Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux Mathias Garny (DESY) KEK, POwLHC, 16.-18.02.12 based on arXiv:1112.5155, JCAP 1107 (2011) 028 (arXiv:1105.5367) with Alejandro Ibarra, Stefan Vogl Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux Introduction Electroweak Internal Bremsstrahlung SU(2)L singlet (Bino-like) DM SU(2)L doublet (Higgsino-like) DM Constraints from PAMELA p̄/p measurement Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra WIMP Dark Matter mX (TeV) Upper limits, Joint Likelihood of 10 dSphs 3 ·10−26 µ + µ− Channel bb̄ Channel W + W− Channel τ + τ− Channel WIMP cross section [cm3 /s] 10-21 :X ____ :DM 10-22 10-23 10-24 10-25 10-26 Feng 2010 101 102 WIMP mass [GeV] 103 Fermi 1108.3546 Limits: 90% Contours: 90%, 3Σ 10-39 DAMA 10-40 10-41 -42 10 100 on- 10-43 CRESST-II Xen WIMP-nucleon cross section ΣSI @cm2 D 10-38 10-44 n m. ru com r SST w-th CRE S lo M CD S KIM S CDM v0 = 220 kms, vesc = 550 kms 101 102 m Χ @GeVD 103 Kopp, Schwetz, Zupan 2011 Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra WIMP Dark Matter Anomalies in e + /e − and e + + e − reported by PAMELA and Fermi: Dark Matter? (not in this talk) Fermi 1110.2591 Severe constraints from γ (e.g. Fermi diffuse γ-ray data, IC) Cirelli, Panci, Serpico 0912.0663 Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra WIMP Dark Matter p/p PAMELA p̄/p ratio measurement is in good agreement with expectation from secondary production 10-3 10-4 BESS 2000 (Y. Asaoka et al.) 10-5 BESS 1999 (Y. Asaoka et al.) BESS-polar 2004 (K. Abe et al.) CAPRICE 1994 (M. Boezio et al.) CAPRICE 1998 (M. Boezio et al.) HEAT-pbar 2000 (A. S. Beach et al.) PAMELA 10-6 10-1 1 10 102 kinetic energy [GeV] PAMELA 1007.0821 This talk: Impact of p̄/p constraints on WIMP with nearly degenerate mass spectrum Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra WIMP with nearly degenerate mass spectrum Scenarios where the dark matter particle χ couples to the Standard Model via a scalar particle η (e.g. η ≡ q̃) that is nearly degenerate in mass are difficult to constrain by collider searches of exotic charged or colored particles mDM ∼ 102 − 103 GeV, mη − mDM . O(10 − 100)GeV Complementarity of collider searches and indirect detection (direct detection) Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Toy Model Majorana fermion χ (DM) couples to the SM via charged/colored scalar η, mη & mDM (e.g. slepton/squark) Coupling to leptons cf. Cao, Ma, Shaughnessy 2009 χ ≡ (1, 1, 0) , η= + η η0 ≡ (1, 2, 1/2) Lfermion = f χ̄(Le iσ2 η) + h.c. = f χ̄(νeL η 0 − eL η + ) + h.c. int Lscalar = −λ3 (Φ† Φ)(η † η) − λ4 (Φ† η)(η † Φ) int Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Toy Model Majorana fermion χ (DM) couples to the SM via charged/colored scalar η, mη & mDM (e.g. slepton/squark) Coupling to leptons cf. Cao, Ma, Shaughnessy 2009 χ ≡ (1, 1, 0) , η= + η