TARGET COURSE FOR IIT-JEE 2010 PHASE- ALL (REVISION TEST-AT HOME) MATHEMATICS, PHYSICS, CHEMISTRY TEST # 5 (TR-2(1)) PAPER - 1 Date : 14/02/2010 Time : 3 : 00 Hrs. MAX MARKS: 249 Name : _________________________________________________________ Roll No. : __________________________ INSTRUCTIONS TO CANDIDATE A. GENERAL : SEAL 1. Please read the instructions given for each question carefully and mark the correct answers against the question numbers on the answer sheet in the respective subjects. 2. Write your Name & Roll No. in the space provided on this cover page of question paper. 3. The Question paper contains blank space for your rough work. No additional sheet will be provided for rough work. 4. The answer sheet, a machine readable Optical Mark Recognition (OMR) is provided separately. 5. Do not break the seal of the question-paper booklet before being instructed to do so by the invigilators. 6. Blank papers, Clipboards, Log Tables, Slide rule, Calculators, Cellular phones, Pagers and Electronic gadgets in any form are Not allowed to be carried inside the examination hall. B. FILLING THE OMR : 7. Fill your Name, Roll No., Batch, Course and Centre of Examination in the blocks of OMR sheet and darken circle properly. 8. DO NOT TAMPER WITH/ MUTILATE THE OMR. C. MARKING SCHEME : Space for rough work Each subject in this paper consists of following types of questions:Section - I 9. Multiple choice questions with only one correct answer. 3 marks will be awarded for each correct answer and –1 mark for each wrong answer. 10. Multiple choice questions with multiple correct option. 4 marks will be awarded for each correct answer and –1 mark for each wrong answer. 11. Passage based single correct type questions. 4 marks will be awarded for each correct answer and –1 mark for each wrong answer. Section –II 12. Column matching type questions. 6 marks will be awarded for the complete correctly matched answer and No Negative marking for wrong answer. However, 1 mark will be given for a correctly marked answer in any row. Corporate Office, CP Tower, Road No.1, IPIA, Kota (Rajasthan ) - 324 005 Phone (0744) -3040000, 2430505; Fax (0744) 2434159 email : [email protected] ; Website : www.careerpointgroup.com Now, Schedule practice questions are available on internet also, Visit www.examtayari.com Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 1 Important Data (egRoiw.kZ vk¡dM+s) Atomic Masses: H = 1, C = 12, K = 39, O = 16, Fe= 56, N= 14, I = 127, Ca = 40, Mg = 24, Al = 27, F = 19, Cl = 35.5, S = 32, (ijek.kq nzO;eku) Na = 23 Constants : R = 8.314 Jk–1mol–1, h = 6.63 × 10–34 Js , C = 3 × 108 m/s, e = 1.6 × 10–19 Cb,me = 9.1 × 10–31Kg, (fu;rkad) : RH = 1.1 × 107 m–1, log 2 = 0.3010, log 3 = 0.4771, log(5.05) = 0.7032; ln2 = 0.693; ln 1.5 = 0.405; ln3 = 1.098 Space for Rough Work (jQ+ dk;Z gsrq LFkku) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 2 MATHEMATICS Section – I [k.M - I Questions 1 to 9 are multiple choice questions. Each iz'u 1 ls 9 rd cgqfodYih iz'u gSaA izR;sd iz'u ds pkj fodYi question has four choices (A), (B), (C) and (D), out of (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. + 3 marks will be given for each correct answer Q.1 The value of tan 3 α cot α cannot lie in (A) ] 0, 2/3 [ (C) ] 4/3, 4 [ vafdr dhft;sA izR;sd lgh mÙkj ds fy, + 3 vad fn;s tk;asxs rFkk izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk;sxkA and – 1 mark for each wrong answer. Q.1 OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj tan 3 α cot α dk eku fuEu esa ugha gks ldrk gS (A) ] 0, 2/3 [ (C) ] 4/3, 4 [ (B) ] 1/3, 3 [ (D) ] 2, 10/3 [ (B) ] 1/3, 3 [ (D) ] 2, 10/3 [ Q. 2 If 2 sin2 ((π/2) cos2x) = 1 – cos (π sin 2x), x ≠ (2n + 1) π/2, n ∈ I, then cos 2x is equal to ;fn 2 sin2 ((π/2) cos2x) = 1 – cos (π sin 2x), x ≠ (2n + 1) π/2, n ∈ I, rc cos 2x = Q. 3 (A) 1/5 (B) 3/5 (C) 4/5 (D) 1 r r If u & v are non-zero vectors such that one of (C) 4/5 (D) 1 r r ;fn 'kwU; lfn'k u o v bl izdkj gS fd ,d dks Q. 2 (A) 1/5 Q. 3 (B) 3/5 them can be expressed as a scalar multiple of other r r & satisfy (2cosθ +1) u + ( 3 cot θ + 1) v = 0 nwljs ds vfn'k x.kqu ds :i esa fy[k ldrs gS rFkk then most general value of θ is gS rc θ dk O;kid eku gksxk 2π ; n∈I (A) nπ + 3 (A) nπ + (C) 2nπ + 2π ; n∈I 3 5π (B) nπ + ; n∈I 6 (D) 2nπ + 5π ; n∈I 6 r r (2cosθ +1) u + ( 3 cot θ + 1) v = 0 dks lUrq"V djrs (C) 2nπ + 2π ; n∈I 3 2π ; n∈I 3 (B) nπ + 5π ; n∈I 6 (D) 2nπ + 5π ; n∈I 6 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 1 Q.4 1 1 If z = sec–1 x + +sec–1 y + , where xy > 0, x y Q.4 If x + y + z = 12 & x2 + y2 + z2 = 96 1 1 1 & + + = 36 then value of x3 + y3 + z3 is x y z (A) 862 Q.6 Q.7 Q. 8 (B) 863 (C) 865 x y rc z dk og eku (fn;s x;s ekukas esa ls) tks lEHko ugha gS] gksxk - then the value of z (among the given values) is not possible5π 7π 9π 5π (A) (B) (C) (D) 6 10 10 3 Q.5 1 1 ;fn z = sec–1 x + + sec–1 y + , tgk¡ xy > 0, (A) Q.5 5π 6 (B) 7π 10 (C) 9π 10 (D) 5π 3 ;fn x + y + z = 12 o x2 + y2 + z2 = 96 1 1 1 + + = 36 rc x3 + y3 + z3 = x y z (A) 862 (B) 863 (C) 865 (D) 866 o (D) 866 The number of solutions of equation log6 (x + 3) = 7 – x is (A) 0 (B) 2 (C) 1 (D) None of these Q.6 If p, q, r, s, t are numbers such that p + q < r + s; q + r < s + t; r + s < t + p; s + t < p + q; then the largest and the smallest numbers are respectively(A) p and q (B) r and t (C) r and p (D) q and p Q.7 In a third order determinant, each element of the first column consists of sum of two terms, each element of the second column consists of sum of three terms and each element of third column consists of sum of four terms. Then, it can be decomposed in n determinants, where n has the value (A) 24 (B) 16 (C) 9 (D) 1 Q. 8 lehdj.k log6(x + 3) = 7 – x ds gyksa dh la[;k gksxh (A) 0 (B) 2 (C) 1 (D) bueas ls dksbZ ugha ;fn la[;k,sa p, q, r, s, t bl izdkj gS fd p + q < r + s ; q + r < s + t; r + s < t + p; s + t < p + q; rc egÙke o U;wure la[;k,sa Øe'k% gksxh (A) p rFkk q (C) r rFkk p (B) r rFkk t (D) q rFkk p ,d rhu Øe ds lkjf.kd esa] izFke LrEHk dk izR;sd vo;o nks inksa dk ;ksx gS] f}rh; LrEHk dk izR;sd vo;o rhu inksa dk ;ksx gS rFkk rhljs LrEHk dk izR;sd vo;o pkj inksa dk ;ksx gS rc bls n lkjf.kd esa rksM+k tk ldrk gS] rks n dk eku gksxk (A) 24 (B) 16 (C) 9 (D) 1 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 2 Q. 9 r − 1 r If the matrix Mr is given by Mr = , r − 1 r r = 1, 2, 3 .... Then the value of det (M1) + det(M2) + .... + det (M2009) is (A) 2008 (B) 2009 (C) (2009)2 Which of