BEER FOAM PHYSICS CENTRALE LANDBOUWCATALOGUS 0000 0359 1142 Promotor: Prof. Dr. A. Prins hoogleraar indefysicaendefysischechemievanlevensmiddelen, met bijzondere aandacht voor dezuivel. ,ON>0?2O\ \3tt- A.D. Ronteltap BEER FOAM PHYSICS Proefschrift ter verkrijging van de graad van doctor in de landbouwwetenschappen, op gezag van de rector magnificus, dr. H.C. van der Plas, in het openbaar te verdedigen op vrijdag 1 december 1989 des namiddags te vier uur in de aula BIHLIÜTHEEK van de Landbouwuniversiteit te Wageningen LANDBOUWUNIVERSITEIT, WAOUNINCEN &ti fk> ^1 pv3o??JD« j \t>VLt 1. Stikstofgaskaninbierschuimdekwaliteitzowelverbeteren alsverslechteren. Dit proefschrift 2. De door Hartong uitgevoerde proef met éénwel en één niet afgedekt bierglas is een goede proef om te laten zien waardoor bierschuim inzakt. Zijn verklaring, dat in een afgedektbierglasverdamping endaarmeecoalescentie wordt voorkomen,zoueengoedeverklaringkunnenzijn,maarhetis nietdejuiste. Vancraenenbroeck, R., Cerevisia 4:191 (1982). 3. Hetisonjuistaantenemendatdebellengrootteverdelingin debovenstebellenlaagvanbierschuimrepresentatiefisvoor debellengrootteverdeling inhetgeheleschuim. Clenister, P.R., Segel, E., Koeppl, D.C., ASBC Proc. pp. 150 (1966). 4. Een hoge oppervlakte dilatatie of shear viscositeit werkt nietperdefinitiestabiliserendopschuim. Barbeau, W.E., Kinsella, J.E., Colloids and Surfaces. 17:169 (1986). 5. "Bubbleghosts"zijndissipatievestructuren. Prigogine, I., Stengers, I., "Orde uit Chaos." Ed: Uitgeverij Bert Bakker, Amsterdam. (1988). 6. Menverwachtdatdeproduktiv!teitpermanuuralsgevolgvan automatiseringtoeneemt,terwijlmenvergeetdateenmanuur tijdenshetautomatiserenvaakweinigproduktiefis. 7. Deindepraktijkvaakgehanteerdemethodeomdegevoeligheid voor oproming van emulsies te voorspellen door middel van centrifugerenkanmakkelijktotverkeerdeconclusiesleiden. Pearce,K.N.,Kinsella,J.E.,J.Agric.Food Chem.26(3):716(1978). 8. De stelling, dat natuurkundigen zich niet zouden mogen bezighoudenmetde"FundamenteleVragen",isreductionistisch vanaard. Lagendijk, A., "De arrogantie van de fysicus." Intermediair 38:17 (1989). Stellingen bij het proefschrift "Beer Foam Physics" door A.D. Ronteltap, 1 december 1989 te Wageningen. 9. Het terugdringen van de CO,-ultstoot in Nederland met jaarlijks2%zaleeninvloedophetbroeikaseffecthebbendie in omvang ongeveer gelijk is aan de invloed op de inzaksnelheid vanbierschuim. /10.Het is onjuist te veronderstellen dat aan alcoholgebruik slechts negatieve aspecten zijn verbonden voor de volksgezondheid. Stampfer, M.J., Colditz, CA., Willett, W.C., Speizer, F.E., Hennekens, C.H., N. Engl. J. Med. 319:267 (1988). 11.Het feit dat vandalisme als noodzakelijk kwaad wordt geaccepteerd brengt de oplossing van dit probleem niet naderbij. 12. "Vergrijzen"iseenongelukkigetermomhetouderwordenvan mensenaantegeven. 13.Bijmooiweerishetschuimgedragvanbiervanminderbelang. Stellingen bij het proefschrift"Beer FoamPhysics"doorA.D. Ronteltap,1december 1989teWageningen. VoorMariëlle ABSTRACT Ronteltap,A.D.,(1989).Beerfoamphysics.Ph.D.thesis. AgriculturalUniversity,Wageningen,(pp.133,Englishand Dutchsummaries). Keywords: beer foam, bubble formation, drainage, coalescence, disproportionation, bubble-size distribution, surface rheology. Abstract: Thephysicalaspectsofbeerfoambehaviorwerestudied intermsofthefourphysicalprocesses,mainlyinvolved inthe formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence.Indetail,theprocesses disproportionation andcoalescencewerestudied.Themechanismofcoalescence was determined using, amongst others, a falling film apparatus.Thespreadingofsurfaceactivematerialonthe film surface proved to initiate coalescence.Disproportionation ina foam ismainly influenced bypartial gas pressuredifferences.Surfacerheologicalaspectsdominate the rate of disproportionation when thegas composition throughout a foam is uniform. The effect of the four physical processes on various foam phenomena can be explained.Thedisappearanceofbeerfoamisaresultof thecombinedactionofdrainageandgasdiffusionfromthe foam to the surrounding atmosphere.When spreading substances areadded tobeer foam from anexternalsource, coalescence is initiated and foam collapse occurs. The four physical processeshave adifferent effect on foam behavior.Therefore,adistinctionbetweentheseprocesses was made using an optical glass-fibre probe technique. Withthistechniquethebubble-sizedistribution,thegas fractioninthefoam,theheightofthefoamandthelevel ofthefoam-liquidinterfacecanbemeasuredasafunction oftime. PREFACE Thisthesisisnottheworkofasingleperson.Itcould neverhavebeenwrittenifIwouldnothavebeenhelpedby somanypeople.Itisnotpossibletomentionallofthem here, and to thank each of them in person. However, I would like to express my gratitude to several contributors. The research work on beer foam, described in this thesis,would notevenhavestarted ifGert JanMutsof HeinekenTechnischBeheerB.V.hadnotinitiated itwith suchenthusiasm.ThecollaborationbetweenhimandprofessorA.Prinshasbeenagreatinspiration.AfterGertJan Mutswas transferred toanother jobwithin thecompany, Mar jaHollemansreplacedhim,guidingtheresearchonbeer foam into the right direction. Time after time, she succeeded tobridgethedistancebetweenthefundamental view,prevailingattheuniversityofWageningen,andthe general,practicalapproachatthebreweryinZoeterwoude. Hercontributionhasbeenofimmensevalue. ThefatherlycoachingofprofessorA.Prinsduringthe entireperiodofthisresearchworkhasbeenatremendous learning experience. Thepatient way heteaches hisPhD studentsmakesitadaytodayjoytoworkwithhim.His original research approach, his vivid flexibility and reassuring attitude hasnever failed tobe acontinuing encouragement. Inthisthesisresultsarepresented acquired byJacco Wijkmans, Ellen de Jong, Adriaan Garritsen and Bart Schultewho,asstudents,helpedmetocarryoutsomeof theexperiments.IthankeachofthemfortheircontributionandhopethattheyhavelearnedasmuchfrommeasI learnedfromthem.Inaddition,ChrisBisperinkcontributedtotheexperimentalworkpresentedhere.Hissupport inthelaboratoryhasbeenagreathelpandIhopethathe willsucceedtounravelmoreofthephysicalmysteriesof beerfoamwithinthenearfuture. I would also liketoexpressmythankstoBartDamsté andMaarten deGeeof theMathematics department of the AgriculturalUniversity,Wageningen,whowith dedication spentmanyhourstohelpmetodevelopanumericalmodel thatdescribesthetransportofgas. Thedevelopmentofanewmethodtodeterminebubble-size distributionsinfoamwouldnothavebeenpossiblewithout thespontaneoushelpofJacobJanFrijlinkandPetervan Halderenwhomadeavailabletheirtimeandtheirknowledge of the optical glass-fibre technique. I would like to thank Jan Daniël Houthuijsen and Ton Erenst for their contributiontothecomplexautomationoftheapparatus. ThescientificdiscussionsIhadwithmycolleaguesHans Westerbeek, Karin Boode and Coen Akkerman have been an inspiringchallengetomeeachtime.Theymadeasignificantcontributiontothecompletionofthisthesis. I thank B.W. Drost of Heineken for his confidence in thisbeer foam study and forhiswillingness tosupport theHeinekenfinancialcontributionwholeheartedly. The support of the LEB fonds,hasmade itpossibleto distributethisthesisinanappropriateedition. CONTENTS page 1.OUTLINE OF THIS STUDY 1 2. BUBBLE FORMATION 2.1. Introduction References 4 4 7 3.CREAMING AND DRAINAGE 3.1. Introduction References 8 8 12 4. COALESCENCE 4.1. Introduction 4.2.Aim and Approach 4.3. Experimental 4.4.Results 4.5. Discussion References 14 14 20 23 27 40 43 5.DISPROPORTIONATION 5.1. Introduction 5.2.Aim and Approach 5.3. Theory 5.4. Experimental 5.5.Results 5.6. Discussion References 45 45 52 53 57 58 73 77 6. BEER FOAM PHENOMENA 6.1. Thecreaminess of the foam 6.2. The riseof the foam-liquid interface 6.3. The influence of temperature 6.4. Thecoarsening of the foam 6.5. Thecollapse of the foam 6.6. Cling 6.7. The influence of airentrapment 6.8. The influence ofchemical composition References 7.BEER FOAM STABILITY 81 81 82 82 84 84 90 90 91 92 93 8 . MEASUREMENT OF FOAM BEHAVIOR 8.1. Introduction 8.2. Aim and Approach 8.3. Experimental 8.4. Results 8.5. Discussion References 95 95 105 106 110 116 119 9 . CONCLUSIONS 122 LIST OF SYMBOLS SUMMARY SAMENVATTING CURRICULUM VITAE 124 126 129 133 OUTLINEOFTHISSTUDY The appearance is one of the most important quality characteristicsofbeertotheconsumer.Itisbelievedto beevenmore important thantaste,although thismaybe disputed.Theappearanceofthebeerdependsmainlyonthe behavior of the foam. It has become evident that the qualityofthefoaminfluencestheoverallperceptionof theconsumertoagreatextent.Therefore,thecontrolof foambehaviorisessential.Forthatreason,anextensive researchonthebehaviorofbeerfoamhasbeencarriedout inthelastdecades,allovertheworld. The approach has mostly been to analyze the chemical components of beer, like proteins, metal ions and hop constituents,andtotrytofindacorrelationwithafoam number. These efforts have given an enormous amount of experimental results, that are partly useful, but are sometimesalsovery inconclusiveandconfusing.Thereis a lot of contradiction in beer foam literature. The researchworksofarhasnotsatisfactoryledtoabetter controlofbeerfoambehavior. Oneofthemainreasonsforthelackofinsightisthat research has predominantly been concentrated on the chemical aspectsof foam.Thebehavior of beer foamcan not be explained with the knowledge of the chemical composition alone. For example, the contribution of surfaceactivecomponentstothebehaviorofthefoammay be either negative or positive or both, depending on, amongst others, their concentration, their interaction withothercomponentsandtheirlocationinthefoam.Two chemicalcomponents,eachhavingapositiveeffectonfoam behavior,mayhaveanegativeeffectwhentheyaremixed andviceversa.Inaddition,twofoams,thathaveexactly thesamechemicalcomposition,maybehaveverydifferent. Severalexamples of thelatterwill begiven inchapter 6.8. At the beginning of this research work, the need was expressed foranadditionalapproachinordertobeable to fully understand beer foam behavior. The ultimate objective was toacquire more fundamental,physical and phenomenologicalknowledgeofbeerfoambehavior.Itwas anticipatedthat,iffundamentalknowledgeaboutbeerfoam could beobtained, theeffectof thecomposition onthe behaviorofthefoamcouldbeexplained.Inotherwords, theopiniondominated thatthegapbetween thechemical compositionandthebehaviorofthefoamwastoolargeto explain various phenomena. It was expected that more fundamental and physical research could relate foam behaviortothechemicalcompositionofbeerinabetter way. Thescopeofthisstudyhasbeentoexplainbeerfoam behaviorintermsoffourphysicalprocessesthatmainly determine foam formation and breakdown. They are (i) bubbleformationandgrowth,(ii)creaminganddrainage, (iii)coalescenceand (iv)disproportionation.Aneffort hasbeenmadetodistinguishbetweentheseprocesses,to discover the main physical process, and to find the predominant parameters, that are involved in beer foam behavior. Unfortunately, the behavior of foam does not mainly depend on one single physical process.All four processes,mentionedabove,areinvolved.Inaddition,the processesareinterrelatedandtheirprogressdependsvery muchontheprogressoftheotherprocesses. Thefourphysicalprocessesarediscussed inchapter2 trough5andtheimportantparametersfortheprogressof these processes are reviewed. Chapter 2 and 3, where respectivelybubbleformationanddrainagearediscussed, arereviewsofavailableliterature.Researchworkwasnot carried out on these subjects. In chapter 4 and 5,the resultsofresearchworkarealsoincluded.Inchapter4, coalescenceisdiscussedindetail.Inparticular,coalescence, initiated by the spreading of surface active material isconsidered. Inchapter 5,theeffect ofthe gascompositioninthefoamandofthesurfacedilational viscosityontherateofdisproportionationiselucidated. Experimentalresultsofbubbledissolutionarecomparedto model calculations. Inchapter 6, theappearance ofthe foam and the occurrence of several phenomena, like the creaminess of the foam, foam collapse and cling, are explained in terms of the four physical processes. In chapter7,adefinitionofthestabilityoffoampropertiesisgiven.Themeasurement of beer foam behavior is discussedinchapter8,whereareviewisgivenofseveral methodstomeasurefoamcharacteristics.Anewlydeveloped apparatus todetermine foam characteristics bymeansof themeasurement of thebubble-size distribution is also presentedinthatchapter.Inchapter9,finalconclusions on foam behavior are given. The influence of the four physicalprocessesonbeerfoambehaviorisexplained. 