η0 ≡ (1, 2, 1/2) Lfermion = f χ̄(Le iσ2 η) + h.c. = f χ̄(νeL η 0 − eL η + ) + h.c. int Lscalar = −λ3 (Φ† Φ)(η † η) − λ4 (Φ† η)(η † Φ) int 2 2 mη2 0 = m22 + (λ3 + λ4 )vEW , mη2 ± = m22 + λ3 vEW Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Toy Model Majorana fermion χ (DM) couples to the SM via charged/colored scalar η, mη & mDM (e.g. slepton/squark) Coupling to leptons cf. Cao, Ma, Shaughnessy 2009 χ ≡ (1, 1, 0) , η= + η η0 ≡ (1, 2, 1/2) Lfermion = f χ̄(Le iσ2 η) + h.c. = f χ̄(νeL η 0 − eL η + ) + h.c. int Lscalar = −λ3 (Φ† Φ)(η † η) − λ4 (Φ† η)(η † Φ) int 2 2 mη2 0 = m22 + (λ3 + λ4 )vEW , mη2 ± = m22 + λ3 vEW ΩDM h2 ' 0.11 0.35 f 4 mDM 2 100 GeV Mathias Garny (DESY) " 4 1 + mη4 ± /mDM 2 )4 (1 + mη2 ± /mDM + 4 1 + mη4 0 /mDM #−1 2 )4 (1 + mη2 0 /mDM Constraints on dark matter with nearly degenerate mass spectra Toy Model Majorana fermion χ (DM) couples to the SM via charged/colored scalar η, mη & mDM (e.g. slepton/squark) Coupling to leptons cf. Cao, Ma, Shaughnessy 2009 χ ≡ (1, 1, 0) , η= + η η0 ≡ (1, 2, 1/2) Lfermion = f χ̄(Le iσ2 η) + h.c. = f χ̄(νeL η 0 − eL η + ) + h.c. int Lscalar = −λ3 (Φ† Φ)(η † η) − λ4 (Φ† η)(η † Φ) int 2 2 mη2 0 = m22 + (λ3 + λ4 )vEW , mη2 ± = m22 + λ3 vEW ΩDM h2 ' 0.11 0.35 f 4 mDM 2 100 GeV " 4 1 + mη4 ± /mDM 2 )4 (1 + mη2 ± /mDM + 4 1 + mη4 0 /mDM #−1 2 )4 (1 + mη2 0 /mDM Coupling to quarks η = (3, 2, 1/6) or η = (3, 2, 2/3) Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Indirect detection For Majorana dark matter, the annihilation rate in the Milky Way halo into light fermions is strongly suppressed (e.g. MSSM Neutralino annihilating via squark/slepton) σvχχ→f f¯ = a + bv 2 Mathias Garny (DESY) 2 a ∝ mf2 /mDM , v /c ∼ 10−3 Constraints on dark matter with nearly degenerate mass spectra Indirect detection For Majorana dark matter, the annihilation rate in the Milky Way halo into light fermions is strongly suppressed (e.g. MSSM Neutralino annihilating via squark/slepton) σvχχ→f f¯ = a + bv 2 2 a ∝ mf2 /mDM , v /c ∼ 10−3 The helicity suppression is lifted by the associated emission of a gauge boson, yielding annihilation rates which could be large enough to allow the indirect detection of the dark matter particles χχ → f f¯V , V = γ, W , Z , g Bergstrom 89; Flores, Olive, Rudaz 89; Drees, Jungman, Kamionkowski Nojiri 93 The 2 → 3 annihilation rate is particularly enhanced when the dark matter particle is degenerate with the intermediate scalar particle Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Virtual Internal Bremsstrahlung 2 → 2 annihilation σvχχ→f f¯ = " mf O(v )O mDM 0 2 # 2 + O(v ) O mDM mη 4 2 → 3 annihilation via FSR from nearly on-shell e ± (soft/collinear) Z αem 1 1 − x FSR 2 σvχχ→f ' dx log[4mDM (1 − x)/mf2 ] × σvχχ→f f¯ f¯γ π 0 x Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Virtual Internal Bremsstrahlung 2 → 2 annihilation σvχχ→f f¯ = " mf O(v )O mDM 0 