the following set of values of x satisfies the equation 2( 2 sin 2 x − 3 sin x +1) + 2( 2 − 2 sin 2 can lie in –π π (A) , 8 8 3π 5π (C) , 8 8 (B) 2009 (D) (2008)2 (A), (B), (C) rFkk (D) gS]a ftuesa ls ,d ;k ,d ls vf/kd fodYi lgh gaAS OMR 'khV esa iz'u dh iz'u la[;k ds le{k vius mÙkj vafdr dhft,A izR;sd lgh mÙkj ds fy, + 4 vad fn;s tk;saxs rFkk izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk;sxkA Q. 10 x 2 x + 3 sin x ) The solution of the inequality sin6x + cos6x > r − 1 iz'u 10 ls 14 rd cgqfodYih iz'u gaAS izR;sd iz'u ds pkj fodYi =9 π π (A) x = nπ ± , n ∈ I (B) x = nπ ± , n ∈ I 6 3 π (C) x = nπ, n ∈ I (D) x = 2nπ + , n ∈ I 2 Q. 11 r ;fn eSfVªDl Mr = , tgk¡ r = 1, 2, 3 .... gS] r r − 1 rc det (M1) + det(M2) + .... + det (M2009) dk eku gksxk (A) 2008 (C) (2009)2 (D) (2008)2 Questions 10 to 14 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE THAN ONE) is correct. Mark your response in OMR sheet against the question number of that question. + 4 marks will be given for each correct answer and –1 mark for each wrong answer. Q. 10 Q. 9 ds ekuksa ( 2 sin 2 x − 3 sin x +1) dk +2 og leqPp; ( 2 − 2 sin 2 x + 3 sin x ) tks lehdj.k = 9 dks larq"V djrk gS] gksxk π π , n ∈ I (B) x = nπ ± , n ∈ I 6 3 π (C) x = nπ, n ∈ I (D) x = 2nπ + , n ∈ I 2 5 6 6 vlfedk sin x + cos x > dk gy fuEu esa gksxk 8 (A) x = nπ ± 5 8 Q. 11 π 3π (B) , 4 4 (D) All are correct –π π (A) , 8 8 π 3π (B) , 4 4 3π 5π (C) , 8 8 (D) lHkh lR; Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 3 Q.12 Q. 13 2 tan–1 (–3) is equal to Q.12 (A) – cos–1 (–4/5) (A) – cos–1 (–4/5) (B) – π + cos–1 (4/5) (B) – π + cos–1 (4/5) (C) – π/2 + tan–1 (–4/3) (C) – π/2 + tan–1 (–4/3) (D) cot–1 (4/3) (D) cot–1 (4/3) 8ax If x = 9 is solution ofln (x2 +15a2) –ln (a –2) = ln a −2 Q. 13 then (A) a = Q. 14 2 tan–1 (–3) = ;fn x = 9, ln (x2 +15a2) –ln (a – 2) = ln 8ax dk a −2 gy gks] rc 3 (B) a = 3 5 (A) a = (C) x = 15 (D) x = 2 Q. 14 If p, q, r, s are in A.P. and p + sin x q + sin x p − r + sin x f(x) = q + sin x r + sin x − 1 + sin x such that r + sin x s + sin x s − q + sin x p + sin x q + sin x p − r + sin x f(x) = q + sin x r + sin x − 1 + sin x bl iz d kj r + sin x s + sin x s − q + sin x 2 ∫ f (x)dx = – 4 then the common difference of the gS fd A.P. can be – gks x k 1 2 (C) 1 (D) none of these ∫ f (x)dx = – 4, rc l-Js - dk lkoZ v Urj 0 0 (B) (C) x = 15 (D) x = 2 ;fn p, q, r, s l-Js - es a gS o 2 (A) – 1 3 (B) a = 3 5 1 2 (A) – 1 (B) (C) 1 (D) buesa ls dksbZ ugha Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 4 This section contains 2 paragraphs; each has 3 multiple choice questions. (Questions 15 to 20) Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. + 4 marks will be given for each correct answer and –1 mark for each wrong answer. Passage # 1 (Ques. 15 to 17) Let A and B two square matrices such that B = A–1 BA. For the matrices A and B solve each of the following. Q.15 Q.16 Q.17 (A – B)2 is equal to (A) 0 (C) A2 – 2AB + B2 bl [k.M esa 2 vuqPNsn fn;s x;s gS]a izR;sd esa 3 cgqfodYih iz'u gSAa (iz'u 15 ls 20) izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA izR;sd lgh mÙkj ds fy;s + 4 vad fn;s tk,sx a s rFkk izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk;sxkA x|ka'k # 1 (iz- 15 ls 17) ekuk nks oxZ eSfVªDl A rFkk B bl izdkj gS fd B = A–1 BA eSfVªDl A o B ds fy, fuEu dks gy djksA Q.15 2 2 (B) A + B (D) A – B If AB = – BA also, then (A + B)2 is equal to (A) 0 (B) A2 (C) A + B (D) A + B + AB + BA Q.16 If AB = – BA also, then (A + B)3 is equal to (A) 0 (B) A3 + A2 + A 3 (C) A (D) A2 + AB + BA + B2 Q17 Passage # 2 (Ques. 18 to 20) Least positive integral solution (α) of inequality 5x + 8 > – 2 is a root of equation f(x) = 0 x−4 where f(x) = (A – B)2 = (A) 0 (C) A2 – 2AB + B2 (B) A2 + B2 (D) A – B ;fn AB = – BA, rc (A + B)2 = (A) 0 (C) A + B (B) A2 (D) A + B + AB + BA ;fn AB = – BA, rc (A + B)3 = (B) A3 + A2 + A (D) A2 + AB + BA + B2 (A) 0 (C) A3 x|ka'k # 2 (iz- 18 ls 20) a 2 ( x 2 − 1) x–1, a∈[0, 1], then x − 5 5 vlfedk 5x + 8 >–2 x−4 dk U;wure /kukRed iw.kk±d gy (α) lehdj.k f(x) = 0, tgk¡ f(x) = a 2 ( x 2 − 1) x–1, x − 5 5 a∈[0, 1] dk ,d ewy gS] rc Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 5 Q.18 Possible values of α is(A) 0 Q.19 (C) 4 (B) 1 Q.19 (C) 1/2 Q.20 x –1 (B) 5x + 1 (C) 5x + 5 (D) 5x – 1 5 (B) 5 (B) 1 (A) R R R R (D) 0, 5 x –1 (B) 5x + 1 (C) 5x + 5 (D) 5x – 1 5 bl [k.M esa 2 iz'u (iz'u 1, 2) gSaA izR;sd iz'u esa nks LrEHkksa esa dFku fn;s x;s gSa] ftUgsa lqesfyr djuk gSA LrEHk-I (Column I ) esa fn;s x;s dFkuksa (A, B, C, D) dks LrEHk-II (Column II) esa fn;s x;s dFkuksa (P, Q, R, S) ls lqesy djuk gSA bu iz'uksa ds mÙkj uhps fn;s x;s mnkgj.k ds vuqlkj mfpr xksyksa dks dkyk djds n'kkZuk gSA ;fn lgh lqesy A-P, A-S, B-Q, B-R, C-P, C-Q rFkk D-S gS, rks lgh fof/k ls dkys fd;s x;s xksyksa dk 4 × 4 eSfVªDl uhps n'kkZ;s vuqlkj gksxk : P Q R S P Q R S Q Q Q Q (C) 1/2 [k.M - II This section contains 2 questions (Questions 1, 2). Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column I have to be matched with statements (P, Q, R, S) in Column II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-P, A-S, B-Q, B-R, C-P, C-Q and D-S, then the correctly bubbled 4 × 4 matrix should be as follows : P P P P (D) dksbZ ugha f(x) dk izfrykse gksxk Section – II A B C D (C) 4 a dk lEHko eku gksxk (A) 0 (D) 0, 5 The inverse of f(x) is(A) α dk lEHko eku gksxk (A) 0 (D) None Possible values of a is(A) 0 Q.20 (B) 5 Q.18 A B C D S S S S Mark your response in OMR sheet against the question number of that question in section-II. + 6 marks will be P P P P Q Q Q Q R R R R S S S S vr% OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj [k.M-II esa vafdr dhft;sA izR;sd iw.kZ lgh mÙkj ds fy;s + 6 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 6 given for complete correct answer and No Negative for a correctly marked answer in any row. vad fn;s tk;sx a s rFkk xyr mÙkj ds fy;s dksbZ _ + .kkRed vadu ugha gS (vFkkZr~ dksbZ vad ugha ?kVk;k tk;sxk)A fdUrq] fdlh iafDr esa lgh :i ls fpfUgr mÙkj ds fy, 1 vad fn;k tk;sxkA Q.5 Q.5 marks for wrong answer. However, 1 mark will be given Match of the column. Column-I (A) Fundamental period of f(x) = [x] + [2x] + [3x] +… … n (n + 1) x is (where [.] is represent 2 greatest integer function) LrEHkksa dks lqesfyr dhft, LrEHk -I n (n + 1) x 2 (tgk¡ [.] egÙke iw.kk±d Qyu dks fu:fir djrk gS) (A) f(x) = [x] + [2x] + [3x] +… … + [nx] – + [nx] – (B) lim sin(π cos 2 x ) 2 is (B) lim πx (C) Let A and B are square matrices of order 3 × 3 which