2.BUBBLEFORMATION 2.1.Introduction Althoughthebubbleformationprocessdoesnotseemto influencefoambehavioratfirstsight,thisinfluenceis quite pronounced. Very important factors for beer foam behavior, like thegas composition,bubble size,bubble surface composition and the structure of the foam, are determinedduringthebubbleformationprocess. Ingeneral,bubblescanbeproduced inaliquidby (i) agitating orwhipping, (ii)byspargingordiffusinggas through a porous material, and (iii)by decreasing the pressure of a with gas saturated liquid. In the latter case,theliquidbecomessupersaturatedasaresultofthe pressurerelease.Consequently,bubblescannucleateand grow. Inbeer,bubblesmaybeformedbyairentrapmentduring dispense.However,themostimportantmechanismforbubble formation inbeer isnucleation,becausebeer issupersaturatedwithcarbondioxideafterpressurerelease. A review on bubble nucleation was given by Blander (1979).Heexplained thattwokindsofbubblenucleation can be distinguished, viz. homogeneous nucleation and heterogeneousnucleation.Asaresultofthecreationof a new surface during bubble formation an energy barrier hastobeovercome.Forhomogeneousnucleation,i.e.the spontaneous formation of a bubble nucleus, the energy barrierishighandthereforehomogeneousnucleationwill onlyoccuratveryhighsupersaturationvalues.Thevalue ofthesupersaturationpressurecanbeestimated,assuming thattheLaplacepressureofaverysmallbubblemustbe overcomeinthecourseofbubbleformation.Walstra(1989) simply calculates that homogeneous nucleation does not takeplaceunlessthesupersaturation isintheorderof 108Nm"2(supposingthattheminimumradiusforabubbleis 1 nm and the surface tension is 50mNm"1). For beer,a pressureof thatvalue isquiteunrealistic. Thismeans thatbubblesdonotoriginatespontaneously inbeer,but thatheterogeneousnucleationoccurs.Bubblesgrowfroma catalyticsiteinordertoovercometheenergybarrierfor bubbleformation.Thissitemaybeforexampleacrackin the wall of a container, or a gas pocket in dispersed material. Wardetal (1970)developed atheory forheterogeneous bubble formation using ageneralized Kelvin equation to describe the relation between the pressure at which nucleationoccursandthegasconcentrationintheliquid. Theyputforward theconceptofthecriticalradius.The conceptisbasedonthefactthattheradiusofanucleus must have at least a minimal, critical size to allow bubble growth. If the radius of the nucleus is smaller thanthatcriticalradiusthenucleusisunstableandwill rapidly dissolve. The critical radius therefore is an unstable equilibrium, threshold value. The concept was extendedbyWardetal(1982)andconditionsforasecond stablecriticalradiuswereformulated.Theothercritical radius is largerthanthefirst,and isaresultofthe factthattheconceptwasdevelopedforaconfinedvolume of liquid. Ward et al (1983)described the growth of a bubblefromaconicalpit.Inaddition,theemergenceof abubbleisdiscussed inrelationtothewettingpropertiesof the liquid and theconicalpit.Ward and Levart (1984)stated that a number of bubble nuclei may be in stable equilibrium with the liquid if the value of the supersaturation is low and the contact angle issmall. Wardetal(1985)described theevolutionofabubbleto afinalstableequilibriumsize. More quantitative work on bubble nucleation was put forward by Wilt (1986), who reported a model for the homogeneousandheterogeneousnucleationratesofbubbles in carbonated beverages. Confirmation is given that a supersaturation ratio of carbonated beverages should at least be a thousand fold in order to allow homogeneous nucleation.Heestimatedthatthesupersaturationratioof an opened carbonated beverage is about 5 and therefore homogeneousnucleationisquiteimpossible.Heterogeneous nucleation however is likely to occur indepressurized carbonated beverages, depending on the contact angle between the liquid and the nucleation site and on the shapeofthissite.Hereported thatespeciallycavities are good nucleation spots. The effect of the surface tension on the nucleation growth rate is discussed. Ciholas and Wilt (1988) extended this model for the sphericalcavitycase. The experimental measurement of the bubble nucleation rateandoftheamountofbubblesformedperunitoftime hasbeendifficult.Therefore,experimental confirmation of nucleation theories has not been put forward until recently. Lubetkin and Blackwell (1988) described an acousticmethod,thatallowsthemeasurementofthebubble nucleationrate. Theinitialbubble-sizedistribution inafoamdepends ontheconditionsduringbubbleformation.Heterogeneous bubbleformationisschematizedinfigure1.1. LIQ UID LIQUID LIQUID (BUBBLE) r T_ J lit Figure 1.1: Heterogeneous bubble nucleation, growth and detachment The nucleation site is wetted by the liquid. Themomentofbubbledetachmentfromthenucleationsite is if buoyancy (ApgV)becomes bigger than the adhesive force (the vertical component of a*0), whereAp is the density difference betweenthegasand the liquid,gis gravity,Visthevolumeofthebubble,Oistheperimeter ofthebubblewhereitisattachedtothenucleationsite andaisthesurfacetension.Therefore,thebubblesize ismainlydeterminedbythesurfacetensionatthemoment of bubble detachment. The nucleation and growth of a bubble goes very swift. The bubble surface is expanded rapidly during thegrowthof thebubble.Therefore,the increased surface tension under expansion conditions is significant. The history of the bubble surface and the surface dilational viscosity at given expansion rate determine the surface tension. The expansion rate is, amongstothers,determinedbythesupersaturationvalue. Ifsmallbubblesaredesiredinafoamthedynamicsurface tensionunderexpansionconditionsshouldbelow. Anotherimportantfactorthatmayinfluencetheinitial bubblesizeistangentialconvectionduringthedispense of the beer. As a result of convection, the moment of bubble detachment will be advanced. Consequently, the bubbleswillremainsmaller. References Blander, M., Adv. in Colloid and Interface Sei. 10:1 (1979). Ciholas,P.A., Wilt,P.M., J.ColloidandInterfaceSei. 123(1):296 (1988). Lubetkin,S.,Blackwell,M.,J.ColloidandInterfaceSei. 26(2):610 (1988). Walstra,P.,"PrinciplesofFoamFormationandStability." In: Focus on Foams. Ed: A.J. Wilson, Wiley and sons. (1989).Tobepublished. Ward,C.A.,Balakrishnan,A.,Hooper,F.C.,J.BasicEng. 92:695 (1970). Ward, C.A., Tikuisis, P., Venter, R.D., J. Appl. Phys. 53(9):6076 (1982). Ward,C.A., Johnson,W.R.,Venter,R.D.,Ho,S.,Forest, T.W.,Fraser,W.D.,J.Appl.Phys.54(4):1833 (1983). Ward,C.A., Levart,E.,J.Appl.Phys.56(2):491(1984). Ward, C.A., Yee, D., Tikuisis, P., J. Appl. Phys. 58(1):273 (1985). Wilt, P.M., J. Colloid and Interface Sei. 112(2):530 (1986). 3.CREAMINGANDDRAINAGE 3.1.Introduction Thecreaming ofbubbles istheriseof thebubblesto thetopofthesystem.Drainageistheliquidflowfroma foam to the liquid underneath. It is not well defined where creaming stops and drainage begins. In fact,one could argue that it is the same process because both processes have many things in common. E.g. the main driving force for both processes is gravity. One could alsoarguethatcreamingbecomesdrainageassoonasthe bubblesstarttointerfereandtoinfluenceeachotherin theirmotion. ThecreamingprocessmaybedescribedwithStokeslaw. However, this law can only be applied if the bubble surfaceisimmobileandtheReynoldsnumberislow. Theeffectofthemobilityofthesurfacewasdiscussed byVan 'tRietetal(1984).Asaresultofthetangential shearonthesurfaceoftherisingbubble,thesurfaceis expandedatthetoppolarendofthebubbleandcompressed at the bottom of the bubble. Consequently, the surface tensiongradient,thatisaresultofthesurfacedeformation, counteracts the shear. The surface reaches a stationary-state and the surface becomes lessmobileor even motionless. In the latter case, bubbles can be regarded as solid particles, as far as the rise of the bubbles is concerned. For beer this condition is most likely met because sufficient surface active components arepresent. Theothercondition forStokeslaw,i.e.thecondition oflowReynoldsnumbers,isprobablynotmetforbeer.The densitydifferencebetweentheliquidandthegasishigh, bubblesarecomparativelylarge,theviscosityofbeeris low and therefore creaming will advance rapidly. In addition,thebubblesmayhydrodynamicallyinteract.For thesereasons,theriseof larger bubbleswill notobey Stokeslaw. Deviations from Stokes law may also be explained by variations in size during the rise of the bubble. The pressure in the liquid decreases as a function of the height in the glass. Therefore, the bubble will expand during the rise of the bubble.However, this effect is very small.A variation inbubble sizeasaconsequence of gas uptake or dissolution can be more important as discussedinchapter5.1. Drainage occurs if the bubbles become more densely packed. The foam becomes dryer and the bubbles become deformed. This leads to a series of events, that is describedbyIvanovandJain(1979)andWasanandMalhotra (1986)and Ivanov and Dimitrov (1989). Duringdrainage, the foam evolves gradually from a foam with spherical bubblestoafoamwithpolyhedralbubbles.Inapolyhedral foamthePlateaubordersuctioncontributesasadriving forcefordrainage (e.g. Scheludko(1957)),inadditionto gravity.As aconsequence of thecurvature of aPlateau border, thepressure inside the Plateau border islower thaninsidethebubbleandintheplanefilm.Therefore, liquid will flow from the film to the Plateau border. Through thePlateau borders this liquid will drain from thefoamasaresultofgravity. Thedrivingforcesfordrainage.Plateaubordersuction and gravity, arecounteracted by acomplex interplay of surfaceandbulkrheologicalproperties.Drainagedepends very much on the viscosity of the film liquid. Slow drainage istheresult ofhighbulkviscosity ascanbe seen from Eg. [3.1]. Another balancing parameter for drainagemaybeasurfacetensiongradient,thatisdriven byliquidmotion(DjabbarahandWasan(1985)).Asaresult ofthissurfacetensiongradient,thebubblesurfacemay come toatotal stand still (Raoet al (1982)). Inthat case, drainagecanbedescribed as theliquid flow from between two rigid surfaces. Consequently, the drainage ratedeceleratesbecauseshearforcesslowdowntheliquid flow. For the same reasons, the surfaces of Plateau bordersmay be immobile too (Kann (1984)). However,the volume-surfaceratioofPlateaubordersishigherthanthe volume-surface ratio of films and therefore no sound conclusion can be drawn about the mobility of Plateau bordersurfaces.Drainagefromfilmswith(partly)mobile surfacehasbeendescribedbyIvanov(1985).Filmdrainage foruneven film thinning hasbeendescribed by Liemand Woods (1974). Therateofdrainagefromfilmscanbeapproximatedwith theclassicalReynolds(1886)lawforliquiddrainage,if thesurfacesofthefilmcanbedescribedastwocircular, planeparallelplates (Eg. [3.1]): de 28 3 AP dt 3Tjr2 [3.1] where6isthefilmthickness,iPisthedrivingpressure, tistime, TJistheviscosityofthefilmliquidandris theradiusof acircular planeparallel film. From this equationanorderofmagnitudecalculationcanbemadeto determinetherateoffilmdrainage.Thedrainagetimefor aplaneparallelfilmtoreachthecriticalfilmthickness of rupture can be described with Eg. [3.2] (see e.g. Malysaetal(1980)): 3i]A 4neiUp wheretcisthecriticaldrainagetime,i.e.thetimeto reachthecritical filmthickness,Aisthesurfacearea of the plane parallel film and 9Cis the critical film thickness. The interpretation of iP isnot alwayseasy. The driving force for drainage from between two liquid planeparallel,horizontal filmsinapolyhedral foamis Plateaubordersuction.Inthatcase, AP isequaltothe capillary pressure (Pc). Assuming that &P is equal to (2o/r),thecriticaldrainagetimebecomes: 10 [3.2] 3Tjr3 [3.3] 4elo Eg. [3.3]clearlyindicatesthatthecriticaltimefor filmruptureverymuchdependsonboththeradiusandthe criticalfilmthickness. ForthinnerfilmstheassumptionthatAPisequaltothe Laplacepressureisnotvalid.Asthesurfacesofthefilm approach,theVanderWaalsattractiveforcemaystartto contributeasadriving forcefordrainage.Inaddition, acounteractingpressurecanbepresent,thatbecomesmore important ifthefilmthicknessdecreases.Thiscounteracting pressure was called disjoining pressure (TT)by Derjaguin (1941). Taking into account this disjoining pressure the driving pressure for drainage can then be writtenas: AP =Pc-TT [3.4] AP is not a constant during drainage because, as the film becomes thinner,the disjoining pressure increases andiPdecreases.Theliquiddrainagefromfilmsmaycome toacompletestopifthedisjoiningpressurebetweenthe twosurfacelayerscanbalancethecapillarypressure.In thatcaseafilmcanbestabilized,thatmayexistovera verylongperiodoftimeifevaporationcanbeexcluded. Scheludko(1962)formulatedtheconditionsfortheequilibriumfilmwiththefollowingequation: dPc de dïï = de [3.5] Thedisjoining pressuremay beeither based onelectrostatic repulsion or steric effects, mostly of polymer 11 molecules likeproteins.For lowmolecular weight surface activematerial,verythinequilibrium filmsmaybeformed typically intherangesmallerthan1urn.Filmsmay become sothinthatgreyorblackspotsappearinthefilm.These spots, called Newton Black spots, were, amongst others, described byScheludko (1967). Thelocalthicknessof the film at these spots determines whether the film will rupture or not (Radoev et al (1983). The critical film thickness of films of high molecular weight material is mostlythickerthantheequilibriumthickness,whichmeans that these films will rupture before the equilibrium thickness is reached. For these films, a correlation betweenthedrainagetimeand filmrupturecanbefoundas described by Djabbarah and Wasan (1985). References Derjaguin, B.V., Landau, L.D., Acta Physicochimica USSR 14:633 (1941). Djabbarah,N.F.,Wasan,D.T.,AIChEJ. 31(6):1041 (1985). Ivanov, I.B., Dimitrov, D.S., Somasundaran, P., Jain, R.K.,Chem. Eng. Sei. 40(1):137 (1985). Ivanov, I.B., Jain, R.K., "Dynamics and Instability of Fluid Interfaces."In:LectureNotesinPhysics.Ed:T.S. Sorensen. Springer-Verlag. NewYork.pp. 121. (1979). Ivanov, I.B., Dimitrov, D.S., "Thin Film Drainage" In: Thin Liquid Films.Ed: I.B. Ivanov. pp.379 (1989). Liem, A.J.S., Woods, D.R., Can. J. Chem. Eng. 52:222 (1974). Kann, K.B.,Colloid J. 46(3):508 (1984). Malysa, K., Cohen, R., Exerowa, D., Romianowski, A., J. Colloid and Interface Sei. 80(1):1 (1980). Radoev,P.B., Scheludko,A.D.,Manev,E.D.,J.Colloid and Interface Sei. 95(1):254 (1983). Rao, A.A., Wasan, D.T., Manev, E.D., Chem. Eng. Commun. 15:63 (1982). Reynolds, O., Phil. Trans. Roy. Soc. London A177:157 (1886). 12 Scheludko,A.,KolloidZ.155:39 (1957). Scheludko, A., Proc. Kon. Neder1. Akad. Wetensch. Ser. B65:87 (1962). Scheludko, A., Adv. Colloid and Interface Sei. 1:391 (1967). Van 't Riet, K., Prins,A., Nieuwenhuijse, J.A., "Some EffectsofFoamControlbyDispersed NaturalOilonMass TransferinaBubbleColumn."Eur.Congr.Biotechnol.3rd, Volume3,VerlagChemie:Weinheim,WestGermany,pp.521. (1984). Wasan,D.T.,Malhotra,A.K.,AIChESymp.Ser.82(252,Thin LiquidFilmPhenomena):5(1986). 13 4.COALESCENCE 4.1.Introduction Coalescenceinfoamsisthemergeoftwobubblescaused by the rupture of the film between the bubbles. Two smallerbubblesbecomeonelargerbubble.Manymechanisms forcoalescencehavebeenproposed.Allmechanismshavein common,thatcoalescenceoccurspreferentiallyifthefilm thicknessislow. Inliterature,coalescenceisoftenrelatedtodrainage. Filmscandraintoacertainequilibrium thickness.When this equilibrium thickness is reached, the film may persistoveraverylongperiodoftime.Equilibriumfilms only rupture when the film liquid evaporates, or when disturbancesoccur.Theruptureoffilmsmayalsooccurat acertaincriticalfilmthickness(8a),thatishigherthan theequilibrium filmthickness.Apossiblemechanism for thisrupture atthecritical film thickness isgivenby VrijandOverbeek (1967). Theystatedthatcomparatively thickfilmsmayruptureasaresultofspontaneousfluctuationsinfilmthickness. The rupture of films,at a higher thickness than the equilibrium thickness, may occur as a consequence of external influences. Two possible mechanisms, that have beendescribed,arethe "hydrophobicparticlemechanism" andthesocalled "spreadingmechanism". The hydrophobic particle mechanism was described by Garrett (1979), Dippenaar (1982) and Aronson (1986). A smallhydrophobicparticle,positioned inaliquid film, caninitiatecoalescence.Thesurfaceofthefilmnextto the particle is curved as a consequence of the poor wettingproperties.Therefore,theLaplacepressureinthe film islocally higher thaninthegasphaseand inthe partofthefilmwithplanesurfaces.Consequently,there willbeapressuregradientinthefilm,whichcausesthe liquidtoflowawayfromtheparticle.Ruptureofthefilm occursasschematicallydisplayedinfigure4.1. 