2 # 2 + O(v ) O mDM mη 4 2 → 3 annihilation via FSR from nearly on-shell e ± (soft/collinear) Z αem 1 1 − x FSR 2 σvχχ→f ' dx log[4mDM (1 − x)/mf2 ] × σvχχ→f f¯ f¯γ π 0 x 2 → 3 annihilation via VIB and FSR from off-shell e ± " 8 4 # mDM mDM αem VIB/FSR 0 2 σvχχ→f f¯γ = O(v )O + O(v )O π mη mη Mathias Garny (DESY) Bergstrom 89; Flores, Olive, Rudaz 89 Constraints on dark matter with nearly degenerate mass spectra Electromagnetic Internal Bremsstrahlung χχ → f f¯γ Characteristic feature in the gamma ray spectrum 1 BM1 0.1 0.01 0.001 BM2 Total Secondary gammas Internal Bremsstrahlung 1 x2 dN γ,tot /dx x2 dN γ,tot /dx Total Secondary gammas Internal Bremsstrahlung 0.1 0.01 0.2 0.4 0.6 0.8 1 0.2 x = Eγ /mχ 10 0.4 0.6 0.8 1 x = Eγ /mχ 1 BM3 Total Secondary gammas Internal Bremsstrahlung x2 dN γ,tot /dx 1 x2 dN γ,tot /dx PSfrag 0.1 0.01 0.001 BM4 Total Secondary gammas Internal Bremsstrahlung 0.1 0.01 0.001 0.2 0.4 0.6 0.8 1 0.2 x = Eγ /mχ 0.4 0.6 0.8 1 x = Eγ /mχ solid: 2σ exclusion dashed: 5σ dicovery thin: S/B = 1% Bringmann, Calore, Vertongen, Weniger 11 Bergstrom 89; Bringmann, Bergstrom, Edsjo 07 Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Electroweak Internal Bremsstrahlung Characteristic feature in the gamma ray spectrum Bergstrom 89; Bringmann, Bergstrom, Edsjo 07 Limits on the relevant cross sections from the non-observation of an excess in the cosmic p̄/p ratio measured by PAMELA MG, Ibarra, Vogl 11; Ciafaloni, Cirelli, Comelli, De Simone, Riotto, Urbano 11; Bell, Dent, Jacques, Weiler 11 Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Electroweak Internal Bremsstrahlung vdσ(χχ → γf f¯) dEγ dEf vdσ(χχ → Wf f¯0 ) dEW dEf = = Cγf f¯ αem f 4 (1 − x)[x 2 − 2x(1 − y ) + 2(1 − y )2 ] 4 (1 − 2y − µ )2 (3 − 2x − 2y + µ )2 8π 2 mDM f f CWf f¯0 αem f 4 n 4 (1 − 2y − µ )2 (3 − 2x − 2y + µ )2 8π 2 mDM f f0 2 2 2 (1 − x)[x − 2x(1 − y ) + 2(1 − y ) 2 2 2 4 + 2(2 − x − 2y )∆µ] + x0 [x + 2y + 2xy − 4y + 2(2 − x − 2y )∆µ + ∆µ ]/4 − x0 /8 o 2 2 + ∆µ [(1 − 2x)/2 − (1 − y )(1 − x − y )/(2x0 )] 2 2 2 x = EW /mDM , y = Ef /mDM , x0 = MW /mDM , µf = mη /mDM , µf 0 = mη f0 f χχ → VfR f¯R χχ → VfL f¯L Cγf f¯ CZf f¯ CWf f¯0 Cgqq̄ qf2 Nc qf2 Nc tan2 (θW ) – N c CF Nc 2 sin2 (θW ) N c CF qf2 Nc (t3f −qf sin2 (θW ))2 sin2 (θW ) cos2 (θW ) Nc Mathias Garny (DESY) 2 /mDM , ∆µ = 2(µf 0 − µf ) MG, Ibarra, Vogl 11 Constraints on dark matter with nearly degenerate mass spectra Electroweak Internal Bremsstrahlung Spectrum of primary electroweak gauge bosons (for mη± = mη0 ) dNγ /dlnE 104 dNZ /dlnE dNW /dlnE dNi /dlnE 103 102 101 100 0 0.2 0.4 0.6 0.8 1 x = E/mDM mDM = 300 GeV and mη± = mη0 = 330 GeV dNW 1 = d ln E σv (χχ → eē) MG, Ibarra, Vogl 11 vdσ(χχ → W ēν) vdσ(χχ → We ν̄) + d ln E d ln E Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Electroweak Internal Bremsstrahlung Ratio of 2 → 2 and 2 → 3 cross sections (for mη± = mη0 ) σv(χχ → γeL ēL )/σv(χχ → eL ēL ) 104 σv(χχ → ZeL ēL )/σv(χχ → eL ēL ) σv(χχ → Zν ν̄)/σv(χχ → eL ēL ) 103 σv(2 → 3)/σv(2 → 2) σv(2 → 3)/σv(2 → 2) 104 σv(χχ → W eν)/σv(χχ → eL ēL ) 102 101 100 σv(2 → 3)/σv(2 → 2) 103 102 σv(χχ → γeē)/σv(χχ → eē) 101 σv(χχ → Zeē)/σv(χχ → eē) 10−1 10−2 SU (2)L singlet DM coupling to Le σv(χχ → Zν ν̄)/σv(χχ → eē) mDM = 300GeV 1 mη± /mDM = 1.1, mη0 = mη± 100 10 σv(χχ → W eν)/σv(χχ → eē) 100 1000 mDM [GeV℄ mη± /mDM mDM = 300 GeV and mη± = mη0 MG, Ibarra, Vogl 11 The 2 → 3 processes dominate for mη . 5mDM Production of electroweak gauge bosons if mDM > MW /2, sizeable for mDM & 100GeV Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Electroweak Internal Bremsstrahlung 2 Mass splitting mη2 0 − mη2 ± = λ4 vEW with λ4 ∼ O(1) 105 dNW /dlnE mη 0 = mη ± 2 m2η0 − m2η± = vEW 104 2 m2η0 − m2η± = 2vEW σv(χχ → W eν)/σv(χχ → eē) dNW /dlnE 104 103 102 101 100 0 0.2 0.4 0.6 0.8 103 102 101 100 1 mη± /mDM = 1.1 σv(χχ → W eν)/σv(χχ → eē) mη 0 = mη ± 2 m2η0 − m2η± = vEW 2 m2η0 − m2η± = 2vEW 100 1000 mDM [GeV℄ x = E/mDM Longitudinal W-bosons: no kinematic suppression at the endpoint ⇒ harder spectrum, enhanced cross-section σv (χχ → Weν) ≈ η sin2 (θW ) 4.32 η η η m2 0 + m2 ± η 1 + m2 0 + m2 ± 2m2 ± ≈ 4 2m2 ± 1 η 4 " 2 1 + λ4 2 2 2 5 (mη0 − mη± ) σv (χχ → γeē) 2 m2 8 MW DM 300 GeV mDM !2 # σv (χχ → γeē) MG, Ibarra, Vogl 11 Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux Introduction Electroweak Internal Bremsstrahlung SU(2)L singlet (Bino-like) DM SU(2)L doublet (Higgsino-like) DM Constraints from PAMELA p̄/p measurement Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra SU(2)L singlet DM Branching ratio σv (χχ → X )/σv (χχ → γf f¯) for mηu = mηd and mW /2 mDM = 300GeV mη DM χ = (1, 1, 0) DM coupling to Le DM coupling to eR DM coupling to qL DM coupling to uR DM coupling to dR η (1,2,1/2) (1,1,1) (3,2,1/6) (3,1,2/3) (3,1,-1/3) Mathias Garny (DESY) Wf f¯0 4.32 – 7.79 – – Zf f¯ 1.82 0.30 3.02 0.30 0.30 gf f¯ – – 61.4 38.4 154 Constraints on dark matter with nearly degenerate mass spectra SU(2)L singlet DM Ratio of 2 → 2 and 2 → 3 cross sections for singlet Majorana DM annihilating into right-handed up-quarks or left-handed quarks, respectively, with mass splittings ∆m = 10, 50, 100GeV Singlet DM coupling to uR SU (2)L singlet DM coupling to uR 105 mη − mDM = 10GeV 50GeV 104 100GeV 103 102 σv(2 → 3)/σv(2 → 2) σv(2 → 3)/σv(2 → 2) 105 Singlet DM coupling to QL 102 σv(χχ → γqL q̄L )/σv(χχ → qL q̄L ) 101 100 σv(χχ → ZuR ūR )/σv(χχ → uR ūR ) 100 1000 mDM [GeV] Mathias Garny (DESY) 100GeV 103 σv(χχ → γuR ūR )/σv(χχ → uR ūR ) 100 50GeV 104 101 σv(χχ → guR ūR )/σv(χχ → uR ūR ) SU (2)L singlet DM coupling to qL mη − mDM = 10GeV σv(χχ → gqL q̄L )/σv(χχ → qL q̄L ) σv(χχ → ZqL q̄L )/σv(χχ → qL q̄L ) σv(χχ → W qL q̄L )/σv(χχ → qL q̄L ) 100 1000 mDM [GeV] Constraints on dark matter with nearly degenerate mass