titel neben den Tümmlertauben auch Hochflugtauben und Spielflugtauben angegeben werden. Diese stellen schließlich keine eigenständigen Taubenrassen dar, sondern sind spezielle Herauszüchtungen der Tümmlertauben mit besonderen Eigenschaften. Bei der gewählten Vorgehensweise wäre es daher auch konsequent gewesen, die ebenfalls behandelten Brieftauben in den Titel aufzunehmen. Insgesamt handelt es sich bei den Tümmlertauben um eine nicht nur vom Aussehen (Körperformen, Gefiederformen und -farben, Gefiederzeichnungen), sondern auch von den speziellen Archiv für Geflügelkunde 6/2002 Fähigkeiten her recht heterogene Kategorie der Rassetauben. So sind z. B. Rundhauben oder Latschen weit verbreitet. Auf Grund von besonderen Fähigkeiten werden die Tümmler unter anderem in Hochflugtauben und Spielflugtauben unterteilt. Die Hochflugtauben zeichnen sich dadurch aus, dass sie in großer Höhe durchaus mehrere Stunden verbringen können. Eine Besonderheit sind ferner die Sturzflugtauben, die aus großer Höhe praktisch im freien Fall zum Erdboden zurückkehren. Im Gegensatz hierzu stehen die Spielflugtauben, zu denen die Roller, Purzler und Ringschläger gehören. Roller und Purzler vollführen regelrechte Kunststücke in der Luft, die dem Beobachter, der diese das erste Mal sieht, das Blut stocken lassen. Beschaulicher geht es in der Regel bei den Ringschlägern zu, die unter heftigem Flügelklatschen Kreise direkt über der Täuberin ziehen, um dieser zu imponieren. Den Abschluss des Buches bildet das Kapitel Brieftauben – Leistungsflugtauben. Berichtet wird hier über eine Sportart, die heute leider nicht mehr so verbreitet ist wie in der Vergangenheit. Es ist doch faszinierend, wie diese Tauben über große Entfernungen mit durchschnittlichen Geschwindigkeiten von 60 km/h (maximale Geschwindigkeit 100–120 km/h) sicher den Weg zurück zum Schlag finden, wobei sie sich überwiegend am irdischen Magnetfeld orientieren. Abgerundet wird das Buch wieder mit dem Literaturverzeichnis, den Autobiografien der Autoren und dem Stichwortverzeichnis. Der vorliegende Band 6 ist eine konsequente Fortführung der begonnenen Reihe „Alles über Rassetauben“ und liefert in bewährter Art umfassende Informationen zu den Tümmlertauben. Dieser Band ist ohne Frage ein Muss für all diejenigen, die bereits frühere Bände dieser Reihe erworben haben, und kann auch wärmstens jedem Freund freifliegender Tauben empfohlen werden. M. A. Grashorn
© Copyright 2026 Paperzz