14 HYDROPHOBIC PARTICLE FILM LIQUID 3' Figure 4.1:Film rupture, initiated by the hydrophobic particle mechanism. About thismechanism several remarkscanbemade, (i) Theparticlehastopiercethrough both surfaces ofthe film and therefore, the diameter of the hydrophobic particles must be at least equal to or larger than the film thickness. If the particle has a diameter smaller thanthefilmthicknessthemechanismdoesnotwork,(ii) The contact angle of the liquid onto the hydrophobic surfacemustbecloseto180°.(iii)TheLaplacepressure dependson tworadiiofcurvature.Thedriving forceis notonlybased onthecurvatureofthefilm nexttothe particle.Thiscurvaturecanbecompensatedbyacurvature perpendicular totheplaneofthedisplay infigure4.1. In that case, the pressure throughout the film is in equilibrium and coalescence will not occur. For that reason,holeformationinafilmisalsodeterminedbythe shapeofthehydrophobicparticle.Ingeneral,spherical particleswillnotinitiatecoalescencebecausetheradius of a spherical particle can be equal to both radii of curvature of the film on theparticle surface.However, anisometric hydrophobic particles can very successfully initiate film rupture, (iv) The influence of surface viscosity onthisprocessisambiguous.Ononehand,the liquid motion in the film will cause a surface tension gradient in the film that opposes the liquid motion (Gibbs-Marangonieffect).Therefore,thesurfaceviscosity willslowdowntheliquidmotion,buttheruptureofthe 15 filmcannotbestoppedbyasurfacetensiongradient.On theother hand however,thesurface tensionnext tothe particle increases as a result of surface expansionand thereforetheLaplacepressureincreases.Thismayenhance coalescence since the Laplace pressure is the driving forceforfilmrupture. Thesecond possiblemechanism forcoalescence,induced by particles or droplets,is the "spreading mechanism". ThismechanismwasfirstdescribedbyRoss(1950)andRoss et al (1953). Recently, the mechanism was discussed by Kruglyakov (1989).Infigure4.2,thespreadingmechanism isdisplayedschematically. \ \ ÎK/ V »M : \ Figure 4.2: Film rupture, initiated by the spreading mechanism. For the sake of clarity the dimensions of the film were exaggerated. Ifsmalldropletscomeintothesurfaceofabeerfilm (2), surfaceactivematerialmay spread onto thebubble surface (3).Byviscousforcestheliquidofthefilmis dragged alongradially inthedirectionofthespreading material (4).A thin spot in the film results (5).The thinspotmayeventuallybecomeunstableandcoalescence mayoccur (6). Filmruptureisonlycausedbythespreadingmechanism if the droplets come to the surface of the film, the spreading of surface active material occurs,and enough material spreads.Therefore,thereareseveral important parameters,whichinfluencecoalescencebythespreading mechanism: (i)Within the relevant time scale the film layerbetweenthedropletandtheatmospheresurrounding thefilmmustdrain.Thecriticaldrainagetimeforthis 16 processmaybeestimatedwithEg.[3.3]asdescribed,(ii) The spreading mechanism only works ifmaterialspreads. Infigure 4.3 anillustration isgivenof the spreading conditions. To spread, the surface tension of the film liquid (CJW) must be higher than the sumvector of the surface tension of thedroplet (a0)and the interfacial tensionofthefilmliquidandthedroplet (aow).Forthis reason,thecompositionoftheparticleisimportant. GAS FILM Figure 4.3: The spreading condition; if o w > o o w + o o surface active material will spread. Forthesamereason,thesurfacerheologicalaspectsof beerfoamareveryimportant.Thesurfacetensionofbeer inafoamcanvaryapproximatelybetween9-55mNm"1under dynamic conditions (see also chapter 5.5).The dynamic surface tension depends strongly on thedeformation and thedeformationrateofthebubblesurface.Thespreading of surface activematerial on a film will predominantly occurifthesurfacetensionishigh.Thismeansthatfilm ruptureismostlikelytooccurifafoamfilmsurfaceis expanded,(iii)Thedroplethastohaveaminimumsizein ordertocontainenoughspreadingmaterialtocausefilm rupture.Ifthedropletistoosmall,itmayhappenthat spreadingoccursbutthatthespreadingdoesnotproceed farenough to formahole inthe film. Inthatcasethe film can be restored. This is only valid for a given dropletcomposition, (iv)Thecompositionofthedroplet isalso important foryet another reason thanmentioned above. Ifthedroplet doesnot contain enough spreading material, spreading may occur, but the film does not rupture, (v)Thin films will rupture easier than thick films,becauselessliquidhastobedraggedalongbythe 17 spreading layer, (vi) The bulk viscosity of the film liquidcontributestothemechanism.Athigherviscosity ofthefilmliquid,thepenetrationdepthofthespreading motion inthe film increases and coalescencewill occur moreeasily (Eg. [4.1]). Morequantitativeworkonthissubjectwasreportedby Prins (1986,1988). Assuming that the droplet completely spreads on the film surface and that film rupture will takeplaceifthepenetrationdepth (p)ofthespreading motionislargerthanthefilmthickness,thepenetration depthcanbedeterminedwithEg. [4.1]: p=R(i)7asdp)1/3 [4.1] where R is the initial radius of thedroplet, T\isthe bulkviscosityofthefilmliquid,os(=a„-(aow+a0))isthe spreadingtension,disthethicknessofthespreadlayer and j)isthedensity of the film liquid. Thisequation showsthat,withincreasingviscosityofthefilmliquid, thepenetrationdepthincreasesandtherewiththechance thatfilmruptureoccurs. Coalescenceincomparativelythickfilmscanbestudied bymeansofafallingfilmapparatusasdescribedbyLin (1981 ab ). With the falling film apparatus a thin liquid sheetisproducedfromacontainerwithaslit.Thesheet fallscontinuouslybetweentwoguidewires,untilitfalls intoavessel.Fromthisvesseltheliquidispumpedback to the container (figure 4.5).The falling rate of the film is determined by the flow rate of the liquid and gravity.VanHavenberghandJoos(1983,1984)describedthe behaviorofthefalling filmquantitatively.Theinitial velocityoftheliquid(v0)canbecalculatedifthewidth oftheslit(60),theflowrate(Q)andtheslitlength(1) are known. Assuming that the flow rate is constant and that the film falls obeying the gravity law, the film thickness(8)andtheliquidvelocity(v)ateverydistancefromtheslit(x)canbecalculated (Brown (1961)): 18 Q = v0e0i = v e i [4.2] and: v2=v2+2gx [4.3] Theeffectofthebulkviscosityofthefilmliquidon thevelocityofthefilmwasneglectedinEg. [4.3].This isallowedbecausetheviscosityhasminoreffectonthe velocityofthefilmforlowviscosity aqueoussolutions asshownbyVanHavenberghandJoos (1983). Ifthe free falling film isdisturbed by somesortof obstruction,aV-shapededgecanappearinthefilm.The V-shaped edge appears if the falling velocity ishigher than the bursting velocity (u)of the disturbance. The angle of the edge isdetermined by thevelocity of the filmandtheburstingvelocityofthedisturbance.After a negligible short period of time thebursting velocity reaches a maximum, that can be described by the Culick equation (Culick (I960)): u =(2a/p9)'i [4.4] TheV-shapededgeisaMachwave.Theburstingvelocityis relatedtothefallingvelocitybyEg. [4.5]: u=vsin(a) [4.5] whereaistheMachangleoftheedge.Thesurfacetension of the film at the location of the disturbance can be calculatedifEg.[4.4]andEg.[4.5]arecombinedtogive Brown'srelation: a =%p8v2sin2(a) [4.6] UsingEg. [4.6], thedynamicsurfacetensioninthefilm canbeobtainediftheMachangleismeasuredandthefilm thicknessisknown. 19 Inthefreefallingfilmcoalescencecanbeinitiatedby adding emulsion droplets of the right composition and size.Theformationofholescanbestudied.Withstroboscopelight,apatternasdisplayedinfigure4.4canbe obtained.Withevery flashofthestroboscopic lightthe sameholeisobserved.Howevereachtimetheholeisseen larger, because it expands, and lower because it moves alongwiththefreefallingfilm.Becausetheeyecannot distinguishbetweenseparate flashesandholdsapicture foracertainamountoftime,thepatternasdisplayedin figure4.4isperceived. Figure 4.4: The picture obtained with stroboscopic light when film rupture occurs in the free falling film. The envelope drawn as a dotted line along the holes in figure4.4 hasthe sameMach angleastheV-shaped edge thatwasintroducedinthefilmbyadisturbance.Thefilm velocityandtheburstingvelocityhavethesamevaluein bothcases.Therefore,theactualsurfacetensionatfilm ruptureconditionscanbecalculatedfromEg. [4.6],ifa picturelikefigure4.4isobtained. 4.2.AimandApproach Itisawellknownfactthatthebehaviorofbeerfoam ishighlysusceptibletotheinfluenceoflipidcomponents 20 (Jacksonetal(1980)).Asmallamountoflipidcancause rapidfoamcollapse.Beercontainsasmallamountoflipid components, like fatty acids and phospholipids. These componentshaveanegativeeffectonbeerfoambehavior. However,theeffect,thatthesedissolvedlipidcomponents haveonthebehavior ofbeer foam, ismuch smallerthan theeffectoflipidcomponentscoming fromothersources thanthebeeritself.Forexample,dirtybeerglassesor lipid material from theconsumer lipsmay increase foam collapseenormously.Therefore,itcanbearguedthatnot onlythepresenceoflipidmaterial,butalsotheactual condition of the lipid material is important. If lipid materialismolecularlydissolved relatively littleharm isdoneto foambehavior,but ifitispresent assmall lipidparticlesordropletsitcanruinaniceheadinno time. In the foam literature two possible explanations for thisexceptionalbehavioraregiven.Inbothcaseslipid particles or droplets initiate coalescence. Coalescence caneitherbecausedbytheinteractionbetweenahydrophobicparticle and the film liquid orby themotionof spreading material on the film surface. A distinction betweenthehydrophobicparticlemechanismandthespreadingmechanismcanbemadebecausetheeffectofseveral parametersonbothmechanismsisdifferent. The particle size can be used to distinguish between thesemechanisms.Forthehydrophobicparticlemechanism thediameteroftheparticlemustbeatleastequaltothe thickness of the film. For the spreading mechanism the diameter of the droplet may be smaller than the film thickness.Inaddition,asaconsequenceofthespreading ofmaterial,thedroplet-sizedistributionwillshiftto smallerdropletsifthespreadingmechanism prevails.It isexpected that theparticle sizewill remain thesame ifthehydrophobicparticlemechanismoccurs.Thesurface tensionthatprevailsunderdynamicconditionswillhave aparamounteffectonfilmrupture.Ifitisthespreading mechanismthatinitiatesfilmrupture,thedynamicsurface tension of the falling film must be so high that the 21 spreading tension is greater than zero. Therefore, the surface tension in expansion must be low in order to prevent coalescence. In the case of the hydrophobic particlemechanism,theeffectofthesurfacerheological aspectsarenotwell known.Inaddition,athigherbulk viscosity,theprocesswillbeacceleratedinthecaseof thespreadingmechanismanddeceleratedinthecaseofthe hydrophobic particle mechanism. In order to determine which of the mechanisms of film rupture occurs and to studytheeffectoftheabovementionedparametersonfilm rupture,varioustechniqueswereused. The stability of a liquid film as affected by the presence of small dropletsof different composition and size was measured with a falling film apparatus. The effectofthedynamicsurfacetensiononthestabilityof the falling film was investigated by performing surface rheological and spreading experiments. The spreading experimentswerecarriedouttodeterminewhethersurface activematerialspreadsfromemulsiondropletsontoabeer surface.Thelowestsurfacetensionatwhichthespreading of surface active material occurs was determined for emulsiondropletsofdifferentcomposition. In order to be able to compare the outcome of the spreadingexperimentswiththeresultsobtainedwiththe falling film apparatus the dynamic surface tension in expansion of several beers was measured with various surface rheological methods.The falling film apparatus wasusedasdescribed inchapter4.1.Additional surface rheologicalexperimentswerecarriedoutwithaLangmuir troughandwithanoverflowingcylindertechnique. The Langmuir trough could be used in two different configurations. In one configuration, the apparatus is equippedwithasinglebarrier.Thetroughwithasingle barrierwasusedtosimulatethetransientphenomenathat occurinthefoam,likebubbleformationandfilmrearrangements.Intheotherconfiguration,theLangmuirtrough isequippedwithacaterpillarbelt.Theapparatusequipped with the caterpillar belt was used to measure the surfacetensionatsteady-stateconditions.Therelative 22 deformation rate of the surface (dlnA/dt) is constant duringthisexperiment (Prins(1976)). The maximum surface expansion rate in the Langmuir trough is lower than the expansion rate in the falling film apparatus. In addition, in practical situations, surfacescanbeexpandedmorerapidlythancanbeachieved with the Langmuir trough. Therefore, an overflowing cylinder technique asdescribed by Piccardi and Ferroni (1951,1953),Padday (1957)andJoosandDeKeyser(1980) wasusedtomeasurethesurfacetensionathighersteadystateexpansion rates.Theexperiments were carried out withbeersofdifferentbulkviscositytostudytheeffect ofbulkviscosityonfilmstability. 4.3.Experimental The falling film apparatus consists of a temperature controlledvesselcontaining 2literofbeer,fromwhich liquid canbepumped uptoacontainerwithathinslit (9o=750pm,1=13cm). Fromtheslittheliquidfallsasa film,between two sidewires,back intothevessel.The apparatus isdisplayed in figure4.5. Thelength of the filmisapproximately 40cm.Theliquid flowrates,that couldbeused,werefromlxlO"5m3s_1to2.9xl0"5m3s_1. Emulsionsofknowndroplet-sizedistributionanddroplet composition were added to the beer in the falling film apparatustostudyholeformation.Theemulsionsweremade ofbeer and 2%commercial soyaoil (Reddy)withvarying amountsofemulsifier (eitherglycerol-mono-oleate(GMO) or Tween 80). A Rannie homogenizer was used at various pressures (0.5 to 8 Bar)in order to produce emulsions with different droplet-size distributions. The dropletsize distributions were measured either with a light scatteringtechniqueasdescribedbyWalstra (1968),with amicroscopetechniqueorwithaCoulterCounter,dependingonthedroplet-sizedistributionoftheemulsion. The number of holes that could be produced in the falling film apparatus were measured. This was, unless 23 indicated otherwise,donewitha2%soya-oil,containing 1% GMO, emulsion homogenized at 0.5 Bar. The amount of emulsionaddedtothebeerwas0.1%(v/v).Thetemperature duringthesemeasurementswas20"C.Thenumberofholesis expressed as number per unit of volume to make a fair comparisonatdifferentflowratespossible. .