spectra Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux Introduction Electroweak Internal Bremsstrahlung SU(2)L singlet (Bino-like) DM SU(2)L doublet (Higgsino-like) DM Constraints from PAMELA p̄/p measurement Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra SU(2)L doublet DM Two doublets χ1 ≡ (1, 2, − 12 ), χ2 ≡ (1, 2, 12 ) (anomaly free) Mass splitting from radiative corrections (mχ± − mχ0 )rad ' 0.34GeV Mass splitting from Dim-5 operator (we assume Λ . 10TeV) fermion δLmass = i 1h ∗ † c T c † c c1 (χ̄1 iσ2 Φ )(Φ iσ2 χ1 ) + c2 (χ̄2 Φ)(Φ χ2 ) + c3 (χ̄2 Φ)(Φ iσ2 χ1 ) + h.c. Λ 2 vEW (c3 + |c1 − c2 |) 2Λ v2 − mχ = EW |c1 − c2 | Λ δm± = mχ± − mχ = δm0 = mχ0 Annihilation via gauge interaction χχ → WW , ZZ σvχχ→WW = σvχχ→ZZ = q 2 mχ2 − MW g4 2 /m2 1 − MW χ 2 2 32π (mχ2 + mχ± − MW )2 q mχ2 − MZ2 g4 1 − MZ2 /mχ2 4 2 2 64πcW (mχ2 + mχ0 − MZ )2 Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra SU(2)L doublet DM Annihilation into fermions via charged scalar η 1 η ≡ (1, 2, − ) : Lint = f (χ̄1 iσ2 η ∗ )eR − λ3 (Φ† Φ)(η † η) − λ4 (Φ† η)(η † Φ) 2 η ≡ (1, 1, 1) : Lint = f (χ̄1 iσ2 Lce )η − λ3 (Φ† Φ)(η † η) Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra SU(2)L doublet DM Annihilation into fermions via charged scalar η 1 η ≡ (1, 2, − ) : Lint = f (χ̄1 iσ2 η ∗ )eR − λ3 (Φ† Φ)(η † η) − λ4 (Φ† η)(η † Φ) 2 η ≡ (1, 1, 1) : Lint = f (χ̄1 iσ2 Lce )η − λ3 (Φ† Φ)(η † η) χχ → γeē via VIB, FSR " 8 4 # αem m m DM DM VIB/FSR σvχχ→f f¯γ = O(v 0 )O + O(v 2 )O π mη mη χχ → Zeē via VIB, FSR, and ISR " 4 4 # αem m m DM DM VIB/FSR/ISR σvχχ→f f¯Z = O(v 0 )O + O(v 2 )O π mη mη Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra SU(2)L doublet DM Cross-sections for 2 → 2 and 2 → 3 annihilation Typically χχ → WW /ZZ channels dominate The channels χχ → f f¯V can be important for mη ≈ mDM mη /mDM = 1.5 Mathias Garny (DESY) mη /mDM = 1.01 Constraints on dark matter with nearly degenerate mass spectra Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux Introduction Electroweak Internal Bremsstrahlung SU(2)L singlet (Bino-like) DM SU(2)L doublet (Higgsino-like) DM Constraints from PAMELA p̄/p measurement Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Constraints from PAMELA p̄/p measurement Rate of p̄ per unit of kinetic energy and volume dNp̄f 1 ρ2 (~r ) X Q(T ,~r ) = hσv i f 2 mχ2 dT f Isothermal, NFW, Einasto profile with ρ(r ) = 0.39GeV/cm3 Propagation: two-zone diffusion model compatible with B/C ratio, three parameter sets corresponding to MIN, MED, MAX p̄ flux Model MIN MED MAX ∂fp̄ = ∇·(K (T ,~r )∇fp̄ )−∇·(V~c (~r )fp̄ )−2hδ(z)Γann fp̄ +Q(T ,~r ) ∂t δ 0.85 0.70 0.46 K0 (kpc2 /Myr) 0.0016 0.0112 0.0765 secondary p̄ flux from L (kpc) 1 4 15 Vc (km/s) 13.5 12 5 10−3 PAMELA p̄/p mDM = 300GeV S+B S p̄/p 0= 10−4 Donato, Maurin, Salati, Barrau, Boudoul, Taillet 01 solar modulation in force field approximation φF = 500MV Mathias