satisfy AB = A and BA = B. If (A – B)5 = k(A –B) then k = x →0 x x 0 (D) If A = 2 y y − y and AA' = I, z − z z dk ewyHkwr vkorZukad gksxk x →0 sin(π cos 2 x ) πx 2 (C) ekuk A o B, 3 × 3 Øe ds oxZ eSfVªDl gS tks AB = A o BA = B dks lUrq"V djrs gS ;fn (A – B)5 = k(A –B) rc k = x x 0 (D) ;fn A = 2 y y − y o AA' = I, rc x2 + y2 + z2 = z − z z then x2 + y2 + z2 = Column-II (P) sin2 x – cos2 x when x = π/4 = LrEHk-II (P) sin2 x – cos2 x tcfd x = π/4 (Q) sin2x + cos2 x when x = π/4 (Q) sin2x + cos2 x tcfd x = π/4 sin x x →0 x (S) HCF of (3, 4) (R) lim (R) lim x →0 sin x x (S) (3, 4) dk e-l-i- Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 7 Q.2 Column-I (A) Number of points of type Column-II (P) 4 ( cos θ, sin θ ) satisfying Q.2 LrEHk-I (A) ( cos θ, sin θ ) izdkj ds (P) 4 x2 + y2 – 2x – 2y + 1 = 0 x2 + y2 – 2x – 2y + 1 = 0 dks lUrq"V djus okys fcUnqvksa is/are dh la[;k gS@gksxh (B) Minimum value of 4 LrEHk-II (Q) – 2 2 cos x – 6cos x + 5 is (C) No. of solution of (R) 2 tan 2x = tan6x in (0, 2π] is (D) The value of k for which the equation (B) cos4x – 6cos2x + 5 dk (Q) – 2 U;wure eku gksxk (C) (0, 2π] esa tan 2x = tan6x ds (R) 2 gyksa dh la[;k gksxh (S) 0 (D) k dk og eku ftlds fy, 4 (S) 0 4 2 cos4x – sin4x + k = 0 2 cos x – sin x + k = 0 has at least one solution dk de ls de ,d gy gks can be ldrk gS Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 8 PHYSICS Section – I [k.M - I Questions 1 to 9 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. + 3 marks will be given for each correct answer and – 1 mark for each wrong answer. iz'u 1 ls 9 rd cgqfodYih iz'u gSaA izR;sd iz'u ds pkj Q.1 Q.1 A ball falls on an inclined plane as shown in figure. The ball is dropped from height h. Coefficient of restitution for collision is e and the surface is frictionless. If h1, h2…..hn are heights of n projectiles and t1, t2,…..tn are their corresponding time of flights, then- fodYi (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA izR;sd lgh mÙkj ds fy, + 3 vad fn;s tk;asxs rFkk izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk;sxkA ,d xsan ,d vkur ry ij fp=k esa n'kkZ;s vuqlkj fxj jgh gSA xsan dks h Å¡pkbZ ij ls fxjk;k x;k gSA VDdj dk izR;koLFkku xq.kkad e gS rFkk lrg ?k"kZ.kghu gSA ;fn h1, h2…..hn, n iz{ksI;ksa dh Å¡pkb;k¡ gS rFkk t1, t2,…..tn buds lEcfU/kr mM~M;u dky gSa] rksh h h1 h1 h2 h2 θ i. θ i. t1, t2,….., tn form a geometric progression of common ratio e. ii. h1 > h2 > h3 ……> hn iiii. t1, t2, ……., tn form a geometric progression of common ratio e2. iv. h1, h2, ….. hn form a geometric progression of common ratio e. t1, t2,….., tn ,d xq.kksÙkj vuqØe cukrs gSa ftldk mHk;fu"V vuqikr e gSA ii. h1 > h2 > h3 ……> hn iiii. t1, t2, ……., tn ,d xq.kksÙkj vuqØe cukrs gSa] ftldk mHk;fu"V vuqikr e2 gSA iv. h1, h2, ….. hn ,d xq.kksÙkj vuqØe cukrs gSa ftldk mHk;fu"B vuqikr e gSA Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 9 Evaluate the above statements and choose the correct option from the following. (A) Statements i, ii are true and iii, iv are false (B) Statements i, ii are false and iii, iv are true (C) All statements are true (D) All statements are false Q.2 Q. 3 A particle of mass 1 kg is moving along the line y = x + 2 (here x and y are in metres) with speed 2 m/s. The magnitude of angular momentum of particle about origin is (A) 4 kg - m2/s (B) 2 2 kg - m2/s (C) 4 2 kg - m2/s (D) 2 kg - m2/s As shown in figure, there are two blocks of the same mass M, one on top of other, lying on a frictionless horizontal surface. Both the blocks are at rest. The upper block is much smaller than the lower block. A force F is applied on the lower block and both the blocks start moving together without any relative motion. Suddenly, the lower block hits a fixed obstacle and come to rest. The upper block continues to slide on the lower block. The upper block just manages to reach the opposite end of the lower block. What is the coefficient of friction between the two blocks? mijksDr dFkuksa dks tkafp;s rFkk fuEUk esa ls lgh fodYi pqfu;s & (A) dFku i, ii lgh gSa o iii, iv xyr gSa (B) dFku i, ii xyr gS o iii, iv lgh gSa (C) lHkh dFku lgh gSa (D) lgh dFku xyr gSa Q.2 1 kg nzO;eku dk ,d d.k js[kk y = x + 2 (;gk¡ x rFkk y ehVj esa gS) ds vuqfn'k 2 m/s pky ls xfr'khy gSA ewy fcUnq ds lkis{k d.k ds dks.kh; laosx dk ifjek.k gS - Q. 3 (A) 4 kg - m2/s (B) 2 2 kg - m2/s (C) 4 2 kg - m2/s (D) 2 kg - m2/s uhps fp=k esa n'kkZ;s vuqlkj] leku nzO;eku M ds nks CykWd ,d nwljs ij fLFkr gSa o ,d ?k"kZ.kghu {kSfrt lrg ij fLFkr gaSA nksuksa CykWd fojke esa gSaA Åijh CykWd fupys CykWd ls cgqr NksVk gSA ,d cy F fupys CykWd ij vkjksfir fd;k tkrk gS o nksuksa CykWd fcuk fdlh vkisf{kd xfr ds ,d lkFk xfr djus yxrs gSaA fupyk CykWd ,dk,d ,d vojks/k ls Vdjkrk gS o fojke esa vk tkrk gSA Åijh CykWd dk fupys CykWd ij fQlyuk tkjh jgrk gSA Åijh CykWd] fupys CykWd ds Bhd vUr fljs rd igqapuk O;ofLFkr dj ysrk gSA nksuksa CykWdksa ds e/; ?k"kZ.k xq.kkad D;k gS? Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 10 Obstacle Obstacle F F Q.4 l/2 (A) F/Mg l (B) F.Mg l/2 (A) F/Mg l (B) F.Mg (C) F/2Mg (D) None of these (C) F/2Mg (D) buesa ls dksbZ ugha In figure given below, the velocities are in ground Q.4 frame and the cylinder is performing pure rolling rFkk csyu] r[rs ij 'kq) yksVuh xfr dj jgk gS] fcUnq on the plank, velocity of point ‘A’ would be- ‘A’ dk osx gksxk - A C uhps fn;s x;s fp=k esa osx] tehu rU=k ds lkis{k gSa A VC C VP Q.5 (A) 2VC (B) 2VC + VP (C) 2VC – VP (D) 2(VC – VP) VP (A) 2VC (C) 2VC – VP A disc is rotated about its axis with a certain Q.5 angular velocity and lowered gently on a rough inclined plane as shown in figure, thenµ= 30º VC (B) 2VC + VP (D) 2(VC – VP) ,d pdrh dks bldh v{k ds ikfjr% ,d fu;r dks.kh; osx ls ?kw.kZu djok dj ,d [kqjnqjs vkur ry ij /khjs ls j[k fn;k tkrk gS] n'kkZ;s fp=kkuqlkj rks - 1 µ= 3 30º 1 3 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 11 (A) It will rotate at the position where it was placed (A) ;g ml fLFkfr esa ftlesa bls j[kk x;k gS] igys and then will move downward ?kw.kZu djsxk fQj uhps dh vksj xfr djsxkA (B) bldks vkur ij j[ks tkus ds rRdky Ik'pkr~ ;g uhps xfr djsxkA (C) ;g igys uhps dh vksj tk;sxk o blds Ik'pkr~ Åij p<s+xk s k blds Ik'pkr~ uhps xfr djsxk (D) ;g igys Åij p<+x (B) It will go downward just after it is lowered (C) It will go downward first and then climb up (D) It will climb upwards and then move downwards Q.6 A conducting rod PQ of length l = 2 m is moving Q.6 –1 at a speed of 2ms making an angle of 30º with its