--CONTAINER WITH SLIT .LIQUID FILM FLOWMETER -GUIDEWIRE v VESSEL PUMP- Figure 4.5: The falling film apparatus. Inordertodeterminewhetheracertainmaterialspreads ontoasurface,simplespreadingexperimentswerecarried out. Intoa small container thesurface tensionofbeer wasmeasured using aWilhelmy plate technique.When the equilibrium surfacetensionwasreached,smalloildroplets, containing different amounts of emulsifier, were addedtothesurfaceofthebeer.Asuddendecreaseofthe measured surface tension was taken as evidence of the spreadingofsurfaceactivematerial.Inordertosimulate the increased surface tension in the falling film, the beer was diluted with water. The equilibrium surface tensionofthebeerwasthusincreased. Additionalsurfacerheologicalexperimentswerecarried outwithaLangmuirtroughequippedwithasinglebarrier. At the beginning of each experiment the surface had a totalareaof90cm2.Thesurfacewasthenexpanded toa 24 total areaof 450cm2,an increaseof 400%.Therateof expansion could be chosen between 2.3xl0"5 and 2.3xl0"2 ms"1.TheLangmuirtroughisdisplayedinfigure4.6. WILHELMYPLATE Figure 4.6: The langmuir trough equipped with a single barrier. The Langmuir trough, equipped with acaterpillar belt with several barriers,was used to measure the surface rheological behaviour at steady-state conditions. The measurementswerecarriedoutwithexpansionratesvarying from 2xl0"4 to 2xl0_1 s"1.Theexperimental setup isdisplayedinfigure4.7. CATERPILLARBELT WILHELMYPLATE BARRIER Figure 4.7: The Langmuir trough equipped with the caterpillar belt An overflowing cylinder technique was used tomeasure the dynamic surface tension of beer under expansion conditions. The overflowing cylinder technique is displayed in figure4.8. The liquid under investigation is pumpedfrombelowintoaverticalcylinder,andisallowed to overflow radially at the top of the cylinder. The diameter of the inner cylinder at thetop is 8cm. The liquidoverflowsintoanoutercylinder,fromwhichitis pumped againintotheinnercylinder.Atthetopofthe innercylinder the liquid isradially expanded. Aftera 25 certainshortperiodoftimeasteady-stateequilibriumis achieved, in which surface expansion and diffusion of surfaceactivematerialtothesurfaceareinequilibrium. The surface tension under expansion conditions can be easilymeasuredwithaWilhelmyplatetechnique.Forthe Wilhelmyplatearoughenedglassplatewasused. Figure 4.8: The overflowing cylinder. Themeasurement of the relative surface expansion rate is more elaborate. (Bergink-Martens et al (1989)). The relative expansion rate that can be reached with the apparatushasamaximum ofabout 5s"1,depending onthe kindofliquidunderinvestigation,theflowrateandthe distance from the center of the cylinder. The relative surface expansion rate (dlnA/dt), that is essential to determine the surface dilational viscosity defined in equation [5.9], can only be acquired by measuring the surfacevelocity.Thiscanbecarriedoutbyaddingsmall floating particles to the surface and measure their velocity. The bulk viscosity of the beer was measured using a Ubbelohde capillary viscometer (capillary constant ca. 5xl0'9 m2s"2). The experiments were carried out using 7 differentaliquotsofbeer(beerAtoG ) . 26 4.4.Results Inordertoestablishwhethercoalescence isinitiated accordingtothehydrophobicparticlemechanismoraccordingtothespreadingmechanism,theeffectofthesizeof the particles was determined in relation to the film thickness.Thethicknessofthefilmasafunctionofthe distance from the slit is displayed in figure 4.9 for differentliquidflows.Thefilmthicknesswascalculated with Eq. [4.2]andEg. [4.3]. Figure 4.9: The calculated half film thickness of the free falling film as a function of the distance from the slit The flow rates were resp. 3, 2 and 1x1CT5 n v V 7 . As can be seen from figure 4.9 the film thickness is initiallythesameasthethicknessoftheslit(750um). Thereafter,thefilmthicknessrapidlydecreasestoabout 100um.Thethickness of the filmat acertaindistance fromtheslitisproportionaltotheflowrate.Itcanbe concluded that the thickness of the film can only be manipulated byafactorofthree.Higher flowratesthan 2.9xl0"5m3s"1couldnotbeestablished withtheavailable pump. At a flow rate lower than lxlO"5 m3s_1 the film becomesunstable. 27 Asdescribed aboveholescanbe formed inthe filmby adding emulsions. The emulsions used were prepared at different homogenization pressures and with various emulsifierconcentrations. 25 20 :xlOJm_1) 10 0.5 Bar 10 20 30 droplet radius<urn) 50 Figure 4.10: The droplet size distribution of different emulsions. The 8 and 4 Bar emulsions contain 2% soya-oil. The 0.5 Bar emulsion contains 2% soya-oil with 1 % CMO. In figure 4.10 the droplet-size distributions of the emulsionspreparedwithbeerEand2%soya-oilathomogenization pressures of 8 and 4 Bar are given. Also,the droplet-size distribution of an emulsion prepared with beerand2%soya-oil,containing1%GM0,ispresented.The latteremulsionwaspreparedatahomogenizationpressure of0.5Bar.Ingeneral,thedroplet-sizedistributionsof emulsions prepared with beer and 2%soya-oil containing GM0, omnibus paribus, were somewhat more narrow than emulsionspreparedwithoutGM0,butthemeandropletsize wasapproximatelythesame. When 2mlof theemulsions,prepared with 1%GM0at8 and 4 Bar homogenization pressure, were added to the fallingbeerfilm (2literofBeer E), thefilmremained stable at all normal flow rates.No hole formation did occur.However,inthelightofastroboscopeaflickering 28 ortwinklingofsmalllightspotsinthefilmwasvisible. The twinkling can be described as "stars in sky". This twinkling may beexplained by the spreading of material on the film surface. In that case, the spreading layer reflectslightinadifferentwaythanthefilmwithouta spreading layer. Hole formation does not take place becausetheamountofspreadingmaterialmaybetoolowto accomplishtherequiredpenetrationdepth. When2mlofemulsion,preparedat0.5 BarwithbeerE and2%soya-oil,containing 1%GMO,wasaddedto2liter ofbeerE,holeformationoccurredinthefilm.Thenumber of holes,measured at standard conditions, is given in table4.1. Table 4.1:The number of holes formed in afree falling beer film. The beer under investigation was beer E. flow rate (mV7) 2.94x10" 5 2.54x10~s 2.21x10" s 1.72x10"5 number of holes (m" 3 ) 2x10 3 4x10 3 9x10 3 13X103 number of holes (s"7) 5.9x10~2 10.2x10~2 19.9x10" 2 22.4x10" 2 Oneof thereasons thatthenumberofholes formed in the film is very low compared to the concentration of droplets (ca. 108inthefilm)mustundoubtedlybethatnot allthedropletspresent inthefilmcometothesurface ofthefilm.Anotherreasonmaybethatonthebasisof thenumberofdropletsinthesystemandtheflowratethe conclusion canbemadethatonly thelargerdroplets in thesystem initiateholeformation.Thisissupportedby the fact that the film remained undisturbed when the emulsionswithsmalleremulsiondropletswereadded.For thesamereasonthenumberofholesdependsverymuchon thefilmthickness. Evenlargerdroplets(radiusof ca. 1mm)wereaddedto thefilmbyinjectingsoya-oilcontaining1%GMOintothe containerwiththeslit.Incontradictionwiththeexpec- 29 tationsthesedropletsdidnotcauseholeformation.The explanation for this phenomenon can be that droplets largerthanacertainsizedonotcomeincontactwiththe surfaceofthefilm.Thethinliquidbeerfilmbetweenthe dropletandtheatmospheresurroundingthefilmdoesnot draincompletelywithintheshorttimespaninthefalling film. The film falls in approximately 0.3 s. With Eg. [3.3]thecriticaldrainagetime(tc)forthefilmbetween the oil droplet and the surrounding atmosphere can be estimated.Ifthecriticalthickness(0C)ofbeerfilmsis assumed to be 300 nm (Ivanov and Dimitrov (1989)), the critical drainage time as given in table 4.2 can be calculated for different droplet radii. Also given in table4.2 isanoverviewoftheobservationsmadeinthe falling film when droplets of different composition and size areadded tothe film. Themost likely explanation forthebehaviorofthefilmisadded. Table 4.2: The observations made in the falling film when droplets of various size and composition are added. droplet radius (pm) tc (s) observation <T f ) explanation 1 10" 7 no holes no twinkling droplets come to the surface but do not spread 10 10" 4 no holes no twinkling droplets come to the surface but do not spread 100 10-' no holes no twinkling droplets come to the surface but do not spread 1000 100 no holes no twinkling droplets do not come to the surface without emulsifier: with emulsifier: 30 1 10 ,-7 no holes twinkling droplets come to the surface and spread but the droplets are to small to initiate holes 10 10 -4 no holes twinkling droplets come to the surface and spread but the droplets are to small to initiate holes 100 10~1 holes no twinkling droplets come to the surface, spread and initiate holes 1000 100 no holes no twinkling droplets do not come to the surface Summarizing theabove,thedropletswithadiameterof approximately thesamesizeasthefilmthicknesscaused film rupture. Material from droplets of smaller size appearedtospread,butdidnotcausethefilmtorupture. Dropletswithadiametermuchlargerthanthefilmthicknessdonotinitiateholeformation,probablybecausethey donotcomethroughthebeerfilmbetweenthedropletand thesurroundingatmosphere. From theseexperiments no definite conclusions can be drawnaboutthemechanism forhole formation.Eitherthe hydrophobicparticlemechanismorthespreadingmechanism canoccur. l.Sr<xl0 3 m -1 > V o 1 u m i e f r \ after • 1.5 Y-s.before 9 n c a 0 10 2b 36 4Ö droplet radius (um> " 5b Figure 4.11 a : Thedroplet-size distribution of the 0.5 Bar 2% soya oil/1% CMO emulsion before and after the experiment determined with a microscope. Figure 4.1tb:The droplet-size distribution of the 0.5 Bar 2% soya oil/1% GMO emulsion before and after the experiment determined with a Coulter Counter for droplets >50 ^ m . Infigure4.11ab thedroplet-sizedistributionisgiven ofthe0.5Baremulsioncontaining1%GMObeforeandafter theexperiment asdeterminedwithamicroscopetechnique andaCoulterCounter.Withbothmethodsitcanbeclearly seenthatthedroplet-sizedistributionshiftstosmaller dropletsduringthefallingfilmexperiment,meaningthat thelargerdropletsbecomesmaller.Thisobservationwas alsomadebyRoberts(1977)whodescribesthespontaneous emulsificationofdefoamerduringthebreakdownofafoam. Thismaybearesultofthespreadingofmaterialonthe surfaceofthefilm.Thespreadlayerbreaksupandforms smaller droplets.Thisobservation is in agreement with theobservation thatafter acertain period of timethe 31 formationofholesstops.Theseresultsindicatethatthe formation of holes iscaused according tothe spreading mechanism.Bydecreasingtheflowrateandthusthefilm thicknesstheformationofholescanbeinitiatedagain. Emulsions, homogenized at 8, 4 and 0.5 Bar were also prepared without GMO.Whentheywere added tothefilm, omnibusparibus,noholeswere formed. In addition,the "starsinthe sky"werenotobserved. Theadditionofa certain amount of GMO to the emulsion appears to be necessary forhole formation. Theessential additionof emulsifiercanbeexplained infavorofbothcoalescence mechanisms. The addition may change the contact angle betweenthebeerfilmandtheemulsiondropletinsucha way that the hydrophobic particlemechanism works.This isnotvery likely,because itcanbeexpected thatthe additionofanemulsifierwouldalterthewettingproperties to make the droplet more hydrophilic. However, no definiteconclusionscanbedrawn.Ontheotherhand,the addition of GMO to the emulsion droplet may alter the spreadingpressurefromnegativetopositive.Thismeans thatnosurfaceactivematerialspreadsfromanemulsion droplet without GMO and that material spreads if it containsacertainminimumamountofGMO. In order to establish which of the above mentioned mechanismsoffilmruptureoccursspreadingexperimentsof soya-oildropletsontoabeersurfacewerecarriedoutas a functionoftheGMOconcentration (table4.3). Table 4.3: Spreading experiments of soya-oil onto the surface of beer E carried out as a function the GMO concentration. The initial surface tension was 41 mNm"'. 32 droplet composition spreading soya-oil soya-oil as emulsion soya-oil 1 %GMO soya-oil 2% GMO soya-oil 3% GMO soya-oil 4% GMO no no no yes yes yes final surface tension (mNm" 7 ) 41 41 41 39 37 37 Itbecomesclearthatinordertospreadsurfaceactive materialontoabeersurfaceacertainminimum amountof GMOmustbeaddedtothesoya-oil.Thepuresoya-oildoes notspreadonthesurfaceofthebeer.Ifthespreadingof surface activematerial initiates hole formation inthe fallingfilmtheminimumamountofGMO,addedtotheoil, mustbelargerthan1%,becausethesoya-oilcontaining1% GMOdoesnotspreadonthebeersurface.Thisassumption isnot inagreement with theobservation thatholesare formedinthefallingfilmwhenthe2%soya-oilcontaining 1%ofGMOisaddedtothefilm.Thedisagreementmaybea consequenceof the factthatthe surface tensionof the falling film is higher than the equilibrium surface tension.Thisisaresultofthecreationofanewsurface attheslitandthesurfaceexpansionthattakesplacein thefilm. 60 CmNm ± > 21x10 V s 10 IS 20 distance from the s l i t (cm) 25 Figure 4.12: The dynamic surface tension of a free falling beer film as a function of the distance from the slit for various flow rates. Determined according to Van Havenbergh. Infigure4.12thedynamicsurfacetensionisgivenfor beer E as a function of thedistance from the slit for variousflowrates.Theobservationsarenotcompletelyin agreement with the results of Van Havenbergh and Joos (1983),madewithSDSsolutions.Theseauthorsfoundthat 33 the surface tension in the film continuously decreases fromabout72mNm"1closetotheslittolowervaluesat thelowerpartof the falling filmdepending ontheSDS concentration.Thedeviationbetweenresultspresentedin figure 4.12 and the results of Van Havenbergh and Joos (1983) may be explained by the fact that the dynamic surfacetensionofbeerinsteadofSDSwasmeasured.The surfacetensionofthebeerfilmisbetween50mNm"1and65 mNm"1.Thisisrelevant,becausesurfaceactivematerial, thatdoesnotspreadonabeersurfaceinequilibrium,may spreadontheexpandedsurfaceofthefallingbeerfilm. Toinvestigatethissuppositioninmoredetail,thebeer wasdilutedwithwatertosimulatetheprevailingsurface conditionsinthefreefalling film.Asaconsequenceof thismanipulation the surface tensioncanbemadeequal forbothsituations,althoughthesurfacecompositionmay bedifferent.Forthisreason,thecomparisonhaslimited value.Theresultsofthespreadingexperimentsondiluted beersurfacesaregivenintable4.4.Thesurfacetension atwhich spreading occurs forvarious concentrations of GMOislowerthanthesurfacetensionmeasuredinthefree fallingbeerfilm.Evenfromsoya-oildropletscontaining lowconcentrationsofGMO(0.25%),surfaceactivematerial 1 spreadsonthesurfaceofdilutedbeer(a>50mNm') and initiateshole formation in the free falling beer film. Thisisastrong argument in favoroftheoccurrenceof thespreadingmechanism. Table 4.4: Spreading experiments of soya-oil onto diluted beer surfaces carried out as a function the GMO concentration. droplet composition spreading surface tension (mNm -7 ) soya-oil 2% GMO soya-oil 1%GMO soya-oil 0.75% GMO soya-oil 0.5% GMO soya-oil 0.25% GMO soya-oil 0% GMO 41 44 46 48 50 >72* no spreading on water. 