Garny (DESY) 10−5 100 101 102 kinetic energy T [GeV] Constraints on dark matter with nearly degenerate mass spectra Constraints from PAMELA p̄/p measurement Maximally allowed cross section (95% C.L.) from PAMELA p̄/p measurement σv(χχ → W eν) [cm3 /sec] 10−21 χχ → Weν σv(χχ → W eν) 10−21 excluded from PAMELA p̄/p 10−22 10−23 MIN 10−24 MED 10−25 MAX 10−26 102 10−20 σv(χχ → guū) [cm3 /sec] 10−20 Isothermal σv(χχ → guū) excluded from PAMELA p̄/p 10−22 10−23 10−24 MIN MED Isothermal 10−25 NFW Einasto 103 χχ → guū 104 mDM [GeV] 10−26 102 NFW Einasto MAX 103 104 mDM [GeV] MG, Ibarra, Vogl 11 Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Constraints from PAMELA p̄/p measurement Constraint on the BF in the milky way by imposing thermal relic density constraint Ωχ h2 = 0.11 in the mDM − ∆m plane for MED propagation and NFW profile Singlet DM coupling to leptons Singlet DM coupling to quarks BFmax from p̄/p for singlet DM coupling to QL BFmax from p̄/p for singlet DM coupling to Le 180 180 4.5 5 140 4 120 100 3 80 60 160 mηu − mDM [GeV] 160 mη± − mDM [GeV] 6 200 6 200 2 40 20 2.5 100 2.75 3 3.25 3.5 3.75 4 4.25 1 1000 mDM [GeV] 3 5 140 4 120 100 3 80 60 2 40 20 1.5 100 1.75 2 2.25 2.5 2.75 1 1000 mDM [GeV] Solid: mηu = mηd 2 Dashed: mη2 u − mη2 d = vEW (log scale) Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Constraints from PAMELA p̄/p measurement Constraint on the BF in the milky way for Doublet DM Doublet DM pure gauge χχ → WW /ZZ /WWZ /WW γ 107 105 104 104 103 MIN BF MED 102 MAX 100 102 102 101 BF=1 Iso NFW 10−1 10−2 NFW, MED mη /mDM = 1.01 105 101 χχ → WW /ZZ /WWZ /WW γ χχ → We ν̄/W ēν/Zeē/Z ν ν̄ 106 f=0 106 103 Doublet DM coupling to Le Einasto 103 mDM [GeV] Mathias Garny (DESY) BF=1 100 f=0 f=1 10−1 10−2 102 104 f=2 103 104 mDM [GeV] Constraints on dark matter with nearly degenerate mass spectra Constraints from PAMELA p̄/p measurement Upper limits on the boost factor BF in the Milky Way obtained from the PAMELA p̄/p data for several MSSM benchmark points at 95%C.L. Model BM2 BM3 BMJ 0 BMI 0 mDM [GeV] 453 234 316 141 BF (p̄/p) 2 → 2/3 < 5900 < 1500 < 330 < 11 BF (p̄/p) 2→3 < 1.3 · 105 < 1.3 · 104 < 3.5 · 104 < 6900 in realistic models the upper bounds on the boost factor are at least one order of magnitude stronger than the conservative bounds BM3 has been discussed in as a possible explanation of the PAMELA positron excess, provided the boost factor in the Milky way is ∼ 3 × 104 Bergstrom, Bringmann, Edsjo 2008 detection of a gamma-ray signal with a 5σ significance at MAGIC II or at the projected CTA with 30 hours of observation requires a boost factor in Draco larger than ∼ 104 or ∼ 103 , respectively Bringmann, Doro, Fornasa 2008 Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux Conclusion For Majorana DM the annihilation channels into two fermions and one gauge boson can be important χχ → f f¯V The 2 → 3 channel is enhanced if the charged/colored scalar mediating the annihilation is nearly degenerate in mass with the DM ⇒ Complementarity of IDM/Collider searches Constraints from PAMELA p̄/p data on the order of 10−25 cm3 /sec for χχ → Weν and 10−26 cm3 /sec for χχ → guū Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Constraints on dark matter scenarios with nearly degenerate mass spectra from the cosmic antiproton flux Conclusion For Majorana DM the annihilation channels into two fermions and one gauge boson can be important χχ → f f¯V The 2 → 3 channel is enhanced if the charged/colored scalar mediating the annihilation is nearly degenerate in mass with the DM ⇒ Complementarity of IDM/Collider searches Constraints from PAMELA p̄/p data on the order of 10−25 cm3 /sec for χχ → Weν and 10−26 cm3 /sec for χχ → guū thank you! MG, Alejandro Ibarra, Stefan Vogl arXiv:1112.5155, JCAP 1107 (2011) 028 (arXiv:1105.5367) Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Density profile Isothermal profile ρ(r ) = ρs , 1 + (r /rs )2 Navarro-Frenk-White (NFW) profile ρ(r ) = ρs 1 , r /rs (1 + r /rs )2 Einasto profile α r 2 −1 . ρ(r ) = ρs exp − α rs Scale radius rs = 4.38, 24.42, 28.44 kpc, respectively, α = 0.17 for the Einasto profile. Besides, the parameter ρs is adjusted in order to yield a local dark matter density ρ(r ) = 0.39 GeV/cm3 with r = 8.5 kpc being the distance of the Sun to the Galactic center and is given, respectively, by ρs = 1.86, 0.25 and 0.044 GeV/cm3 . Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra Sommerfelfd enhancement for SU(2)L Doublet DM Amplitude Aχχ→SM = s0 A0χχ→SM + s00 A0χ0 χ0 →SM + s± A0χ+ χ− →SM Enhancement in the perturbative limit αem m αem m √ DM p DM s00 ' √ 2 , s± ' √ 2 . 2s2W MZ + 2mDM δm0 2 2sW MW + 2mDM δm± Largest effect for χχ → χ+ χ− → γf f¯ due to ‘ISR’ 104 SU (2)L doublet DM coupling to Le 105 mη /mDM = 1.5 SU (2)L doublet DM coupling to uL , mDM = 300GeV 103 SE 1GeV 10 102 101 σv(χχ → γeL ēL )/σv(χχ → eL ēL ) σv(χχ → ZeL ēL )/σv(χχ → eL ēL ) σv(χχ → W eν)/σv(χχ → eL ēL ) 100 100 1000 mDM [GeV] Mathias Garny (DESY) σv(2 → 3)/σv(2 → 2) σv(2 → 3)/σv(2 → 2) 104 103 102 101 SE 100 σv(χχ → γuL ūL )/σv(χχ → uL ūL ) 10−1 σv(χχ → guL ūL )/σv(χχ → uL ūL ) σv(χχ → ZuL ūL )/σv(χχ → uL ūL ) 10−2 10−3 s + p-wave s-wave σv(χχ → W qL qL )/σv(χχ → uL ūL ) 1 10 mη /mDM Constraints on dark matter with nearly degenerate mass spectra Collider constraints (rough estimate) coloured scalar mη > 875 GeV for any mDM (ATLAS dijet 95%c.l 1.04fb− 1) 97 GeV ≤ mη ≤ 875 GeV, if pT , ETmiss . 130 GeV 33 − 44 GeV ≤ mη ≤ 97 GeV, if mη − mDM . 10 GeV (L3 ) charged scalar 60 GeV ≤ mη ≤ 94.4 − 97.5 GeV, if mη − mDM . 10 − 15 GeV (OPAL, L3, ALEPH) 40 GeV ≤ mη ≤ 60 GeV, if mη − mDM . 5 GeV (DELPHI) Mathias Garny (DESY) Constraints on dark matter with nearly degenerate mass spectra
© Copyright 2026 Paperzz