length. A uniform magnetic field B = 2 T exists in a direction perpendicular to the plane of motion. ⊗ P ⊗ v ⊗ 30º ⊗ 30º dks.k cukrs gq;s 2ms–1 dh pky ls xfr dj jgh gSA ,d le:Ik pqEcdh; {ks=k B = 2 T, xfr ds ry ds yEcor~ ,d fn'kk esa fo|eku gS] rks - Then- ⊗ l = 2 m yEckbZ dh ,d pkyd NM+ bldh yEckbZ ls ⊗ ⊗ ⊗ ⊗ ⊗ Q ⊗ P ⊗ v ⊗ 30º ⊗ ⊗ ⊗ ⊗ ⊗ Q (A) VP – VQ = 8V (B) VP – VQ = 4V (A) VP – VQ = 8V (B) VP – VQ = 4V (C) VQ – VP = 8V (D) VQ – VP = 4V (C) VQ – VP = 8V (D) VQ – VP = 4V Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 12 Q.7 In the given circuit, the current through the 5mH Q.7 inductor in steady state is uhps n'kkZ;s ifjiFk esa] fu;r voLFkk (steady state) esa 5mH izsjd ls gksdj xqtjus okyh /kkjk gS- 5mH 5mH 10mH 10mH 20V 20V 5Ω (A) Q.8 2 A 3 (B) 8 A 3 5Ω (C) 1 A 3 (D) 4 A 3 In an elastic collision between two particles– (A) Q.8 (i) the kinetic energy of the system before collision 2 A 3 (B) 8 A 3 (C) 1 A 3 (D) 4 A 3 nks d.kksa ds e/; izR;kLFk VDdj esa– (i) VDdj ds igys fudk; dh xfrt ÅtkZ VDdj ds is equal to the kinetic energy of the system ckn fudk; dh xfrt ÅtkZ ds cjkcj gksrh gS after collision (ii) the linear momentum of the system is conserved (ii) fudk; dk js[kh; laosx lajf{kr jgrk gS fuEu esa ls lgh dFku pqfu,& Select the correct statements – (A) dsoy dFku (i) lgh gS (A) only statement (i) is correct (B) dsoy dFku (ii) lgh gS (B) only statement (ii) is correct (C) (i) o (ii) nksuksa dFku lgh gS (C) Both statement (i) & (ii) are correct (D) Neither statement (i) nor statement (ii) are correct (D) uk rks dFku (i) lgh gS uk gh dFku (ii) lgh gS Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 13 Q. 9 Two circular coils X and Y, having equal number Q. 9 of turns and carrying equal currents in the same sense, subtend same solid angle at point O. If the smaller coil X is midway between O and Y and if we represent the magnetic induction due to bigger coil Y at O as BY and that due to smaller coil X at O as BX, then- nks oÙ̀kh; dq.Mfy;k¡ X o Y leku la[;k esa ?ksjs rFkk leku fn'kk esa cjkcj /kkjk izokfgr j[krh gaS] fcUnq O ij leku Bksl (Solid) dks.k vUrfjr djrh gSaA ;fn NksVh dq.Myh X; O rFkk Y ds e/; fLFkr gS rFkk ;fn cM+h dq.Myh Y }kjk O ij mRiUu pqEcdh; iszj.k dks BY }kjk rFkk NksVh dq.Myh X }kjk O ij mRiUu pqEcdh; izsj.k dks BX }kjk n'kkZ;k tk;s rksY Y X X d O d O (A) BY =1 BX (B) BY =2 BX (A) BY =1 BX (B) BY =2 BX (C) BY 1 = BX 2 (D) BY 1 = BX 4 (C) BY 1 = BX 2 (D) BY 1 = BX 4 Questions 10 to 14 are multiple choice questions. Each iz'u 10 ls 14 rd cgqfodYih iz'u gaSA izR;sd iz'u ds pkj question has four choices (A), (B), (C) and (D), out of fodYi (A), (B), (C) rFkk (D) gSa] ftuesa ls ,d ;k ,d ls which MULTIPLE (ONE OR MORE THAN ONE) is correct. Mark your response in OMR sheet against the vf/kd fodYi lgh gaSA OMR 'khV esa iz'u dh iz'u la[;k ds question number of that question. + 4 marks will be le{k vius mÙkj vafdr dhft,A izR;sd lgh mÙkj ds fy, given for each correct answer and –1 mark for each + 4 vad fn;s tk;saxs rFkk izR;sd xyr mÙkj ds fy, 1 vad wrong answer. ?kVk;k tk;sxkA Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 14 Q. 10 Q. 11 Which of the following statements are correct? (A) If a moving charged particle enters into a region of magnetic field from outside, It does not complete a circular path (B) If a moving charged particle traces a helical path in a uniform magnetic field, the axis of the helix is parallel to the magnetic field (C) The power associated with the force exerted by a magnetic field on moving charged particle is always equal to zero (D) If in a region a uniform magnetic field and a uniform electric field both exist, a charged particle moving in this region cannot trace a circular path Q. 10 A conductor ABCDE, shaped as shown, carries current I. It is placed in the x-y plane with the ends A and E on the x-axis. A uniform magnetic field of magnitude B exists in the region. The force acting on it will bey B I a C E x A a Q. 11 z λ fuEu esa ls dkSulk dFku lR; gS? (A) ;fn ,d xfr'khy vkosf'kr d.k ,d pqEcdh; {ks=k ds {ks=k eas ckgj ls izos'k djrk gS] ;g oÙ̀kh; iFk iw.kZ ugha djrkA (B) ;fn ,d xfr'khy vkosf'kr d.k ,d le:Ik pqEcdh; {ks=k esa ,d gSfydy iFk dks vuqlfjr djrk gS] rks gSfyDl dh v{k pqEcdh; {ks=k ds lekUrj gksrh gSA (C) ,d xfr'khy vkosf'kr d.k ij ,d pqEcdh; {ks=k }kjk yxk;s x, cy ls lEcfU/kr 'kfDr lnSo 'kwU; gksrh gSA (D) ;fn ,d {ks=k esa ,d le:Ik pqEcdh; {ks=k rFkk le:Ik fo|qr {ks=k nksuksa fo|;eku gks rks bl {ks=k esa xfr'khy d.k ,d oÙ̀kh; iFk dks vuqlfjr ugha dj ldrkA ,d pkyd ABCDE, ftldk vkdkj uhps n'kkZ;s vuqlkj gS] o /kkjk I j[krk gSA bls blds vUr fljs x v{k ij A rFkk E ij jgrs gq, x-y ry esa fLFkr fd;k x;k gSA B ifjek.k dk ,d le:Ik pqEcdh; {ks=k bl {ks=k esa fLFkr gSA bl ij dk;Zjr cy gksxk y I A a C E x a D z (A) zero, if B is in the x-direction (B) λBI in the z-direction, if B is in the y-direction (C) λBI in the negative y-direction, if B is in the z-direction (D) λaBI, if B is in the x-direction B λ D (A) 'kwU;, ;fn B, x-fn'kk esa gks (B) λBI, z-fn'kk esa] ;fn B, y-fn'kk esa gS (C) λBI _.kkRed y-fn'kk esa] ;fn B, z-fn'kk esa gS (D) λaBI, ;fn B, x-fn'kk esa gS Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 15 Q.12 In an RLC series circuit shown in figure, the readings of voltmeters V1 and V2 are 100V and 120V, respectively. The source voltage is 130V. For this situation mark out the correct statement(s) Q.12 uhps fp=k esa n'kkZ;s ,d RLC Js.kh ifjiFk eas V1 o V2 oksYVehVjksa ds ikB~;kad Øe'k% 100V o 120V gSaA L=kksr oksYVst 130V gSA bl fLFkfr ds lEcU/k esa lgh dFku pqfu;sV2 V2 V1 V1 V V (A) izfrjks/k] izsjd o la?kkfj=k ds fljksa ij oksYVst Øe'k% 50V, 86.65V rFkk 186.65V gSaA (A) Voltage across resistor, inductor and capacitor are 50V, 86.65V and 186.65V respectively (B) Voltage across resistor, inductor and capacitor are 10V, 90V and 30V, respectively (B) izfrjks/k] iszjd o la?kkfj=k ds fljksa ij oksYVst Øe'k% 10V, 90V rFkk 30V gSaA 5 gSA (C) ifjiFk dk 'kfDr xq.kkad 13 (D) ifjiFk izdf̀r esa /kkjrh; gSA 5 13 (D) The circuit is capacitance in nature (C) Power factor of the circuit is Q. 13 A rod AC of length l and mass m is kept on a horizontal smooth plane. It is free to rotate and move. A particle of some mass m moving on the plane with velocity v strikes the rod at point B making angle 37º with the rod. The collision is elastic. After collision- Q. 13 ,d NM+ AC, ftldh yEckbZ l o nzO;eku m gS] dh ,d {kSfrt ?k"kZ.kghu ry ij fLFkr gSA ;g ?kw.kZu rFkk xfr ds fy;s Lora=k gSA m nzO;eku dk ,d d.k] ry esa v osx ls xfr djrk gqvk NM+ ls fcUnq B ij NM+ ls 37º dks.k ij Vdjkrk gSA VDdj izR;kLFk gSA VDdj ds Ik'pkr~ - B l/4 A 37º B l/4 C A v 37º C v Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 16 (A) The angular velocity of the rod will be 75/55 v/l (A) NM+ dk dks.kh; osx 75/55 v/l gSA (B) ml le;kUrjky esa ftlesa NM+ vk/kk ?kw.kZu iwjk (B) The centre of the rod will travel a distance πl/3 djrh gSA NM+ dk dsUnz πl/3 nwjh r; djsxkA (C) vkosxh; cy dk vkosx 24m v/55 gSA (D) buesa ls dksbZ ugha in the time in which it makes half rotation (C) Impulse of the impact force is 24m v/55 (D) None of these Q. 14 A rigid rod of mass M slides along a fixed semicircular track (in vertical plane) followed by a flat rack. At the given instant velocity of end B is v along the horizontal plane. Then at the given instantr O A r C B v Q. 14 M nzO;eku dh n`<+ NM ,d fQDl v)ZoÙ̀kh; Vªsd ¼m/oZry esa½ o blds vkxs lery Vªsd gS] ds vuqfn'k fQlyrh gSA ,d fn;s x;s {k.k ij {kSfrt ry ds vuqfn'k B fljs dk osx v gSA rks fn;s x;s {k.k ij r A C (A) Angular speed of the rod is v/r O r B v (A) NM+ dh dks.kh; pky v/r gS (B) Velocity of the centre of mass is v/ 2 (B) nzO;eku dsUnz dk osx v/ 2 gS (C) O ds ikfjr% NM+ dk dks.kh; laosx 2/3 mvr gS (D) ?kw.kZu o LFkkukUrj.k xfr;ksa dh xfrt ÅtkZvksa dk vuqikr 1 : 2 gS (C) Angular momentum of rod about O is 2/3 mvr (D) The ratio of rotational to translational kinetic energy is 1 : 2 This section contains 2 paragraphs; each has 3 multiple choice questions. (Questions 15 to 20) Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. + 4 marks will be given for each correct answer and –1 mark for each wrong answer. bl [k.M esa 2 vuqPNsn fn;s x;s gS]a izR;sd esa 3 cgqfodYih iz'u gSAa (iz'u 15 ls 20) izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA izR;sd lgh mÙkj ds fy;s + 4 vad fn;s tk,sx a s rFkk izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk;sxkA Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 17 Passage # 1 (Ques. 15 to 17) A ball A of mass m is suspended by a thread of length r = 1.2m. Another ball B of mass 2m is projected from the ground with velocity u = 9m/s such that at the highest point of its trajectory it collides head on elastically with ball A. It is observed that during subsequent motion, tension in the thread at highest point is equal to mg. 9 m/s x|ka'k # 1 (iz- 15 ls 17) m nzO;eku dh ,d xsan A, r = 1.2m yEckbZ ds ,d /kkxs ls yVdh gSA 2m nzO;eku dh ,d vU; xsan B tehu ls u = 9m/s ds osx ls bl izdkj iz{ksfir dh tkrh gS rkfd blds xfr iFk ds mPpre fcUnq ij ;g xsan A ls 'kh"kZ :Ik ls izR;kLFk :Ik ls Vdjk,sA ;g izsf{kr fd;k tkrk gS fd Øfed xfr esa] mPpre fcUnq ij /kkxs esa ruko mg ds cjkcj gSA A (m) 9 m/s θ B (2m) θ B (2m) Q.15 Q.16 Q.17 Q.15 At highest point, velocity of ball A is(A) 6 2 m/s (B) 2 6 m/s (C) 3 2 m/s A (m) (D) 3 6 m/s Angle of projection (θ) of ball B is(A) 30º (B) 60º (C) 45º (D) 75º Q.16 The height of the point suspension of ball A from the ground is81 129 m m (A) (B) 40 40 81 101 m m (C) (D) 20 40 Q.17 mPpre fcUnq ij A dk osx gS (A) 6 2 m/s (B) 2 6 m/s (C) 3 2 m/s (D) 3 6 m/s xsan B dk iz{ksI; dks.k (θ) gS (A) 30º (C) 45º (B) 60º (D) 75º xsan A ds fuyEcu fcUnq dh tehu ls Å¡pkabZ gS 81 m 40 81 m (C) 20 (A) 129 m 40 101 m (D) 40 (B) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 18 Passage # 2 (Ques. 18 to 20) In a certain region of space, there exists a uniform and constant electric field of magnitude E along the positive y-axis of a co-ordinate system. A charged particle of mass ‘m’ and charge ‘–q’ (q > 0) is projected from the origin with speed 2v at an angle of 60º with the positive x-axis in x-y plane. When x|ka'k # 2 (iz- 18 ls 20) lrf"V (space) ds ,d fuf'pr {ks=k esa ,d le:Ik o fu;r ifjek.k dk ,d fo|qr {ks=k E, funs'Z kkad i)fr ds /kukRed y-v{k ds vuqfn'k fo|eku gSA ‘m’ nzO;eku dk ,d vkosf'kr d.k vkos'k ‘–q’ (q > 0) dks x-y ry esa ewy fcUnq ls /kUkkRed x-v{k ls 60º dks.k cukrs gq,] 2v pky ls iz{ksfir fd;k x;k gSA tc d.k dk x-funs'Z kkad 3mv 2 , a qE 3mv 2 gks tkrk gS] ,d le:Ik o fu;r ifjek.k dk qE B izkcY; dk pqEcdh; {ks=k tks fd /kukRed y-fn'kk ds the x-coordinate of particle becomes Q.18 uniform and constant magnetic field of strength B is also switched on along positive y-axis. Velocity of the particle just before the magnetic field is switched on is(B) vî + (A) vî Q.18 3v ˆ j 2 3v ˆ 3v ˆ (D) 2 vî – j j 2 2 x-coordinate of the particle as a function of time after the magnetic field is switched on is (time t = 0 when magentic field is start)- (C) vî – Q.19 qB 3mv 2 – R sin t qE m (A) (B) qB 3mv 2 + R sin t qE m (B) (C) qB 3mv 2 – R cos t qE m (C) 3mv 2 qB + R cos t qE m 3v ˆ j 2 pqEcdh; {ks=k dk fLop vkWu djus ds Ik'pkr~ d.k dk x-funsZ'kkad le; ds Qyu ds :Ik esa D;k gksxk (t = 0 ij pqEcdh; {ks=k 'kq: fd;k tkrk gS)- (A) (D) 3v ˆ j 2 3v ˆ (D) 2 vî – j 2 (B) vî + (A) vî (C) vî – Q.19 vuqfn'k fLFkr gS] dk fLop vkWu dj fn;k tkrk gSA pqEcdh; {ks=k dk fLop vkWu djus ls Bhd iwoZ d.k dk osx gksxk - (D) qB 3mv 2 – R sin t qE m qB 3mv 2 + R sin t qE m qB 3mv 2 – R cos t qE m qB 3mv 2 + R cos t qE m Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 19 Q.20 z-coordinate of the particle as a function of time after the magnetic field is switched on is- Q.20 qB qB (A) R 1 + cos t (B) R 1 + sin t m m pqEcdh; {ks=k dk fLop vkWu djus ds Ik'pkr~ d.k dk z-funsZ'kkad le; ds Qyu ds :Ik esa D;k gksxk qB qB (A) R 1 + cos t (B) R 1 + sin t m m qB qB (C) –R 1 − cos t (D) –R 1 + cos t m m qB qB t (D) –R 1 + cos t (C) –R 1 − cos m m [k.M - II Section – II This section contains 2 questions (Questions 1, 2). Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column I have to be matched with statements (P, Q, R, S) in Column II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-P, A-S, B-Q, B-R, C-P, C-Q and D-S, then the correctly bubbled 4 × 4 matrix should be as follows : bl [k.M esa 2 iz'u (iz'u 1, 2) gSaA izR;sd iz'u esa nks LrEHkksa esa dFku fn;s x;s gSa] ftUgsa lqesfyr djuk gSA LrEHk-I (Column I ) esa fn;s x;s dFkuksa (A, B, C, D) dks LrEHk-II (Column II) esa fn;s x;s dFkuksa (P, Q, R, S) ls lqesy djuk gSA bu iz'uksa ds mÙkj uhps fn;s x;s mnkgj.k ds vuqlkj mfpr xksyksa dks dkyk djds n'kkZuk gSA ;fn lgh lqesy A-P, A-S, B-Q, B-R, C-P, C-Q rFkk D-S gS, rks lgh fof/k ls dkys fd;s x;s xksyksa dk 4 × 4 eSfVªDl uhps n'kkZ;s vuqlkj gksxk : P Q R S A B C D P Q R S A B C D P P P P Q Q Q Q R R R R S S S S P P P P Q Q Q Q R R R R S S S S vr% OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj [k.M-II esa vafdr dhft;sA izR;sd iw.kZ lgh mÙkj ds fy;s + 6 vad fn;s tk;saxs rFkk xyr mÙkj ds fy;s dksbZ +_.kkRed vadu ugha gS (vFkkZr~ dksbZ vad ugha ?kVk;k tk;sxk)A fdUrq] fdlh iafDr esa lgh :i ls fpfUgr mÙkj ds fy, 1 vad fn;k tk;sxkA Mark your response in OMR sheet against the question number of that question in section-II. + 6 marks will be given for complete correct answer and No Negative marks for wrong answer. However, 1 mark will be given for a correctly marked answer in any row. Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 20 Assume sufficient friction to prevent slipping. Body rolls without slipping Q.1 Column –I F (A) Q.1 ;g ekfu;s fd fQlyu jksdus ds fy, ?k"kZ.k i;kZIr gSA fi.M fcuk fQlys yq<+drh gSa LrEHk –I Column-II (P) Body accelerates forward F (A) oy; (B) F (Q) Rotation about the centre of mass is clockwise (B) F Disc F (R) Friction force acts backward (C) lkis{k ?kw.kZu nf{k.kkorZ gksrk gS (R) ?k"kZ.k cy ihNs dh R/2 Solid Cylinder F vksj dk;Zjr gksrk gS Bksl csyu (D) (S) No friction acts Solid Cylinder (Q) nzO;eku dsUnz ds pdrh (C) R/2 (P) fi.M vkxs dh vksj Rofjr gksrk gS Ring R/2 LrEHk-II (D) (S) dksbZ ?k"kZ.k ugha yxrk R/2 F F Bksl csyu Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 21 Q.2 In column I some circuits are given. In all the circuits except in (A), switch S remains closed for long time and then it is opened at t = 0 while for (A), the situation is reversed. Column II tells something about the circuit quantities. Match the entries of column I with the entries of column II. LrEHk I esa dqN ifjiFk n'kkZ;s x;s gSaA ifjiFk (A) esa NksM+dj 'ks"k lHkh ifjiFkksa esa fLop S dks yEcs le; rd can j[kdj bls t = 0 ij [kksy fn;k tkrk gS tcfd (A) ds fy;s fLFkfr O;qRØe gSA LrEHk II, ifjiFk dh daqN jkf'k;ksa ds ckjs esa tkudkjh nsrk gSA LrEHk-I dk LrEHk-II ls lgh feyku dhft,& Column-II Column -I (A) Q.2 L R S (P) Induced e.m.f. can be greater than E. LrEHk-I (A) L (Q) Induced e.m.f. would be less than E. R S (R) Finally, energy stored in inductor is zero. (C) (R) vfUre :Ik ls] L R S E R R E L L (Q) izsfjr fo-ok-cE ls de gksxk L S R (D) ldrk gS (B) E (C) (P) iszfjr fo-ok-c-] E ls vf/kd gks E L S R S E (B) LrEHk -II izsjd eas laxzfgr ÅtkZ 'kwU; gS E S (S) Finally, energy stored in inductor is non-zero E (D) L S R (S) vafre :Ik ls izsjd esa laxzfgr ÅtkZ v'kwU; gS E Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 22 CHEMISTRY Section – I [k.M - I Questions 1 to 9 are multiple choice questions. Each iz'u 1 ls 9 rd cgqfodYih iz'u gSaA izR;sd iz'u ds pkj fodYi question has four choices (A), (B), (C) and (D), out of (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. + 3 marks will be given for each correct answer OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA izR;sd lgh mÙkj ds fy, + 3 vad fn;s tk;asxs rFkk and – 1 mark for each wrong answer. izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk;sxkA Q.1 Q.1 Which is not true statement about KMnO4 ? (A) vEyh; ek/;e esa bldk foy;u vLFkk;h gS (B) bldh FkksM+h lh ek=kk lkUnz H2SO4 esa feyku ij (A) Its solution is unstable in acidic medium (B) Its small quantity added to conc. H2SO4, a green coloured solution containing ,d gjs jax dk foy;u ftlesa MnO 3+ vk;u gS] curk gS (C) {kkjh; foy;u esa MnO −4 dk ifjorZu Mn 2 + esa gks tkrk gS (D) Fe 2 + ;k C 2 O 24 − vuqekiu esa ;g Lo;a lwpd gksrk gS MnO 3+ ion is formed (C) MnO −4 changes to Mn 2 + in basic solution (D) It is self-indicator in Fe 2 + or C 2 O 24 − titration Q. 2 Aluminium hydroxide forms a positively charged sol, which of the following ionic substances should be the most effective in coagulating the sol? (A) NaCl (B) Fe2(SO4)3 (D) K3PO4 (C) CaCl2 KMnO4 ds fy, dkSulk lgh ugha gS ? Q. 2 ,Y;qfefu;e gkbMªksDlkbM /kukosf'kr lksy cukrk gS] fuEu esa ls dkSulk vk;fud inkFkZ LdUnhr lksy ds fy, lokZf/kd izHkko'kkyh gksxk ? (A) NaCl (C) CaCl2 (B) Fe2(SO4)3 (D) K3PO4 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 23 Q. 3 Q.4 Q.5 If Ksp of PbBr2 is 8 × 10–5 and it is 80% dissociated in solution. Its solubility is: (A) 0.027 mol/L (B) 0.058 mol/L (C) 0.017 mol/L (D) 0.034 mol/L Q. 3 A buffer solution has equal volume of 0.2 M NH4OH and 0.02 M NH4Cl. The pKb of the base is 5. The pH is (A) 4 (B) 10 (C) 7 (D) 9 Q.4 NaCl is doped with 10–4 mol% of SrCl2, the Q.5 (A) 0.027 mol/L (C) 0.017 mol/L 0.2 M NH4OH rFkk 0.02 M NH4Cl ds leku (A) 4 (B) 10 (C) 7 (D) 9 NaCl dks SrCl2 ds 10–4 eksy% ls Mksihr fd;k x;k] /kuk;u fjfDr;ksa dh lkUnzrk gksxh - (A) 6.02 × 10 mol –1 (B) 6.02 × 10 mol 15 –1 (A) 6.02 × 10 mol (B) 6.02 × 1016 mol–1 (C) 6.02 × 1017 mol–1 (D) 6.02 × 1014 mol–1 (C) 6.02 × 1017 mol–1 (D) 6.02 × 1014 mol–1 15 –1 16 Total volume of atoms present in a face centred cubic unit volume of a metal is, (r is atomic radius) (A) Q.7 (B) 0.058 mol/L (D) 0.034 mol/L vk;ru dk cQj foy;u gSA {kkj dk pKb 5 gSA pH gksxk & concentration of cation vacancies will be- Q.6 ;fn PbBr2 dk Ksp 8 × 10–5 rFkk foy;u esa bldk fo;kstu 80% gksrk gS rks bldh foys;rk gksxh & Q.6 20 3 24 3 12 3 16 3 πr (B) πr (C) πr (D) πr 3 3 3 3 The correct order of increasing bond angles is ,d /kkrq ds Qyd dsUnzh; /kuh; bdkbZ vk;ru esa mifLFkr ijek.kqvksa dk dqy vk;ru gS, (r ijekf.od f=kT;k gS) (A) Q.7 20 3 24 3 12 3 16 3 πr (B) πr (C) πr (D) πr 3 3 3 3 cU/kdks.k dk lgh vkjksgh Øe gS (A) OF2 < H2O < Cl2O < ClO2 (A) OF2 < H2O < Cl2O < ClO2 (B) ClO2 < OF2 < Cl2O < H2O (B) ClO2 < OF2 < Cl2O < H2O (C) ClO2 < Cl2O < H2O < OF2 (C) ClO2 < Cl2O < H2O < OF2 (D) OF2 < Cl2O < H2O < ClO2 (D) OF2 < Cl2O < H2O < ClO2 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 24 Q. 8 Q. 9 The dipole moments of methane and its halogen derivatives are in the order (A) CH4 < CH2Cl2 > CHCl3 < CH3Cl (B) CH3Cl < CH2Cl2 < CHCl3 < CH4 (C) CH4 < CHCl3 < CH2Cl2 < CH3Cl (D) CH4 < CH3Cl < CH2Cl2 > CHCl3 Q. 8 The correct decreasing order of bond angles is- Q. 9 esFksu rFkk blds gSykstu O;qRiUuksa ds f}/kzqo vk?kq.kZ dk lgh Øe gS & (A) CH4 < CH2Cl2 > CHCl3 < CH3Cl (B) CH3Cl < CH2Cl2 < CHCl3 < CH4 (C) CH4 < CHCl3 < CH2Cl2 < CH3Cl (D) CH4 < CH3Cl < CH2Cl2 > CHCl3 (A) ClF3 > PF3 > NF3 > BF3 (B) BF3 > PF3 > NF3 > ClF3 (C) BF3 > NF3 > PF3 > ClF3 (D) BF3 > ClF3 > PF3 > NF3 cU/k dks.k dk lgh vojksgh Øe gS (A) ClF3 > PF3 > NF3 > BF3 (B) BF3 > PF3 > NF3 > ClF3 (C) BF3 > NF3 > PF3 > ClF3 (D) BF3 > ClF3 > PF3 > NF3 Questions 10 to 14 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE THAN ONE) is correct. Mark your response in OMR sheet against the question number of that question. + 4 marks