34 The dynamic surface tension of the beer in expansion appears to be important for coalescence, initiated by soya-oildroplets,becauseitdetermineswhetheragiven droplet spreads or not. Therefore, the dynamic surface tensionofbeerwasmeasuredinvariousways.Experiments werecarriedoutinaLangmuirtrougheitherequippedwith asinglebarrierorequippedwithacaterpillarbelt.The results obtained with the experiment using a single barrieraredisplayedinfigure4.13. 52 s u r — A i *> B c e t 48 n s i o 46 n F „,h r~—;.<-^ ^sTS' <mN/m> 44 ^ D "•'~~—: c , .. T ^~**^ G 42 40 0 100 200 expansion <% oforiginal 300 surface) 400 Figure 4.13: The surface tension as a function of the expansion for various beers. Thelinearexpansionrateofthebarrierswas2.3xl0"2ms"1. As can beclearly seen thesurface rheological behavior of the beers is remarkably different. The equilibrium surfacetensionvariesfrom38mNm"1to47.4mNm"1.Whenthe surfaceisexpanded400%thesurfacetensionofallbeers rises. The final surface tensionof beers underdynamic conditionsliesbetween45.1mNm"1and51.9mNm"1.Itseems that thecurves are shifted over approximately thesame distanceasthedifferenceinequilibriumsurfacetension. The surface rheological behaviour of beer, under the steady-state conditions in the Langmuir trough equipped withthecaterpillarbelt,isdisplayedinfigure4.14.As canbeseenthesurfacetensionofthebeersdependsvery 35 muchonthedeformationrate.Athighdeformationratethe surface tension does not increase as much as at lower deformationrateshowingthatbeerisshearthinningwith respecttothesurfacedilationalviscosity.Thesequence forthebeersisverymuchthesameasinfigure4.13. 54 s u a o e tn s i ^— ~ 52 50 f +8 • ls<+>' ' ft —— B C "_JL_— —————' o n 46 <mN/m> 44 i G 42 40 38 C 0.04 0.08 0.12 dlnA/dt < s - l ) 0.16 0.2 Figure 4.14: The dynamic surfacetension asafunction of the steady state expansion rate as measured with the Langmuir trough equipped with the caterpillar belt Theoverflowingcylinderwasusedtomeasurethedynamic surface tension at higher steady-state expansion rates thanwiththecaterpillar beltmethod (max.0.2 s"1). In figure 4.15 the value of the surface expansion rateof beer D isgiven as a function of the distance from the centeroftheinnercylinder.Ascanbeseentherelative expansionrateisnotuniformoverthecylinder.Instead thedlnA/dt increases fromabout 2to8s"1.Thesurface tensionismeasured atthecenterofthecylinder,where dlnA/dtisapproximately constant.Theplatehasawidth of2.6cm. However, since the dlnA/dt at that place can not be determined exactly the surface viscosity can not be calculated.Inaddition,thesurfaceviscosityisunknown for a second reason. As stated before, the relative expansion rate at the top of the overflowing cylinder 36 dependsonthesurfaceandbulkTheologicalpropertiesof theliquidunderinvestigation.Dependingontheliquid, theflowrateandthegeometryofthesystem,thesurface adaptsitself.Asteady-stateofacertainsurfacetension andsurfacerelativeexpansionrateisaccomplished.This meansthatitisnotcertainwhetherthedlnA/dtforall beers,measuredintheoverflowingcylinder,isequal.The surfaceviscositycannotbecalculatedunlessthedlnA/dt foreverybeercanbemeasured. 1 2 distance fromthecenter(cm) 3 Figure 4.15: The dlnA/dt in the overflowing cylinder as a function of the distance from the center of the inner cylinder. The examined beer was beer D. Thisisnotarealdrawbackofthemethodforthesekind ofmeasurementssincethesurfacedilationalviscosityis not therelevant parameter forthe spreading of surface active material. The relevant parameter is the dynamic surfacetension (adyn),whichcaneasilybemeasured. Intable4.5thedynamicsurfacetensionof7different beersaregivenasmeasuredwiththeoverflowingcylinder technique. Itcanbeconcluded that the surface tension inexpansionforthe7beersisapproximatelysimilar.The differencesathighexpansionrateshavebecomeverylow. The large differences between the beers found at lower expansion ratewith thecaterpillar beltmethod seem to 37 almostdisappearathigherexpansionrates.Nevertheless, thesequenceofthe7beersremainsverymuchthesame. Table 4.5: The dynamic surface tension for various beers as measured with the overflowing cylinder technique. The flow rate was 5.6 r r v V . The dlnA/dt was approximately 2 s~'. beer A B C D E F G (mlMm-7) (mNm"') 47.4 42.2 43.0 42.8 41.6 41.9 38.0 55.0 52.9 53.0 52.6 52.0 52.1 52.8 The last parameter that can be used to distinguish between the hydrophobic particle mechanisms and the spreading mechanism is bulk viscosity. Therefore, the viscosityofthebeerwasincreasedwithdifferentamounts ofdextranandemulsiondropletswereadded tothefilm. 80 n u E r o f h 60 î s • TO • • 50 CxlC^m"3) 40 30 • • - 20 1. 3 • • 1.5 1.7 1 9 2.1 viscosity <mNsm~z) Figure 4.16: The number of holes in a fallingfilm of beer Easafunction of the viscosity. The viscosity was increased by adding dextran. Thenumberofholesinthefallingfilmisgiveninfigure 38 4.16 asa function ofthebulkviscosity.Thenumberof holes formed in the film depends very much on thebulk viscosityofthebeer.Theincreaseofthenumberofholes can not be explained with the increase in penetration depth alone (Eg. [4.1]). Apparently, by increasing the viscosity, the spreading of smaller droplets becomes effective as well. Because there are increasingly more smalldropletsgoingfromrighttoleftintherighttail of the droplet-size distribution, the number of holes formedinthefallingfilmincreaseathigherviscosityin aspectacularway. Table 4.6: The number of holes formed in a free falling beer film for various beers. The bulk viscosity of the beers is given. The f l o w rate was 1.7x1Cf 5 m 3 s _ 1 , 3 0 ml emulsion of beer E, 2% soya-oil, 1 % Tween 8 0 was added to 3 I beer. The d v s of the emulsion was 9.7 fjm. beer T) (mNsrrT2) A B C D E F G 1.21 1.34 1.34 1.29 1.34 1.34 1.32 number of holes (m~3) 13 17 19 15 21 29 16 The number of holes formed int h efalling film apparatus for different b e e r s , omnibus p a r i b u s , isv e r y differenta s c a n b eseen i ntable 4.6. However, t h edifferences seemt o b e influenced mainly b yt h eviscosity oft h ebeer a sc a n b e seen in figure 4 . 1 7 . Under t h e extreme e x p a n s i o n conditions i n t h e falling film apparatus t h e beers h a d v e r y similar dynamic surface tension (table 4 . 5 ) . T h e dynamic surface tension apparently does n o tinfluencet h e results obtained with t h e falling film apparatus t o a large e x t e n t . 39 30 n u m b ? •F • 25 o t h o 1 • 20 s 3 Cxl0 m~ 3 ) E • C • B D 15 • & • • ft • 1.2 1.23 1.26 1.29 v i s c o s i t y <mNsm~*> 1.32 1.35 Figure 4.17: The number of holes in afalling beer film asafunction of the bulk viscosity. The results are given for various beers. 4.5.Discussion Theresults,obtainedwiththefalling filmapparatus, cannotbe directly translated intocoalescence inbeer foam.Thefilmthicknessinfoamsisatleastanorderof magnitudesmallerthanthefilmthicknessinthefalling film apparatus, whereas emulsion droplets added to the filmintheexperimenthaveaboutthesamediameterasin practice.Therefore,thepenetrationdepth,essentialfor hole formation in a foam film, will mostly be small. Consequently,dropletswithaboutthesamediameterasthe film thickness will, depending on their composition, initiatecoalescence.Inpractice,thelipiddropletsare addedexternallytothefoamfilms.Inthatcase,thereis noupperlimittothedropletsize.Alldropletscometo the surface. In addition, the film in the falling film apparatus iscreated at high surface expansion rate.It maybe anticipated that the film surfaces ina foamare closertoequilibrium. 40 Anotherobservationmadewiththefallingfilmapparatus thatcannotbedirectlytranslated tobeerfoam,isthe resultthathighbulkviscositydecreasesfilmstability. The effect of bulk viscosity on drainage may be more pronouncedthantheeffectoncoalescencebythespreading mechanism.Asaconsequenceofhighviscosity,therateof drainagewillbeslowerandthefilmthicknessinthefoam will remain higher over a longer period of time. The effectofthefilmthicknessonthespreadingmechanismis moreimportantthantheeffectofbulkviscosityascanbe seeninEg. [4.1]. Althoughnotallobservationsmadewiththefallingfilm apparatuscanbedirectlyrelatedtobeerfoam,conclusive resultswereobtainedtodistinguishwhetherfilmrupture initiatedby lipidcomponentsisaccordingtothehydrophobic particlemechanism or according to the spreading mechanism. The emulsion droplets,essential to initiate coalescenceinthefallingfilmapparatus,musthaveabout the same diameter as the film thickness. This does not giveconclusiveevidencethathole formationinaliquid filmiscausedmerelybythespreadingmechanism andnot bythehydrophobicparticlemechanism.However,fromall otherexperiments itbecomesclearthatthespreadingof surface active material must be responsible for film rupture.Thedetrimentaleffecttobeerfoamofexternally addedlipidmaterialisaresultofcoalescence,initiated bythespreadingmechanism. One of the indications is that the emulsion droplets becomesmallerduringthemeasurementinthefallingfilm apparatus.Hole formation stopsaftera period oftime. When the flow is decreased the process starts again to showthesusceptibilityoftheprocessonthefilmthicknessandthedropletsize.Anotherstrongargumentisthat coalescence by the spreading mechanism depends on the composition of the droplet.Soya-oil,although itself a "dirty"system,doesnotspreadonthe(expanded)surface ofbeer.Experimentsshowthataminimumconcentrationof emulsifierinthesoya-oilisessentialforfilmrupture. Theminimumemulsifierconcentrationthatisnecessaryto 41 spreadonaequilibrium surfaceofdilutedbeerisabout thesameastheconcentrationthatisnecessarytocause hole formation inthe falling film,whereas the surface tensioninbothexperimentsisequal. Yetanotherreasoningisthattheprocessinthefalling filmapparatusverymuchdependsonthebulkviscosityof thebeer.Anincreasedviscosity leadstoanincreaseof the number of holes.This is an additional argument in favorofthespreadingmechanism. Becausethedetrimentaleffectofexternallyaddedlipid componentsisaccordingtothespreadingmechanism,itmay beconcludedthatthesurfacetensionofthebeermustbe low to avoid the spreading of surface activematerial. This does not only apply to equilibrium conditions but alsototheactualexpansionconditionsoffoamformation andbreakdown.Fordifferentbeersthesurfacerheological behaviour inexpansion isdifferent. Inparticular,the dynamic surface tension may differ for different beers dependingontheexpansionrateofthesurface.Atlower expansionratesthedifferencesaremorepronounced.From thisobservation,itmaybeexpectedthatbeers,thathave differentsurfacerheologicalbehaviourinexpansion,also differ intheirsusceptibility toexternallyaddedlipid components. Thebulkviscosityofthebeer,althoughitseffectwas verypronouncedintheexperimentswiththefallingfilm, is less important in beer foam as far as the spreading mechanism isconcerned. Inpractice,itmay beexpected thatthethicknessoffoamfilmsissmallerthantheadded spreadingdroplets.Consequently,thepenetrationdepthof thespreadingmotionwill,ingeneral,belargeenoughto initiatecoalescence. From these last considerations, it can be concluded that, inpractice, thecollapseof foam bycoalescence, initiatedbyexternallyaddedlipidmaterial,canonlybe avoidedifthefatmaterialdoesnotspreadonthesurface ofthebeer.Thedynamicsurfacetensionisthereforethe mostimportantparameter. 42 References Aronson,M.P.,Langmuir2:653(1986). Bergink-Martens,D.J.M.,Bos,H.J., Prins,A.,Schulte, B.C., Submitted to J. Colloid and Interface Sei. (June 1989). Brown,D.R., J.FluidMech.10:297 (1961). Culick,F.E.C.,J.Appl.Phys.31:1128 (1960). Dippenaar,A.,Int.J.Miner.Process.9(1):15 (1982). Garrett, P.R., J. Colloid and Interface Sei. 69:107 (1979). Ivanov, I.B., Dimitrov, D.S., "Thin Film Drainage" In: ThinLiquidFilms.Ed:I.B.Ivanov.pp.379 (1989). Jackson,G.,J.Inst.Brew.87:242 (1981). Joos, P., De Keyser, P., "The overflowing funnel as a method formeasuring surfacedilationalproperties."In: LevichBirthdayConf.Madrid. (1980). Kruglyakov,P.M., "EquilibriumPropertiesofFreeFilmand StabilityofFoamsandEmulsions."In:ThinLiquidFoams. Ed:I.B.Ivanov.pp.767.(1989). Lin, S.P.,J.FluidMech.104:111 (1981a). Lin, S.P.,Roberts,G.,J.FluidMech.112:443:(1981b). Padday,J.F.,Proc.Intern.Congr.Surf.Activity,London 1:1 (1957). Piccardi,G.,Ferroni,E.,Ann.Chim.(Rome)41:3 (1951). Piccardi, G., Ferroni, E., Ann. Chim. (Rome) 43:328 (1953). Prins, A., "Dynamic Surface Properties and Foaming BehaviorofAqueousSurfactantSolutions."In:Foams.Ed: R. J. Akers,Academic Press.London, New York. pp.51. (1976). Prins,A.,"TheoryandPracticeofFormationandStability of Food Foams." In: Food emulsions and foams. Ed: E. Dickinson, Royal Society of Chemistry, Leeds, pp. 30. (1986). Prins,A.,"PrinciplesofFoamStability."In:Advancesin FoodEmulsionsandFoams.Ed:E.Dickinson,G.Stainsby, ElsevierAppliedScience,pp.91.(1988). 43 Roberts, K., Axberg, C., Osterlund, R., J. Colloid and InterfaceSei.62:264(1977). Ross,S.,J.Phys.ColloidChem.54:429 (1950). Ross,S.,Hughes,A.F.,Kennedy,M.L.,Mardoian,A.R.,J. Phys.ColloidChem.57:684(1953). Van Havenbergh, J., Joos,P., J. Colloid and Interface Sei.95(1):173 (1983). VanHavenbergh,J.,Bussmann,H.,Joos,P.,J.Colloidand InterfaceSei.101(2):462 (1984). Vrij,A.,Overbeek,J.Th.G.,J.Am.Chem.Soc.90(12):3074 (1968). Walstra,P.,J.ColloidandInterfaceSei.27(3)(1968). 