Table of Integrals∗ Basic Forms Z Integrals with Logarithms 1 x dx = xn+1 n+1 Z 1 dx = ln |x| x Z Z udv = uv vdu Z n (1) Z Z p (2) (3) 1 1 dx = ln |ax + b| ax + b a (4) Z p Integrals of Rational Functions Z Z Z (x + a)n dx = x(x + a)n dx = Z Z Z Z Z 1 x+a 1 (x + a)n+1 ((n + 1)x (n + 1)(n + 2) 1 dx = tan 1 + x2 1 1 1 dx = tan a2 + x2 a a) 2 x dx = x a2 + x2 x a 3 x 1 dx = x2 a2 + x2 2 1 a tan 1 tan x a Z p Z Z Z p x x Z x a Z r ∗ x p p Z 2ax + b p 4ac b2 2 a(x 3 a)3/2 + ✓ 2b 2x + 3a 3 Z Z Z p a)5/2 ax + b (21) (23) x dx = a+x p x(a x) x(a + x) a tan a ln ⇥p 1 Z (20) p x 2 dx = (x ⌥ 2a) x ± a 3 x±a p 1 p x+ x(a x) x a p x+a ⇤ 1 2 x2 ± a2 dx = x ± a2 3 p 3/2 p p p 1 a2 x2 dx = sin 1 x a p x dx = x2 ± a2 2 ±a x2 x a2 x2 dx = p a2 x2 (31) (32) (24) (25) Z x Z 1p 2 x dx = ax + bx + c a ax2 + bx + c p b ln 2ax + b + 2 a(ax2 + bx + c) 2a3/2 Z dx x = p (a2 + x2 )3/2 a2 a2 + x2 ◆ x, a 6= 0 ln(ax + b) Z Z a2 ) dx = x ln(x2 a2 ) + a ln (44) x a 2x (45) x+a x a 2x (46) 1 2ax + b p 4ac b2 1 (47) bx 1 2 x 2a 4 ✓ ◆ 1 b2 + x2 ln(ax + b) 2 a2 x ln(ax + b)dx = 1 2 b2 x2 dx = x + 2 ✓ ◆ 1 a2 x2 ln a2 2 b2 x ln a2 (33) b2 x2 (48) (49) Integrals with Exponentials Z (34) Z (35) p (37) 1 ax e a (50) p p 1 p ax i ⇡ xe + 3/2 erf i ax , a 2a Z x 2 2 where erf(x) = p e t dt ⇡ 0 Z Z eax dx = xeax dx = Z Z Z Z xex dx = (x xeax dx = ✓ x2 eax dx = ✓ x2 a x3 ex dx = x3 xn eax a 1)ex x a x2 ex dx = x2 xn eax dx = Z 1 a2 ◆ (51) (52) eax (53) 2x + 2 ex (54) ◆ eax (55) 6 ex (56) 1 ax (57) 2x 2 + 3 a2 a 3x2 + 6x n a Z xn e dx ( 1)n [1 + n, ax], an+1 Z 1 where (a, x) = ta 1 e t dt xn eax dx = (58) x p p 2 i ⇡ p erf ix a eax dx = 2 a p Z p 2 ⇡ e ax dx = p erf x a 2 a Z 2 2 1 xe ax dx = e ax 2a Z (40) (41) b x+ a 1p ln ax2 + bx + c dx = 4ac b2 tan a ✓ ◆ b 2x + + x ln ax2 + bx + c 2a 1 ⇣ p p 2 ax2 + bx + c = 2 a ax + bx + c 48a5/2 p ✓ ln(x2 p 1 1 p dx = p ln 2ax + b + 2 a(ax2 + bx + c) 2 a ax + bx + c (39) Z (43) Z 3b2 + 2abx + 8a(c + ax2 ) ⌘ p p +3(b3 4abc) ln b + 2ax + 2 a ax2 + bx + c (38) ⇥ ln ax 1 dx = (ln ax)2 x 2 ln(x2 + a2 ) dx = x ln(x2 + a2 ) + 2a tan p x2 1 p 1 p dx = x x2 ± a2 ⌥ a2 ln x + x2 ± a2 2 2 2 2 x ±a (36) p (42) Z x a2 x2 (30) b + 2ax p 2 ax2 + bx + cdx = ax + bx + c 4a 2 p 4ac b + ln 2ax + b + 2 a(ax2 + bx+ c) 8a3/2 (19) (22) dx = 1 2 a tan 2 x ln(ax + b)dx = Z p 2 (ax + b)5/2 5a (ax + b)3/2 dx = x2 + Z (16) (18) x ◆ 1 p 2 x a 2 p 1 p dx = ln x + x2 ± a2 x2 ± a2 (13) (17) 2 (x 5 x p Z (15) 1 dx = 2 x ± a x±a 2 a x2 dx = Z (14) a)3/2 p a2 (12) p ax + bdx = p 2 (x 3 1 dx = a x adx = Z Z r p adx = ± b3 8a5/2 b2 x p 3 + x (ax + b) 8a2 x 3 p p ln a x + a(ax + b) (28) p 1 p 1 = x x2 ± a2 ± a2 ln x + x2 ± a2 2 2 (29) a2 dx Z Integrals with Roots x x2 (11) x 1 dx = ln |ax2 + bx + c| ax2 + bx + c 2a b 2ax + b p tan 1 p a 4ac b2 4ac b2 p b x3 (ax + b)dx = 12a (10) 1 1 a+x dx = ln , a 6= b (x + a)(x + b) b a b+x Z x a dx = + ln |a + x| (x + a)2 a+x Z ln axdx = x ln ax Z p 1 x(ax + b)dx = 3/2 (2ax + b) ax(ax + b) 4a i p p b2 ln a x + a(ax + b) (27) (9) 1 2 a ln |a2 + x2 | 2 b2 (7) (8) x 1 dx = ln |a2 + x2 | a2 + x2 2 Z Z p Z h + (6) x 1 p 2 ( 2b2 + abx + 3a2 x2 ) ax + b (26) 15a2 (5) (x + a)n+1 , n 6= n+1 1 2 dx = p ax2 + bx + c 4ac Z Z 1 dx = (x + a)2 p x ax + bdx = Z 2 x e ax2 1 dx = 4 r p ⇡ erf(x a) a3 x e 2a (59) (60) (61) ax2 (62) � 2014. From http://integral-table.com, last revised June 14, 2014. This material is provided as is without warranty or representation about the accuracy, correctness or suitability of the material for any purpose, and is licensed under the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Integrals with Trigonometric Functions Z Z Z sin2 axdx = 1 cos ax a Z 3 cos ax cos 3ax + 4a 12a Z (66) 1 sin ax a (68) 1 cos1+p ax⇥ a(1 + p) 1+p 1 3+p F , , , cos2 ax 2 1 2 2 2 cos[(a 2(a b)x] b) Z csc xdx = Z cos[(a + b)x] , a 6= b 2(a + b) (71) Z Z cos[(2a b)x] cos ax sin bxdx = 4(2a b) cos[(2a + b)x] 4(2a + b) Z Z Z Z x+ Z Z (75) sin 4ax 32a Z Z Z 1 tan ax a 1 ⇣ Z (79) Z cot x| 1 cscn x, n 6= 0 n 1 x cos ax + sin ax a2 a x2 cos xdx = 2x cos x + x2 2 sin x 1 n+1 (i) [ (n + 1, ix) 2 +( 1)n (n + 1, ix)] tan Z x sin xdx = x2 sin xdx = 2 x2 sin axdx = x⌘ 2 (82) (83) Z (108) sin x + x sin x) (109) Z xex cos xdx = 1 x e (x cos x 2 Z 2 (94) (95) (96) (97) x cos x + sin x (99) x cos ax sin ax + a a2 (100) x2 cos x + 2x sin x (101) 2 2 a x 2x sin ax cos ax + a3 a2 1 n (i) [ (n + 1, ix) 2 ex sin xdx = ebx sin axdx = 1 x e (sin x 2 (102) ( 1)n (n + 1, ix)] 1 ebx (b sin ax a2 + b2 cos x) a cos ax) Z (93) Products of Trigonometric Functions and Exponentials Z x cos x + x sin x) 1 x e (cos x 2 Z (105) 1 sinh ax a eax sinh bxdx = 8 ax e > < 2 [ b cosh bx + a sinh bx] a b2 2ax x > :e 4a 2 eax tanh bxdx = 8 (a+2b)x h i > e a a > > , 1, 2 + , e2bx 2 F1 1 + > > 2b 2b < (a + 2b) ha i 1 ax e F , 1, 1E, e2bx 2 1 > a 1 ax 2b > > eax 2 tan > [e ] > : a Z 1 tanh ax dx = ln cosh ax a Z Z Z Z Z (104) cosh axdx = (110) eax cosh bxdx = 8 ax e > < 2 [a cosh bx b sinh bx] a 6= b a b2 2ax x > :e + a=b 4a 2 Z 1 sinh axdx = cosh ax a (92) (103) (81) (107) xex sin xdx = Z (91) 1 (ia)1 n [( 1)n (n + 1, iax) 2 (n + 1, ixa)] (98) x sin axdx = xn sin xdx = (106) 1 ebx (a sin ax + b cos ax) a2 + b2 Z (90) xn cosxdx = (80) 1 1 ln cos ax + sec2 ax a 2a sec2 axdx = (88) ebx cos axdx = 1 x e (sin x + cos x) 2 (89) x cos xdx = cos x + x sin x xn cosaxdx = Z (78) 1 tan ax a sec xdx = ln | sec x + tan x| = 2 tanh 1 cot ax a sec x csc xdx = ln | tan x| x cos axdx = Z (77) tann+1 ax tann axdx = ⇥ a(1 + n) ✓ ◆ n+1 n+3 , 1, , tan2 ax 2 F1 2 2 tan3 axdx = cot x| + C (87) (74) 1 ln cos ax a tan axdx = tan2 axdx = x 8 (86) 2x cos ax a2 x2 2 x cos axdx = + sin ax 2 a a3 sin[2(a b)x] x sin 2ax 4 8a 16(a b) sin[2(a + b)x] sin 2bx + (76) 8b 16(a + b) sin2 ax cos2 axdx = csc axdx = csc x cot xdx = sin2 ax cos2 bxdx = Z 1 sec2 x 2 2 cos bx 2b 1 cos3 ax 3a cos2 ax sin axdx = Z (73) 2 Z (72) 1 sin3 x 3 Z ex cos xdx = Integrals of Hyperbolic Functions 2 n Z (84) (85) 1 1 cot x csc x + ln | csc x 2 2 3 2 sin2 x cos xdx = sec2 x tan xdx = Z Products of Trigonometric Functions and Monomials (70) sin[(2a b)x] sin ax cos bxdx = 4(2a b) sin[(2a + b)x] sin bx + 2b 4(2a + b) sec x tan xdx = sec x 1 sec x tan xdx = secn x, n 6= 0 n (69) 3 sin ax sin 3ax + 4a 12a Z n (67) Z 1 1 sec x tan x + ln | sec x + tan x| 2 2 x csc xdx = ln tan = ln | csc x 2 cosp axdx = cos3 axdx = Z Z (65) x sin 2ax cos2 axdx = + 2 4a Z Z (64) 1 1 n 3 , , , cos2 ax 2 2 2 cos axdx = cos ax sin bxdx = Z 2 F1 sin3 axdx = Z Z sin 2ax 4a sin axdx = Z Z x 2 (63) sec3 x dx = n Z Z 1 cos ax a sin axdx = Z Z a 6= b (111) (112) (113) a=b a 6= b (114) a=b (115) 1 [a sin ax cosh bx a2 + b2 +b cos ax sinh bx] (116) cos ax cosh bxdx = 1 [b cos ax cosh bx+ a2 + b2 a sin ax sinh bx] (117) cos ax sinh bxdx = 1 [ a cos ax cosh bx+ a2 + b2 b sin ax sinh bx] (118) sin ax cosh bxdx = 1 [b cosh bx sin ax a2 + b2 a cos ax sinh bx] sin ax sinh bxdx = sinh ax cosh axdx = sinh ax cosh bxdx = 1 [ 2ax + sinh 2ax] 4a (119) (120) 1 [b cosh bx sinh ax b2 a2 a cosh ax sinh bx] (121)
© Copyright 2026 Paperzz