will be given for each correct answer and –1 mark for each wrong answer. iz'u 10 ls 14 rd cgqfodYih iz'u gaSA izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gS]a ftuesa ls ,d ;k ,d ls vf/kd fodYi lgh gaAS OMR 'khV esa iz'u dh iz'u la[;k ds le{k vius mÙkj vafdr dhft,A izR;sd lgh mÙkj ds fy, + 4 vad fn;s tk;sx a s rFkk izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk;sxkA Q. 10 Q. 10 Which of the following are incorrect statements? (A) Equivalent weight of KMnO4 in acidic medium is M/5 (B) In acidic medium, MnO 24 − disproportionates to MnO2 and MnO −4 (C) KMnO 4 spot can be bleached by H2O2 (D) Alkaline KMnO4 can unsaturation in benzene be used to test fuEu esa ls dkSulk@dkSuls vlR; dFku gS ? (A) vEyh; ek/;e esa KMnO4 dk rqY;kadh Hkkj M/5 gS (B) vEyh; ek/;e esa] MnO 24 − dk MnO2 o MnO −4 esa fo"kekuqikru gksrk gS (C) KMnO 4 ds nkx dks H2O2 }kjk fojaftr dj ldrs gS (D) {kkjh; KMnO4 dk mi;ksx csUthu esa vlarÌrrk ds ifj{k.k esa fd;k tk ldrk gS Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 25 Q. 11 Q.12 On adding AgNO3 solution into KI solution a negatively charged colloidal sol is obtained when they are in (A) 100 mL of 0.1 M AgNO3 + 100 mL of 0.1 M KI (B) 100 mL of 0.1 M AgNO3 + 100 mL of 0.2 M KI (C) 100 mL of 0.2 M AgNO3 + 100 mL of 0.1 M KI (D) 100 mL of 0.15 M AgNO3 + 100 mL of 0.25 M KI Q. 11 Which of the following statements are true ? (A) pH + pOH = 14 for all aqueous solutions (B) pH of 1 × 10–8M HCl is 8 Q.12 fuEu esa l dkSulk dFku lR; gS ? (A) tyh; foy;uksa ds fy, pH + pOH = 14 (B) 1 × 10–8M HCl dk pH 8 gS (C) H 2 PO −4 dk la;qXeh {kkj HPO 24 − gS (D) tc CuSO2 foy;u esa 96,500 dqyke fo|qr izokfgr dh tkrh gS] rks dSFkksM ij 1g-rqY;kad dkWij fu{ksfir gksrk gS Q. 13 fuEu esa ls dkSulk dFku lgh gS ? dksykbMh lksy izkIr gksrk gS] tc ;g fuEu gks & (A) 100 mL, 0.1 M AgNO3 + 100 mL, 0.1 M KI (B) 100 mL, 0.1 M AgNO3 + 100 mL, 0.2 M KI (C) 100 mL, 0.2 M AgNO3 + 100 mL, 0.1 M KI (D) 100 mL, 0.15 M AgNO3 + 100 mL, 0.25 M KI (C) Conjugate base of H 2 PO −4 is HPO 24 − (D) 96,500 coulombs of electricity when passed solution deposits through a CuSO4 1g-equivalent of copper at the cathode Q. 13 Which of the following statements are correct ? (A) For NaCl unit cell (edge length = 1), 1 2 (B) For CsCl unit cell (edge – length AgNO3 dks KI foy;u esa feykus ij _.kkosf'kr (A) NaCl bdkbZ lsy ds fy, (fdukjk yEckbZ = 1), r⊕ + rΘ = r⊕ + rΘ = = a) 3 a r⊕ + rΘ = 2 (C) The void space in a bcc unit cell is 68 % (D) The void space in a fcc unit cell is 26 % 1 2 (B) CsCl bdkbZ lsy ds fy, (fdukjk yEckbZ = a) r⊕ + rΘ = 3 a 2 (C) bcc bdkbZ lsy esa fjDr LFkku 68 % (D) fcc bdkbZ lsy esa fjDr LFkku 26 % Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 26 Q. 14 Which of the following statements are correct ? Q. 14 (A) The crystal lattice of ice is mostly formed by fuEu esa ls dkSulk dFku lgh gS ? (A) cQZ dk fØLVy tkyd vf/kdka'kr% lgla;kstd the covalent as well as hydrogen bonds rFkk gkbMªkstu cU/kksa }kjk curk gS (B) The density of water increases when heated (B) tc ty dks 0°C ls 4°C rd xeZ fd;k tkrk gS from 0°C to 4°C due to the change in the rks ty v.kqvksa ds iqat dh lajpuk esa ifjorZu ds structure of the cluster of water molecules dkj.k ty dk ?kuRo c<+rk gS (C) The density of water increase from 0°C to a (C) ty dk ?kuRo 0°C ls vf/kdre 4°C rd c<+rk maximum at 4°C because the entropy of the gS D;ksafd rU=k dh ,.Vªksih c<+rh gS system increases This (D) Above 4°C, the thermal agitation of water (D) 4°C ds Åij ty v.kqvksa dh rkih; xfr'khyrk molecules increases. Therefore intermolecular c<+rh gSA blfy, vUrj vkf.od nwjh c<+rh gS distance increases and water starts expanding rFkk ty izlkfjr gksuk 'kq: gks tkrk gS section contains 2 paragraphs; each has 3 multiple choice questions. (Questions 15 to 20) Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR bl [k.M esa 2 vuqPNsn fn;s x;s gS]a izR;sd esa 3 cgqfodYih iz'u gSAa (iz'u 15 ls 20) izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA OMR 'khV esa iz'u sheet against the question number of that question. + 4 dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA izR;sd lgh marks will be given for each correct answer and –1 mark a s rFkk izR;sd xyr mÙkj ds mÙkj ds fy;s + 4 vad fn;s tk,sx for each wrong answer. fy, 1 vad ?kVk;k tk;sxkA Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 27 Passage # 1 (Ques. 15 to 17) A number of molecules and polyatomic ions cannot be described accurately by a single lewis structure and a number of descriptions based on the same skeletal structure are written and these taken together represent the molecule or ion. These structures have almost similar energies, same arrangement of atoms and have same number of bonding and non-bonding pair of electrons. These contributing structures or canonical forms taken together constitute the resonance hybrid which represents the molecule or ion. Q.15 The value of bond order of C–O bond for CO 32 − ion is (A) 1.25 Q.16 x|ka'k # 1 (iz- 15 ls 17) vusd v.kq rFkk cgqijek.koh; vk;uksa dh ,d vdsyh yqbZl lajpuk mls iw.kZ :i ls ugha le>k ldrh gS o vusd lajpukvksa dks ,d leku lajpuk ds :i esa fy[kk tkrk gS rFkk blesa v.kq ;k vk;u dks ,d lkFk n'kkZ;k tkrk gSA ;s lajpuk,sa yxHkx leku ÅtkZ] ijek.kqvkas dh leku O;oLFkk rFkk cU/khr o vcU/khr bysDVªkWu ;qXeksa dh leku la[;k dh gksrh gSA ;s forfjr lajpuk,sa ;k dSukWuhdy :i laxBhr vuquknh ladj gksrk gS ftls v.kq ;k vk;u ls iznf'kZr djrs gSA CO 32− vk;u Q.15 ds fy, C – O cU/k dk cU/k Øe eku gS (B) 1.33 (C) 1.5 (A) 1.25 (D) 1.0 Which of the following is not correct about resonance ? (A) It averages the bond features as a whole Q.16 (B) It stabilizes the molecule since energy of the resonance hybrid is lower than that of any of the single canonical structure (C) There is no equilibrium between these canonical structures (D) These canonical structures have real existence also (B) 1.33 (C) 1.5 (D) 1.0 fuEu esa ls dkSulk vuqukn ds fy, lgh ugha gS ? (A) blesa cU/k ds vkSlr xq.k lEiw.kZ :i esa gksrs gaS (B) blesa vuquknh ladj dh ÅtkZ dk eku dksbZ Hkh vdsyh dsukWuhdy lajpuk ls de gksus ls v.kq LFkk;h gksrk gS (C) blesa bldh dsukWuhdy lajpukvksa ds e/; dksbZ lkE; ugha gksrk gS (D) budh dsukWuhdy lajpuk,sa Hkh okLrfod LFkkf;Ro j[krh gS Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 28 Q.17 Due to resonance in benzene, the value of C – C Q.17 (A) 115 pm and 1.5 (B) 1.39 Å and 1.33 csUthu eas vuqukn ds dkj.k C – C cU/k yEckbZ rFkk cU/k Øe dk eku Øe'k% gS (A) 115 pm rFkk 1.5 (B) 1.39 Å rFkk 