44 5.DISPROPORTIONATION 5.1.Introduction Disproportionationisacoarseningprocess,thatisthe result of inter-bubble gas diffusion, caused by a gas pressuredifference between bubbles.Ifa singlegas is present, thispressure difference corresponds to adifferenceinLaplacepressure.Thispressuredifferencemay bearesultofadifferenceinsize.Accordingtothelaw ofLaplacethepressureinasmallerbubbleishigherthan thepressureinalargerbubble,assumingthatthesurface tensions (a)ofbothbubblesareequal: *Ptt,-Pi-P2-2a/ri-2a/r2 [5.1] iPtot beingthetotalpressuredifference,and PxandP2 being the Laplacepressures in thebubbles respectively withradii rxandr2.Disproportionationmayalsobecalled Ostwaldripeningorisothermaldestination. Thepressuredifferencecausesaconcentrationgradient intheliquidlayerseparatingthebubbles.Asaresultof thisconcentration gradient,transport of gaswill take placefromasmallertoalargerbubble.Thelargerbubble willgrowattheexpenseofthesmallerone.Thesmaller bubblewilleventuallydisappear.Consequently,coarsening ofthefoamwilltakeplace.Thedisproportionationrate depends on several parameters, in particular, the gas solubility and the film thickness, which may have very differentvaluesindifferentfoams. Althoughgas transport in foamsmay bevery important for the behavior of the foam, limited literature about thissubjectisavailable.Thisisprobablyaconsequence ofthefactthataquantitativedescriptionofgastransport in a multibubble system is very complex.However, although there are some fundamental differences between gas transport in foams and the dissolution of a single 45 bubble inaninfinite amountof liquid,a lotofunderstanding ongas transport in foamscanbeobtained from thewelldevelopedknowledgeonbubbledissolution. Eversinceafirstattempttodescribethedissolution ofabubblebyEpsteinandPlesset(1950)avastdevelopment and improvement of bubble dissolution theory has occurred.Scriven (1959)gavetheexactsolution forthe growthrateofabubbleusingasimilaritytransformation technique.Unfortunatelythismethodcanonlybeusedfor bubbleswithzeroinitialradius.CableandEvans (1967) extended thismethod and used ittodescribe thegrowth and dissolution of a sphere with finite initial size. LaterDudaandVrentas (1969,1971)presented newresults usingfinitedifferencesolutionsandfoundthatprevious methods using perturbation solutions have only limited validity.Ingeneralthefinitedifferencemethodpredicts faster growth and dissolution rates. Ruckenstein and Davies(1970)solvedtheconvectivediffusionequationfor radial and translational convection for small Reynolds numbersandpotentialflowandconcludedthat,invarious regimes,bothconvectiontermshaveasignificanteffect onthebubbledissolutionorgrowthrate.Theyalsofound that,ifsurfaceactivematerialispresent,transportby translational convection is reduced. This reduction may be a result of the fact that the surface layer at the bubble boundary is immobile because the liquid driven surfacetensiongradientoff-setsthetranslationalliquid flow(Van'tRietetal(1984)).Tao(1978,1979)described growthanddissolutionofabubbleinasupersaturatedor undersaturated liquid. The influence of the surface tension as a driving force is included into themodel, thatisbasedonthesolutionifinfiniteseriesoferror integral functions.VrentasandVrentas (1982)evaluated the model presented by Tao and concluded that it gives good results for systems with a low density difference between thecontinuous and thedispersed phase i.e. for gas-liquid systems the model is less suitable than for liquid-liquidsystems. 46 Both model calculations and experimental evidence of bubbledissolutionwerepresented byWard andcoworkers. Ward and Tucker (1975)were the first to describe the dissolutionandgrowthofbubblescontainingmorethanone diffusinggas,taking intoaccountthevaporpressurein thebubbleandthegasexpansioneffect,thatisaresult of the surface tension and the curvature of the bubble surface.Wardetal (1982ab)extended theirtheoryusing a first order perturbation analysis of the Schrödinger equation and the Boltzmann definition of entropy and concluded thatthediffusionofthegasintheliquidis rate determining, and not the transition of gas at the bubbleboundary.Wardetal(1982e)calculatedthevalueof twopossiblestableequilibriumbubblesizesforabubble inaclosedvolumeofliquid.Oneunstablecriticalradius is the result of an equilibrium between the amount of supersaturationofthegasintheliquidandtheLaplace pressureinsidethebubble.Ifthebubbleradiusislarger thanthiscriticalradiusthebubblewillgrow,andifthe bubble radius is smaller than this critical radius the bubblewill shrink.Theothercritical radius isstable andisaresultoftheclosedvolumeofthesystem.Ward et al (1986) described a diffusion model taking into accountnon-equilibrium gasconcentrations intheliquid andthevaporpressureinthebubble.Hegaveexperimental evidence for the validity of this model using purified water forthebubbledissolutionexperiments.Theeffect ofthesurfacetensionclosetoequilibriumsaturationwas repeated by Cable and Frade (1988)who stated that low concentrations of impurities inmolten glass may havea retardinginfluenceonbubbledissolutionbyloweringthe surfacetension.CableandFrade (1987)alsostatedthat the presence of traces of poorly dissolving or slowly diffusinggasesmayhaveaparamounteffectontherateof bubble dissolution or growth. Also involved in bubble dissolutioninglassmeltswereWeinbergandcoworkers.Zak and Weinberg (1980) proposed a model of multibubble dissolution but they assumed that the average distance betweenbubblesislargecompared tothediameterofthe 47 bubbleanddescribedthebubblestobeconcentrationpoint sourcesofgas.Thistheory cannotbeapplied tofoams because in foamsthe bubbles interferewith eachother. Weinberg (1981)stated that the surface tension of the bubbleismoreimportantfortherateofbubblegrowthor dissolutionthanconvectivetransportaslongasthegas concentration in the liquid isclose to theequilibrium value. He also stated that the rate limiting step for bubbledissolutionisdiffusionintheliquidratherthan interfacialmasstransfer.SubramanianandWeinberg(1980) studied the roleof radial convective transport inmore detailand foundthatitaffectsbubbledissolutiononly at sufficiently largevaluesof thedriving force.They concludedthatconvectivetransportmayenhancethebubble dissolutionrate.SubramanianandWeinberg (1981)useda short time asymptotic expansion analysis which is less accurateforlongtimespans.Weinbergetal(1980ab)and Onoratoetal(1981)repeatedtheimportanceofincorporating the expansion effect in the bubble dissolution equationsandstressed thatamultigassystemmayhavea dominantinfluenceontherateofdissolutionorgrowthof a bubble. Most recently, Yung (1989) gave a review of papersonthedissolutionofspheresinaninfiniteamount ofliquid.Hedescribedamodelusinganfinitedifference method,thatmakesiteasiertoaccountforallsortsof parameters that other authors have neglected. The gas expansion effect, the influence of vapor pressure, the presenceofmorethanonegaswithdifferentsolubility, radial convection terms, and the surface tension are includedinthemodel.Anextensivecomparisonbetweenthe workof'variousotherauthorsismade. Insomerespectsthedescriptionofthedissolutionof a singlebubble inan infinite amount of liquid ismore complex than thedescription of gasdiffusion infoams. Howeverinotherrespectsthedescriptionofgastransport in foams is much more complicated. Non equilibrium gas concentrationsintheliquidwillpracticallynotoccurin foams,becausetheconcentrationofthegasatthebubble boundarywillberapidlyinequilibriumwiththepressure 48 intheadjacentbubbleandthefilmthicknessingeneral issmall.Inaddition,theradialconvectionproblemdoes notexistinfoams. Ontheotherhand,thegeometry andtopologyof (polyhedral)bubbles in a foam is too complex to be solved, whereasthegeometryofadissolvingsphereisrelatively elementary. The size and gascomposition of surrounding bubblesdeterminethegasconcentrationdifferencesina verycomplexway.Thediffusiondistancevarieswithtime and location. The dimensions of Plateau borders are entirely different from thedimensions of films and the decreaseofthefilmthicknessbetweenbubbleswithtime canonlybeestimated.Thereforethediffusiondistanceis notwellknown. Inspiteofthesedifficultiesresearchworkondisproportionationandgastransportinfoamshasbeenreported inthelastdecades.Dewar(1917)wasoneofthefirstto describe the rate of air diffusion through soap films. Anotherattempttodescribetherateofdisproportionation was made by Clark and Blackman (1948). They proposed a simplemodeltodescribethegrowingandshrinkingrateof bubbles in a foam having respectively a larger and a smaller radius than the mean bubble radius. They also calculatedthedecreaseofthespecificsurfaceareaofa foamoveraperiodoftime,causedbydisproportionation. Brownetal. (1953)developed anothermodeldescribing thebubble'radiusasafunctionoftime.Theyemphasized thattheoryandexperimentdonotalwayshavetocoincide, because theory doesnot include thepermeability ofthe adsorbedsurfacefilm,norhighsurfaceviscosityslowing down theevolution of thebubble.Theeffect of surface viscosity on gas transport in polyurethane foams was repeatedbyOwenandKendrick (1968).Princen (1963,1965) improved the theory presented by Brown et al (1953), incorporating theexact shapeof abubble situated ata liquid-gasinterface,thefilmthicknessandchanginggas composition.Princen(1965)alsostressesthatthepermeability ofmonolayersonboth sidesofthe film playsan importantroleintherateoftransport,butlaterPrincen 49 etal(1967)gaveevidencethattransportofgasesthrough solublemonolayersIsgovernedbysimpleFickeandiffusion (Princen (1967)), that can be described as diffusion throughporesinanotherwiseinsolublelayer. Severalothermodelshavebeenproposedtodescribethe rateofdisproportionation infoams,amongwhicharethe LSWtheoryandtheDeVriesmodel.TheLSWtheory,named afterLifshitz,Slyozov(1961)andWagner(1951),predicts thatthemeanbubbleradiusinafoamwilldecreaseasthe third root of time. The De Vries model (1958,1972) is basedonFickeandiffusionandpredictsthatthedecrease oftheradiusofashrinkingbubbleisproportionaltothe squarerootoftime,accordingtothefollowingequation: 4RTIDSa t [5.2] Pat„9 wheretistime,r0isthebubbleradiusatt=0,rtisthe bubble radius at t=t,R is the gas constant, T is the absolutetemperature, TDisthediffusioncoefficient,S isthegassolubility, a isthesurfacetension,Patmis the atmospheric pressure and 6 is the film thickness between thebubbles.Themodelwasused toestimate the meanfilmthicknessinfoamsbutgaveerroneousresultsas discussedbytheauthor. Gal-or and Hoelscher (1966)calculated unsteady-state masstransferindispersionswithaMaxwell-Boltzmanlike modelandincludedtheeffectofthebubble-sizedistribution.Theywereabletocalculatethediffusionrateper unitareaofinterface. Thisworkwaslaterreviewed byLemlichandcoworkers. Ranadive and Lemlich (1979) emphasized the important effectoftheinitialbubble-sizedistributionondisproportionation and compared the results obtained with the empirical distribution of De Vries and the theoretical distribution of Gal-or. They found that the empirical distribution of De Vries gives the best results. The 50 important effect of the initial size distributions in foamswasrepeatedbyMonsalveandSchechter(1984)andby Chengand Lemlich (1985).ThecombinedeffortofLemlich and coworkers finely resulted in the development of an apparatus to determine the permeability of thin liquid films by following the evolution of the bubble-size distribution of a initially bimodal foam (Rieser and Lemlich (1988)).Fromtheresultstheyconcludedthatgas diffusionmaybeenhancedbyconvectionintheliquidfilm between the bubbles.Cook and Tock (1974)and Haas and Tock (1975)also determined permeability parameters for severalgases.Theyemphasizedtheimportantinfluenceof thegassolubilityonthemigrationrateofgasesandused thin liquid surfactant films to purify gases based on theirdifferenceinsolubility.Ramchandranetal (1981) evaluated gas permeation properties of N2, 02 and C02 throughamonolayeroffoambubbles.Theydescribedthat a monolayer of gas bubbles can be used to study gas diffusivities,butthatproblemsmaybeencounteredcaused bythetime-varyingsurfaceareaofthefoambubbles.The work was reviewed by Markworth (1985)who comments on Ostwald ripening and grain growth in foams and gives a shortreviewonearlierstudies.NarsimhanandRuckenstein (1986)usedafoamstabilitymodelnotonlycoveringgas transport,butalsothesizedistributionofbubbles,film ruptureanddrainageofliquidfilmsandPlateauborders, in order to be able to describe foam behavior in foam fractionationexperiments. Yetanotherapproachtostudygastransportinfoamswas mentioned recently by Stavans and Glazier (1989). They appliedVonNeumanslawtodescribetherateofdisproportionation in a two-dimensional foam. Von Neumans law states thatthedecreaseof thetotal surface areaofa bubble is proportional to the number of sides of the bubbleminus6.Thismeansthatbubbleswithsixsidesare stable,bubbleswithmoresidesthan 6grow and bubbles withlessthan6sidesshrinkanddisappear. 51 5.2.AimandApproach Discrepancy between the presented models is clear and none of the models is completely satisfactory owing to assumptions made in the course of derivation. Also, in general,themodelscanbeappliedtomodelsystemsonly. For practical multicomponent systems the models are inexact,mostlyoverestimatingtherateofgastransport. A number of investigators have suggested explanations fortheoverestimationof thegas transport rate,among which are: (i) low gas-permeability of insoluble or solublelayersatthefilmsurfaces,(ii)changesingas composition,causedbyadifferent solubilityofthegas components,(iii)nonequilibriumgasconcentrationatthe bubble boundary, (iv)simplification of the topology of thebubble,includingshape,effectivesurfaceareaofthe bubbleand (theevolutionof)thefilmthickness,(v)the neglectofthevaporpressureoftheliquidsolvent,(vi) theformationofastructureatthebubblesurface,(vii) theinfluenceofconvectionofthefilmliquidcausedby liquiddrainageand (viii)highsurfaceviscosity. Thestatementthatmostexistingmodelsoverestimatethe rateofgastransportisalsosupportedbysimpleobservationofbubblessituatedataliquidsurface.Theobserved radius-versus-timecurvesdonotalwayshavetheshapeof a moreor less second orthird powerdependence assuggestedbysomeauthors.Instead,thesecurvesmayshowan inflection point. This inflection point indicates that transportofgasfromabubblecandecelerate. A high surface viscosity may be responsible for this decrease of the rate of disproportionation because the compression of the bubble surface during the shrinking processinasurfactantsolutionresults,inprinciple,in a loweringofthesurfacetensionandthusinadecrease ofdrivingforce.Anotherreasonfortheappearanceofan inflectionpointisthepossiblepresenceofmorethanone gaswithdifferentsolubilities. Tostudytheeffectonbubbledissolutionofthesurface dilationalviscosity andofthegascomposition,amodel 52 wasdevelopedandexperimentswerecarriedout.Theradius ofbubbles,restingatabeer-gasinterface,wasmeasured asafunctionoftime.Gassesofdifferentsolubilityand beerswithdifferent surfacedilationalviscositieswere used. The surface dilational viscosity of beers was measuredwithaLangmuirtrough. 5.3.Theory Here a new model is presented to give insight inthe roleofthesurfaceviscosityandtheroleofchanginggas compositionintherateofgastransportinfoams.Several assumptionshadtobemadeinthecourseofthederivation ofthemodel.Thelocalequilibrium suppositionwasmade meaningthatthegasconcentrationatthebubbleboundary issupposed tobeequaltotheequilibrium valueduring theshrinkingprocessofthebubble.Thevaporpressureof the solvent was neglected. Ward et al. (1986) clearly described in which situations and circumstances these assumptionsmayleadtoerroneousresults.Intheexamples given here the vapor pressure is small compared to the totalpressureinthebubbleandtheliquid filmsareso thinthatthelocalequilibrium suppositioncanbemade. Therefore, these assumptions have minor effect on the outcomeoftheexperiments. Also postulated is that the presence of an adsorbed monolayer does not form a barrier for gas transport (Princen (1967))andthatthediffusionintheliquidis the rate determining step for gas transport through a liquid film and not thetransition rateof thegasfrom the bubble into the liquid surface. (Ward (1982b)). If convectiondoesnottakeplace,transportofgasesthrough the liquid layer isadiffusion controlled process that canbedescribedwithFickslaw: dntot 6c BA dt [5.3] 6z 53 In Eq. [5.3],ntot isthetotalamountofgas,Aisthe total area,c is the activity of thegas,and z isthe distance over which diffusion takes place. Now, the presence of more than one gas is incorporated into the model.Assumingthatgasesbehavethermodynamicallyideal and that gases are distributed homogeneously throughout thebubble,Ficks lawmaybeapplied toeachgas (i)in thesystem: dn t ôCi = D±A dt [5.4] 6z Forthinfilmstheconcentrationgradientoverthefilm willbealmostlinear.InanalogytoDeVries(1958)ôc/ôz canbewrittenas ^ct/i, where i isatopologyfactor.The value of i depends on the position of the bubble. In general, five situations can be distinguished: (i) the bubbleissurroundedbyotherbubblesinafoam,(ii)two bubbles are separated by a film and surrounded by an infiniteamountofliquid,(iii)thebubbleiscompletely surrounded by an infinite amount of liquid, (iv) one bubblerestsataliquid-gasinterfaceand (v)thebubble iscompletely surroundedbygas,onlyseparated fromthe surrounding atmosphere by a thin liquid film. For all thesesituationsadifferentinterpretationfor i mustbe made, i thereforeisanadjustableparameter.Forthesake of clarity fromnow on situation (iv)isdiscussed.The atmosphere above the liquid is regarded as an infinite largebubble,inwhichtheLaplacepressureiszero.The situation canthusbedescribed asatwobubble system. The i inthis system accounts forthe film thicknessof thecapof thebubble,i.e. theliquid filmbetween the submergedbubbleandthesurroundingatmosphere. $isalso acorrectionparameter fortheeffectivediffusionarea. Eg. [5.4]becomes: 54 dnt A = TD± dt iCi [5.5] * With the aid of Henry's law, this last equation can be writtenas: dn4 A BjSj dt APi [5.6] * In Eg. [5.6] Sjis the solubility of gas i, and A P 4 is thepartial pressuredifference ofgas iacross the film. The value of ±P± depends on the Laplace pressure, the atmosphericpressure (Patm), andthegascompositioninthe bubble and in the atmosphere above the liquid. The gas composition in the atmosphere will practically remain constantduringthediffusionproces.Therefore,APJcanbe writtenas: *Pi=(P.t.+2a/r)(n1/ntot)-k±Patm [5.7] where the fraction of gas i in the atmosphere is k±. Although theLaplacepressure (2a/r)issmallcompared to theatmosphericpressure (Patm), itcannotbeneglected in Eg. [5.7]. If the gas composition in- and outside the bubble isequal (i.e.nj/n,.,,,.=k±)theLaplacepressure is theonlydriving force forgasdiffusion.Substitution of Eg. [5.7] in Eg. [5.6], and 4nr2 for the total diffusion area (A)gives: Dj Sj,4nx2 dnA = dt [(Patn,+2o/r)(n1/ntot)-k ^ J [5.8] * This equation describes the gas diffusion rate from a bubble situated at a liquid-gas interface to the atmosphere if the surface tension of thebubble isconstant. 55 InanattempttoaccountfortheTheologicalbehaviorof thebubble surfacethemodelcanbeextended. Tothisend a mathematical expression is needed to describe the rheological behaviorof thebubble surface.The shrinking of aspherical bubble surface isanall-sided compression where no shear occurs.To describe this surface behavior the surface dilational viscosity (i]s)can be used since thisparameter isvalid forcompression aswell asexpansionEg. [5.9]: [5.9] dlnA/dt whereae is the equilibrium surface tension. Thevalue of the relative surface deformation rate (dlnA/dt) is then defined to be positive for expansion and negative for compression. From experimental results it follows that thesurfacedilational viscosity ofasurfactant solution depends strongly onthevalueofdlnA/dt.Highercompression rates result in lower surface viscosities. Surfaces arethus "shear thinning" (Prins (1976)). Thesurfacedilationalviscositycanbedetermined using a Langmuir trough equipped with barriers which can be movedbymeansofacaterpillarbeltasdescribedbyPrins (1986). Results from earlier experiments have shown that forpractical systemssuchasmilkandbeerapowerlawcan be used to describe the surface rheological behavior in compression (Prins (1988)): a =ae-10n(|dlnA/dt|) m t l [5.10] The absolute value of the surface dilational viscosity depends strongly on the value of n. The shear thinning behavior of thesurface ismainly characterized bym. The disproportionation model can now be adjusted for dynamic surfacepropertieswith the aid ofEg. [5.9]and [5.10]. The ideal-gasequationof stateofBoyleand Gay-Lussac isused todescribe thetotal amountofgas inthe bubble inrelation to thebubbleradius: 56 3 (P atm(2o/r))(!-nr ) + [5.11] RT During the derivation of the model, the atmospheric pressureandtheLaplacepressureofEg.[5.11]gohandin hand. The Laplace pressure is small compared to the atmosphericpressureandcanthereforebeneglectedinEg. [5.11]. The neglect of the expansion effect is also discussedbyYung (1989). Eg. [5.8],fordifferentgases,combinedwithEg.[5.9] and[5.10]andthelawofBoyleandGay-LussacEg. [5.11], can be numerically solved by an appropriate computer techniqueinordertoobtainradius-versus-timecurvesand theprevailing circumstances forshrinkingbubblesunder differentconditions. 5.4. Experimental ThesolutionofEg. [5.8], [5.9],[5.10]and [5.11]was carried out on a VAX 8600 computer using Fortran as a programminglanguageandstandardIMSLroutinestoperform numericalintegration.Thenumericalintegrationgivesthe radius,gascomposition,compressionrate,andthesurface tensionasafunctionoftimeforgivenvaluesofm,n,r0, ae, i, gascompositionetc. ALangmuirtroughequippedwithacaterpillarbeltwas used todeterminethesurfaceviscosity andthepowerlaw parametersmandnofEg. [5.10].Thetroughisshownin figure4.7.Surfacetensionsaresimultaneously measured in the expanded and compressed area with the Wilhelmy platetechnique.Therelativecompression rate(dlnA/dt) wasvariedoverthreedecadesfrom5xl0-1to5xl0"4s"1. Inadditiontosurfacerheologicalexperimentswiththe caterpillar belt, single compression measurements were carried out.Withasinglebarrierasurfaceareaof450 cm2wascompressedtoasurfaceof90cm2usingdifferent speeds. The experiment was carried out to simulate the 57 compressionofthebubblesurfaceasgoodaspossibleand to examine whether the predicted low surface tensions couldbemeasured.(figure4.6). @/ \ • CAMERA GAS THERMOSTAT Figure 5.1:Apparatus to measure the bubble radius as a function of time. Bubble radius-versus-time curves were determined with theapparatusshowninfigure5.1.Withasyringeneedle bubbles(radius=±500um)wereproducedinatemperature controlledvessel.Thesizeofthebubblesituatedatthe liquid surface ismeasured asa functionof timewitha macroscope unit and a camera. Gas conditions in the atmosphereabovethebubbleiscontrolled usingconstant flowofthedesiredgas,saturatedwithwatervapor.The temperaturewasmaintainedat20°C. The surface rheological experiments were carried out witheightdifferentbeers (beerAto H). Tomeasurethe bubbleradiuswithtimebeerE,GandHwereused. 5.5.Results Inorder tobeabletodeterminewhether theobserved decelerationofthebubbledissolutionandtheoccurrence 58 ofaninflectionpointintheradius-versus-timecurveis causedbychangesingascompositionorbysurfaceTheologicalproperties,modelcalculationswerecarriedoutwith severaldifferentgascompositionsandsurfacedilational viscosities. 300 250 200 r a f 150 u s < um) co2 NN2 100 50 4000 0 8000 12000 time ( s ) 16000 20000 Figure 5.2: The influence of gas solubility on the bubble dissolution rate. Figure5.2showsthelargeeffectofthegassolubility onthebubbledissolutionrateofabubble,situatedata gas-liquidinterface.Thesolubilityofcarbondioxidein water is about 50 times higher than the solubility of nitrogen. The initial bubble radius is 300 um and the topology factord=10urn.Theequilibrium surfacetension is40mNm"1.Thegasabovetheliquidsurfaceisidentical to the gas in the bubble. Surface viscosity has little effect on both bubbles since the values of m=-0.9 and n=-1.9 express very low surface viscosity. A carbon dioxide bubble, situated at a liquid surface under a carbondioxideatmosphere,disappearsmuchquickerthana nitrogen bubble under a nitrogen atmosphere. The gas solubilityclearly isaveryimportantparameter forgas diffusionprocesses. 59 300 250 200 r a d 1 " 150 s <um) 100 nitrogen content of atmosphere: 50 1 0% \sx\ i v C 200 400.. time °^^o1 :::ï:: cr a *=^__ ( s ) 600 800 1000 Figure 5.3: The influence of the gas composition in the atmosphere on the radius of a carbon dioxide bubble. Figure 5.3 illustrates the effect of two gases with differentsolubilityinthesurroundingatmosphereonthe disproportionation behavior of carbon dioxide bubbles havinganinitialradiusof300urn.Theviscosityofthe bubble surface is very low and does not influence the shrinking rateof thebubble. Ifnitrogen is introduced intotheatmosphereabovethecarbondioxidebubble,the shapeoftheradius-versus-timecurvechangesdramatically. ThedrivingforceinthiscaseisnotonlytheLaplace pressure,butalsoadifferenceinpartialgaspressure. Carbon dioxide diffuses outward rapidly, because the partialcarbondioxidepressureintheatmosphereislower thaninthebubble.Nitrogendiffusesinwardbecausethe partialnitrogenpressureintheatmosphereishigherthan inthebubble.Thediffusionrateofnitrogenhoweveris much lower than the diffusion rate of carbon dioxide becausethesolubilityofnitrogenismuchlower.Therefore,initiallythebubbleshrinksrapidlyuntilthegas compositionsinsideandoutsidethebubblearepractically equal. Then,the gasdiffusion ratedecreases abruptly, andtheLaplacepressurebecomestheonlydrivingforce. 60 1400 r 1200 ^~~^-^^nitrogen content in the bubble ^^^ "~^-^^^ at t=0: 1000 ""•—. r 800 d s 600 ( um) — - - ^ ^ ^ 10055 ^—^60% ^"\40% •B \20S5 400 ^""v\^^ ^-v^ ^S. ^^ \ 1055 200 v. 555 o%\\i% i 0 • i\ . \, i . 500 i \ i • l i\ i 1000 1500 2000 time <s> 2500 3000 Figure 5.4: Behavior of N 2 /C0 2 bubbles with low surface viscosity under a C 0 2 atmosphere. Tofurtheremphasizethatthegascompositioninsideand outsidethebubbleisanimportantparameterfortherate ofgasdiffusion,figure5.4 showsaradius-timediagram for a bubble containing varying percentages of carbon dioxideandnitrogen.Theatmospherecontains100%carbon dioxide.Thebubblehaslowsurfacedilationalviscosity. Ifabubblecontainsnitrogenitstartstogrowagainst theLaplacepressurebecausediffusionofcarbondioxide inward proceeds much faster than diffusion of nitrogen outward. (The values of m and n of the powerlaw were adjusted for expansion inorder todescribe the surface rheological behavior of the expanding bubble surface). This process continues until again the gas compositions in- and outsidethebubbleareequal.Then,the Laplace pressureremainsasthedrivingforceofgasdiffusionand thebubblestartstoshrink. Toillustratetheroleofthesurfaceviscosity ingas diffusion,examplesaregiveninfigure5.5ofresultsof calculations on carbon dioxide bubbles situated at a liquidsurface.Thegasphaseabovetheliquidsurfaceis alsocarbondioxide.Theinitialbubbleradiuswas300urn. The surface dilational viscosity is characterized by 61 m=-0.9andthevaluefornvariesbetween-1.9and-1.15. Theequilibriumsurfacetensionwaschosen40mNm"1. 300 rw 250 •y \.0« inflectionpoint 200 1 r a d u ISO s (pm) \ 100 >- ^ v powerlawn-values! \ 50 • -i i 9 -1.5 \-l-2 ^ s ^ L \-1.25 \ 1-1.3\ \ ^->^ ^-~^ .........1 . 0 500 1000 1500 2000 time(s) 2500 3000 Figure 5.5: Calculated radius versus time curves of carbon dioxide bubbles situated at a liquid-carbon dioxide interface. The bubbles have different surface dilational viscosities. Table 5.1:Surface dilational viscosities for given values of n. m=-0.9, dlnA/dt=10 3 s 1. (mNm -7 ) -1.9 -1.5 -1.3 -1.25 -1.2 -1.15 33.7 24.2 14.9 11.8 8.4 4.5 (rtiNsm"7) 6.3x10 +3 1.6x10+4 2.5x10 +4 2.8x10*4 3.2x10 +4 3.6x10 +4 Intable5.1valuesofthesurfacetensionandsurface dilational viscosity at dlnA/dt=10 are given for differentvaluesofn,illustratingthathighervaluesof n represent higher surface dilational viscosities. The value n=-1.9 is quite common for a low concentration proteinsolutionwithsurfacesoflowviscosity.Ascanbe seen in figure 5.5, the shapeof theradius-versus-time 62 curveisaboutthesameasfoundbyDeVries (1958,1972) forsurfaceswithlowsurfacedilationalviscosity(n=-1.9 and n=-1.5).Heassumedthatthesurfacetensionremains constant during the shrinking process of the bubble. Results given infigure 5.6 show that, forn=-1.9,the surface tension of the bubble has normal values for compressed surfaces (25-30 mNm"1) at realistic bubble sizes. - 40 s u r t a o 30 e t e n s i n 20 powerl«u n-values* -1.9 — -1.5, ' (mN/m) - 1 . 3 ^ - 10 ' ' •~^*\r^^~—"^Î72__ ""^--—" "—~3Ii5—— 0 0 50 100 150 radius <um> 200 250 300 Figure 5.6: Surface tension against radius plot of the bubbles presented in figure 5.5. However, when the surface dilational viscosity is increased (by means of increasing thevalue ofn),the surface tension and the dissolution rate decrease. In figure5.5,wheretheradiusisplottedagainsttime,an inflection point is found for bubbles of considerable size.Thesurfaceconditionsattheinflectionpointare ofgreatinterestbecauseattheinflectionpointdisproportionationstartstoslowdownasshownintable5.2. Fromthesedataitappearsthatfornvaryingfrom-1.9 to-1.15thevaluefortheradiusattheinflectionpoint (rt)increasesby4ordersofmagnitude.Forn=-1.9and n=-1.5 rt issosmall andthesurface deformation rate (dlnA/dt)tissohighthatthereislittleeffectonthe life-spanofthebubble. 