1.33 (C) 1.39 Å and 1.5 (D) 115 pm and 2.0 (C) 1.39 Å rFkk 1.5 bond length and bond-order are respectively Passage # 2 (Ques. 18 to 20) x|ka'k # 2 (iz- 18 ls 20) pH scale was introduced by Sorenson to measure pH iSekus dk ekiu lksjsUlu }kjk ekih x;h acidity or basicily of a solution. pH value of a foy;u dh vEyrk vFkok {kkjdrk ls gksrk gSA foy;u ds pH eku dk fu/kkZj.k foy;u visf{kr lkeF;Z ij fopkj djds rRdky ugha fn;k tk ldrk gSA cQj foy;u og foy;u gksrk gS ftlesa FkksM+h lh ek=kk esa izcy vEy ;k {kkj feykus ij pH ifjofrZr dqN [kkl ugha gksrk gSA solution does not instantaneously give us an idea of the relative strength of the solution. Buffer solution is the solution whose pH, on addition of a small amount strong acid or a base, does not change much. Q.18 The degree of dissociation of a weak monoprotic Q.18 acid can be given as (A) α = (B) α = (C) α = (D) α = nqcZy eksuksizksVhd vEy ds fo;kstu dh ek=kk bl rjg nh tkrh gS & 1 1 + 10 ( pK a + pH ) (A) α = 1 1 + 10 ( pK a − pH ) (B) α = 1 1 + 10 ( pH − pK a ) (C) α = 1 1 + 10 (D) 115 pm rFkk 2.0 (D) α = ( pK a / pH ) 1 1 + 10 ( pK a + pH ) 1 1 + 10 ( pK a − pH ) 1 1 + 10 ( pH − pK a ) 1 1 + 10 ( pK a / pH ) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 29 Q.19 Given a solution of acetic acid. How many times of the acid concentration, acetate salt should be added to obtain a solution with pH = 7.0 ? Q.19 (A) 170 times (B) 137 times ,flfVd vEy dk foy;u fn;k x;k gSA ,flVsV yo.k feykus ij foy;u dh pH = 7.0 izkIr gksrk gS rks vEy lkUnzrk fdrus xquk gks tk,sxh ? [CH3COOH dk Ka = 1.8 × 10–5] (B) 137 xquk (A) 170 xquk (C) 173 times (D) 172 times (C) 173 xquk [Ka of CH3COOH = 1.8 × 10–5] Q.20 pH = 7.40, K1 of H2CO3 = 4.5 × 10–7. What will Q.20 pH = 7.40, H2CO3 dk K1 = 4.5 × 10–7 gSA be the ratio of [ HCO 3− ] to [H 2 CO 3 ] ? [ HCO 3− ] o [H 2 CO 3 ] dk vuqikr D;k gksxk ? (A) 11.3 (B) 1.13 (A) 11.3 (B) 1.13 (C) 1.23 (D) 1.31 (C) 1.23 (D) 1.31 Section – II [k.M - II This section contains 2 questions (Questions 1, 2). Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column I have to be matched with statements (P, Q, R, S) in Column II. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-P, A-S, B-Q, B-R, C-P, C-Q and D-S, then the correctly bubbled 4 × 4 matrix should be as follows : (D) 172 xquk bl [k.M esa 2 iz'u (iz'u 1, 2) gSaA izR;sd iz'u esa nks LrEHkksa esa dFku fn;s x;s gSa] ftUgsa lqesfyr djuk gSA LrEHk-I (Column I ) esa fn;s x;s dFkuksa (A, B, C, D) dks LrEHk-II (Column II) esa fn;s x;s dFkuksa (P, Q, R, S) ls lqesy djuk gSA bu iz'uksa ds mÙkj uhps fn;s x;s mnkgj.k ds vuqlkj mfpr xksyksa dks dkyk djds n'kkZuk gSA ;fn lgh lqesy A-P, A-S, B-Q, B-R, C-P, C-Q rFkk D-S gS, rks lgh fof/k ls dkys fd;s x;s xksyksa dk 4 × 4 eSfVªDl uhps n'kkZ;s vuqlkj gksxk : Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 30 P Q R S P Q R S A B C D P P P P Q Q Q Q R R R R S S S S A B C D Mark your response in OMR sheet against the P P P P Q Q Q Q R R R R S S S S any row. vr% OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj [k.M-II esa vafdr dhft;sA izR;sd iw.kZ lgh mÙkj ds fy;s + 6 vad fn;s tk;saxs rFkk xyr mÙkj ds fy;s dksbZ +_.kkRed vadu ugha gS (vFkkZr~ dksbZ vad ugha ?kVk;k tk;sxk)A fdUrq] fdlh iafDr esa lgh :i ls fpfUgr mÙkj ds fy, 1 vad fn;k tk;sxkA Q.1 Q.1 question number of that question in section-II. + 6 marks will be given for complete correct answer and No Negative marks for wrong answer. However, 1 mark will be given for a correctly marked answer in Match the following : Column -I LrEHk lqesy dhft;s : Column-II (A) Coloured ion (P) Cu+ (B) µ = 1.73 B.M. (Q) Cu2+ (C) d10 configuration (D) more than 3 unpaired electrons LrEHk -I LrEHk -II (A) jaxhu vk;u (P) Cu+ (B) µ = 1.73 B.M. (Q) Cu2+ (R) Fe2+ (C) d10 foU;kl (R) Fe2+ (S) Mn2+ (D) 3 ls vf/kd v;qXehr bysDVªkWu (S) Mn2+ Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 31 Q.2 Match the following : Column -I (A) Fluorite structure Q.2 Column-II LrEHk -I (P) Distance of nearest neighbour = LrEHk lqesy dhft;s : (A) ¶yksjkbV lajpuk LrEHk-II (P) fudVre iM+kSlh dh nwjh 3a 4 = 3a 4 (B) Zinc blende structure (Q) Packing fraction 73 % (B) ftad Cys.M lajpuk (Q) ladqyu fHkUu 73 % (C) CsCl structure (R) Packing fraction 74 % (C) CsCl lajpuk (R) ladqyu fHkUu 74 % (D) Rock salt structure (S) Packing fraction 79.4% (D) jksd lkYV lajpuk (S) ladqyu fHkUu 79.4% Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 32 Date : 14/02/2010 Time : 3 : 00 Hrs. MAX MARKS: 249 Name : _________________________________________________________ Roll No. : __________________________ ijh{kkfFkZ;ksa ds fy, funsZ'k % A. lkekU; : 1. Ñi;k izR;sd iz'u ds fy, fn, x, funsZ'kksa dks lko/kkuhiwoZd if<+;s rFkk lEcfU/kr fo"k;kas esa mÙkj&iqfLrdk ij iz'u SEAL la[;k ds le{k lgh mÙkj fpfUgr dhft,A 2. iz'u&i=k ds bl eq[k i`"B ij fn, x;s [kkyh LFkku esa viuk uke] vuqØek¡d fyf[k;sA 3. iz'ui=k esa jQ dk;Z gsrq [kkyh LFkku fn;s x, gSaA jQ dk;Z gsrq dksbZ vfrfjDr iqfLrdk ugha nh tk,sxhA 4. mRrj ds fy,] OMR vyx ls nh tk jgh gSA 5. ifjoh{kdksa }kjk funsZ'k fn;s tkus ls iwoZ iz'u&i=k iqfLrdk dh lhy dks ugha rksMsa+A 6. [kkyh dkxt+] fDyicksMZ] y?kqx.kd lkj.kh] LykbM :y] dsYdqysVj] lsY;qyj Qksu] ist+j rFkk bysDVªkWfud midj.kksa dh fdlh Hkh voLFkk esa ijh{kk d{k esa vanj ys tkus dh vuqefr ugha nh tk,sxhA B. OMR dh iwfrZ : 7. OMR 'khV ds CykWdksa esa viuk uke] vuqØek¡d] cSp] dkslZ rFkk ijh{kk dk dsUnz Hkjsa o xksyksa dks mi;qDr :i ls dkyk djsAa 8. OMR 'khV dks xUnk@eksMsa+ ughaA C. vadu i)fr: bl iz'ui=k esa izR;sd fo"k; esa fuEu izdkj ds iz'u gSa:[k.M – I Space for rough work 9. cgqfodYih izdkj ds iz'u ftuesa ls dsoy ,d fodYi lgh gSA izR;sd lgh mÙkj ds fy, 3 vad fn;s tk;saxs o izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk,xkA 10. cgqfodYih izdkj ds iz'u ftuesa ls ,d ;k ,d ls vf/kd fodYi lgh gSaA izR;sd lgh mÙkj ds fy, 4 vad fn, tk;saxas rFkk izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk,xkA 11. x|ka'k ij vk/kkfjr cgqfodYih izdkj ds iz'u ftuesa ls dsoy ,d fodYi lgh gSA izR;sd lgh mÙkj ds fy, 4 vad fn;s tk;saxs rFkk xyr mÙkj ds fy, 1 vad ?kVk;k tk,xkA [k.M –II 12. LrEHkksa dks lqesfyr djus okys iz'u gSaA iw.kZ :Ik ls lgh lqesfyr mÙkj ds fy, 6 vad fn;s tk;saxs rFkk xyr mÙkj ds fy, dksbZ _.kkRed vadu ugha gSA fdUrq] fdlh iafDr esa lgh :Ik ls fpfUgr mÙkj ds fy, 1 vad fn;k tk;sxkA Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 33 Space for Rough Work (jQ+ dk;Z gsrq LFkku) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 || IIT Target || Page # 1
© Copyright 2026 Paperzz