63 Table 5.2: Conditions at the inflection point, m=-0.9. n -1.9 -1.5 -1.3 -1.25 -1.2 -1.15 ^i (dlnA/dtJi ot 7 (fim) (s" ) 0.03 3.4 34.1 60.6 107.8 191.8 4.0x10 +4 4.0x10 +0 4.0x10" 2 1.3x10~2 4.0x10""3 1.3x10~3 (mNm"') 3.6 3.6 3.6 3.6 3.6 3.6 (T)s)i (mNsm"7) 9.0x10' 4 9.0x10 +0 9.0x10 +2 2.8x10 +3 9.0x10 +3 2.8x10 +4 For higher values of n the bubble dissolution rate clearly starts toslow down: (dlnA/dt)£ decreases by8 ordersofmagnitude.Becausethesurface tensionatthe inflectionpoint (ai) isconstantforallvaluesofnthe surfacedilationalviscosityattheinflectionpoint (T)S)± increasesby8ordersofmagnitude.Thesurfacetensionat theinflectionpointonlydependsonthevaluesofmand aeandisindependentofthevalueofn,ascanbeseenin Eg. [5.12]: m+1 [5.12] m+2 Although thecompression rate decelerates forhigher surfacedilationalviscosities,verylowsurfacetensions are found.Theselowsurface tensionshavenotyetbeen measuredinpracticalsystems.Thepossibleoccurrenceof verylowsurfacetensionshoweverwasdescribedearlierby VandenTempeletal.(1983)andbyBoyleIII(1982). What happens to the shape of the radius-versus-time curveiftwogasesofdifferentsolubilityarepresentand surfaceviscosityishigh,isshowninfigure5.7,where thegascomposition inthebubbleischosen100%carbon dioxideandintheatmosphere60%carbondioxideand40% nitrogen.Theviscosityofthebubblesurfacewasaltered byvaryingnbetween-1.9and-1.1.Ifthegascomposition of theatmosphere andofthebubble arenotequalthe bubblevery rapidly shrinks.Under these conditionsthe 64 250 200 r a d i u s150 (um) enlargement figure 5.8 100 powerlaun-values: -1.1 50 0L-l 1000 1500 2000 tin»<s> 2500 Figure 5.7: Influence of the surface dilational viscosity on gas diffusion of a C0 2 -bubble under a 60% C 0 2 and 40% N 2 atmosphere. 110 r 105 >^ '• ' r a d i < um) 100 95 90 - 85 - 1.5 2.5 2 3 t i m e <s) Figure 5.8: Enlargement of the inflection point of figure 5.7, showing that surfaceviscosity has little effect on gas diffusion when the gas composition i n - and outside the bubble is unequal. surfaceTheologicalaspectsdonotplayanimportantrole ingasdiffusionasshowninfigure5.8,whereanenlargement is displayed of figure 5.7 of the area where the rapid decrease inbubble radiuschanges abruptly intoa 65 much slower decrease.That isroughly speaking whenthe bubblewithinaveryshortperiodshrinksfromabout110 umtoabout90pm.Fromfigure5.8itappearsthatinthis transitionzonethebehaviorofthebubbleradiusdoesnot verymuch depend on thesurfaceviscosity.When thegas composition in-and outside thebubble hasbecomeequal the Laplace pressure becomes the driving force for gas diffusion and therefore therheological behavior of the bubble surface determines the bubble shrinking rate.At longertimes,thesurfaceviscosityplaysaveryimportant roleinthedecreaseofthebubblesizeascanbeseenin figure5.7. Figure 5.9: Surface rheological behavior in compression of beer E,C, and H, determined with a Langmuir trough equipped with a caterpillar belt, plotted as a powerlaw. Figure 5.9 shows the results of the caterpillar belt experiments carried out for threedifferent beers.Over the three decades measured, the powerlaw adequately describesthedependencyofthesurfaceviscosityonthe compression rate. Beer E has a clearly lower viscosity thanbeerGandHascanalsobeseenintable5.3where thepowerlawvaluesofmandnaregivenforallbeers. 66 Table 5.3: Powerlaw m and n values for the eight different beers as measured with the caterpillar belt method. Beer A B C D E F C H m -0.97 -0.96 -0.99 -0.95 -0.96 -0.97 -0.90 -0.91 -1.74 -1.80 -1.81 -1.74 -1.78 -1.73 -1.50 -1.48 Figure 5.10: The dynamic surface tension of different beers asa function of compression. The original surface area of 450 cm 2 is compressed to 90 cm 2 in 4.5 s. Differences between the surface rheological behavior of thedifferentbeersbecomeevenmorepronounced withthe singlecompressionexperimentasshowninfigure5.10.The surface tension of beer G and H becomes very low in compression.ThesurfacetensionofbeerH,aftercompressionuntil20%oftheoriginalsurfacearea,isaslowas 8.8 mNirf1.This indicates that the surface tension of a 67 shrinkingbubbleinthisbeersamplemayalsobecomevery lowincompression. Infigure 5.11 theshrinking rateof acarbon dioxide bubble,situatedatabeersurfaceunderacarbondioxide atmosphereisdisplayed.Theshapeofthecurveforbeer E issimilar totheshapeofcurves found earlierbyDe Vries.Theradius-versus-timecurveshowsapproximatelya squarerootdependency.Thisobservation isinagreement with theexpectations,becausebeer Ehas alow surface viscosity andonlyonegas,carbondioxide,waspresent. Theobserved radius-versus-time curvecanbewellfitted withthemodelasshowninfigure5.11.Thevaluefor $, used tofittheobserved radius-versus-time curvewas10 um,whichisoftheexpectedorderofmagnitude. 600 500 r a d i s 400 ^"^"^^w" (um) 300 BEERE 200 100 \ ' 0 200 400 600 time 800 1000 1200 1400 Figure 5.11: Radius versus time curves for a carbon dioxide bubble at a beer-carbon dioxide atmosphere. The beer has low surface viscosity. I measured values, - model calculations. Thedisproportionation rateofacarbondioxidebubble under anitrogen atmosphere instead of a carbon dioxide atmosphereisshowninfigure5.12.Thecalculatedradiusversus-time curve can be well fitted on the measured valueswithlJ=35urn.Asaconsequenceofahighercarbon 68 dioxidegradientoverthefilmbetweenthebubbleandthe surrounding atmosphere the diffusion of carbon dioxide fromthebubbleoutward isaccelerated.Atthesametime nitrogen diffuses into the bubble because there is a nitrogengradientoverthefilmaswell,onlyinward.The diffusion of nitrogen however goesmuch slower, because thesolubilityofnitrogenismuchlowerthanthesolubility of carbon dioxide. The result is that the bubble initially shrinksrapidly,untilthegascompositioninandoutsidethebubblehasbecomeequal. 600 500 r a d i 4°° s (um) 300 1 200 - iOO - \ BEER E u 0 10 20 30 40 50 60 time <s) Figure 5.12: Radius versus time curve for a carbon dioxide bubble situated at a beer-nitrogen interface. The beer has low surface viscosity. I measured values, - model calculations. In the case, given in figure 5.12, the bubble, that initially contained carbon dioxide, within about 10 seconds contains only nitrogen. Thereafter, the bubble willvery slowlydisappearbecausethenitrogengradient overthefilmdependsonthesolubilityofnitrogenandon the Laplace pressure.After ca. 13xl03 s, thebubble is completelydissolvedaccordingtocomputercalculations. Thebubbleradiusbelongingtotheplateauvalueinthe radius-versus-time curve,thatisreached afterabout10 seconds, depends mainly on the gas composition of the 69 bubble and theatmosphere. This iselucidated in figure 5.13,wheretheinitialnitrogenfractioninthebubbleis plottedagainstthequotientofthevolumeofthebubble when the plateau value is reached (Ve)and the initial bubblevolume (V0). Ve/V0 isproportional to the initial nitrogenfractioninthebubble,givingevidencethat,in effect, carbon dioxide diffuses outward and nitrogen diffuses inward and that the diffusion is driven by partialpressuredifferences. / 1 r • 0.6 . • 0.6 0.4 y / • Si - 0.2 n • y^ //• \S^ 0 0.4 0.6 nitrogen fraction 0.2 1 0.8 Figure 5.13: A plot of the quotient of the bubble volume at the plateau value and at t=0 plotted against the nitrogen fraction initially present in the bubble. Table 5.4: Powerlaw n-values determined by model fitting and by the Langmuir trough with caterpillar belt method (m=-0.9). method model fitting caterpillar belt beer E beer C beer H -1.95 -1.82 -1.15 -1.50 -1.10 -1.48 In figure 5.14t h eeffect o f t h esurface v i s c o s i t y o n g a s d i f f u s i o n i sdisplayed. A c a r b o n d i o x i d e b u b b l e u n d e r a c a r b o n d i o x i d e atmosphere i nbeer E d i s a p p e a r s i n about 70 1200secondsasdisplayedalsoinfigure5.11.Asimilar bubbleinbeerGhoweverdisappearsmuchslowerctf=5urn). 600 500 r a d i400 s \B (um) ^>v 300 \ •>w 200 N; 1BEER E 100 - BEERS \ ^ .• • 0 2000 4OO0 6000 m 10000 8000 time <s> Figure 5.14: Radiusversus time curves for carbon dioxide bubbles. Beer Ehas low surface viscosity and beer C has high surface viscosity. I measured values, - model calculations. 600 500 r â 'F i400 s (um) 300 \ 300 • BEERE 100 N. . \ i BEERH • • • 0 0 4000 8000 12000 16000 • 20000 time (s) Figure 5.15: Radiusversustime curvesfor carbon dioxide bubbles. Beer Ehas low surface viscosity and beer H has high surfaceviscosity. I measured values, - model calculations. 71 The curve has an inflection point as predicted by the model forhighsurfaceviscosity.Theshapeofthecurve changesfromconvextoconcave.Bothcurvescanbefitted withthemodelcalculations,withdifferentvalues forn asshownintable5.4.ThebubbleinbeerGshrinksmuch slower than the bubble in beer E, because the surface viscosityofbeerGishigherthanthesurfaceviscosity ofbeerE.AsimilarplotismadeforbeerEandbeerHas showninfigure5.15.Heretheobservedshapeofthecurve forbeerHisdifferentfromtheshapeofbeerEandbeer G. Theobserved shrinking rateof thebubblecannotbe fitted with themodel,whatever values form and n are chosen(l)=5 urn). Figure 5.16: A series of photographs, taken atcertain time intervals, representing the dissolution of a beer Ebubble and the appearance of a bubble ghost. The size of the ghost is ±25 /jm. 72 Apossibleexplanationforthisunusualbehaviormaybe thatsomesortofinsolubleskinformationoccursatthe bubblesurfaceasaconsequenceofsurfacecompression.In figure5.16 aseriesofphotographsdisplaysashrinking bubble. It can be clearly seen that by compression an insolubleskinisformedatthebubblesurface.Theskin collapses and a bubble ghost appears. This structured bubbleskinmaydecreasethedriving forceofgastransport.Whenhoweverthebubblesurfaceseparates fromthe structuredskin,gasdiffusionmayaccelerateagainanda newskinmaybeformed.Theaccelerationofgasdiffusion at t=13xl03 scoincides with the first observation ofa bubbleghostseparatedfromthebubblesurface.Thiskind ofsurfacerheologicalbehaviorappearstobequitecommon in multicomponent systems (Sebba (1987)). Anderson and Brooker (1988)described theoccurrenceofbubbleghosts in milk and Johnson and Cooke (1980) have carried out bubbledissolutionexperimentsinseawaterandtheyhave shownpicturesofbubbleghostsverysimilartothebubble ghostsfoundinbeer. 5.6.Discussion Fromtheresultspresentedinchapter5.5,ithasbecome evidentthatthedifferencesincompositionofatwophase systemaremostimportantforthedisproportionationrate inthatsystem.Therateofgasdiffusioninfoamsdepends mostly on adifference inpartial gaspressures and gas solubilities. Differences in gas composition in- and outside bubbles result inrapid gasdiffusion untilgas compositionin-andoutsidethebubblesbecomesidentical. UnderconditionsofuniformgascompositiontheLaplace pressure difference is the only driving force for gas diffusion.Thisdrivingforcemaybecomeverylowwhenthe surfacetension decreases farenough asa resultof the compressionofthebubblesurface.Thesurfacetensionof the bubble surface becomes very low when the surface 73 dilationalviscosity ishigh.Thismaycause bubblesto persistmuchlongerthanexpected fromearliermodels. Even thepresented model however may overestimate the rateofdisproportionationbecausethepowerlaw (Eq. 5.10) isnotexactlydescribingtherheologicalbehaviorofthe bubblesurface.Thepowerlawdescribesthesurfacerheologicalbehaviorofasurfaceundersteady-statecompression conditionsanddoesneitheraccountforthehistoryofthe bubblesurfacenorfortheabsolutevalueofcompression. Thesinglecompressionofabubblesurfaceisatransient phenomenon,wheresteady-state isneveraccomplished. In otherwords,notonlythecompressionrateofthebubble surface isimportant,butalso the total amount ofcompression.Generally,totalcompressionofthesurfaceof a shrinkingbubbleishighbecausethesurfaceareaofa bubbleisproportional tothesquareoftheradius.This mayresultinanevenlowersurfacetensionthanexpected from the caterpillar belt experiments. Thus, a lower Laplacepressurewillprevailunderpractical conditions thanwaspredicted by thepowerlaw. These lastconsiderationsmake itvery likely that the disproportionation rate of bubbles depends very much on the rheological behaviorofthebubblesurfaceifthegascompositionis uniform. Therateofdisproportionation ismainlydeterminedby thegeometry of thebubbles,thegascomposition inthe bubblesandthesurfacerheologicalaspectsoftheliquid. The geometry parameter iJ used to fit the measured radius-versus-time curvesvariesfrom5umforfitsover a longer period of time to35um for fitsover ashort periodoftime.Apparently, i isnotconstantaspresumed inthemodel.Duringtheexperimentthefilmthicknessof thebubblecapdecreasesmorethantheeffectivediffusion area. The total effect is that $ decreases with time. Nevertheless,itappearstobeverywellpossibletofit observedcurveswiththemodelusinganaverage"#. 74 Theeffectofthegascompositionontherateofdisproportionationasfoundwithmodelcalculation,isconfirmed experimentally.Thegassolubility isvery importantfor the rate of gas diffusion. When more than one gas of different solubility is present in a system, rapid gas diffusion will take place until the gas composition is equalthroughoutallgascompartments.Thismayhavegreat influenceonfoambehaviorandbubble-sizedistributions. Theeffect,thatsurfacerheologicalparametersmayhave ontherateofgasdiffusion,isalsoconfirmedexperimentally.TheLaplacepressureisthegoverningdrivingforce forgasdiffusionifthegascompositionin-andoutside thebubbleisequal.Thereforegasdiffusionfrombubbles depends strongly on the surface tension of thebubble. Duringgasdiffusion,thebubbleshrinksandthesurface iscompressed.Consequentlythesurfacetensiondecreases. Thedynamic surfacetensionprevailingundercompression conditionsdependsonthesurfacerheological properties of the bubble. Important parameters determining the dynamic surface tension of the bubble are the surface dilationalviscosity,thecompressionrateofthesurface, thehistoryofthebubblesurfaceandtheabsoluteamount ofcompression.Thethreeexperimentalmethods,described in this chapter, induce different surface compression behavior, because the parameters mentioned above differ foreachmethod. The surface compression during the actual event of bubbledissolutionisatransientphenomenon.Thecompressionratevarieswithtimewhiletheabsolutecompression increases in an unpredictable way until the surface is completely compressed. Steady-state compression is not achieved.Thehistoryandtotalcompressionofthesurface is important in addition to the compression rate. The deformation of the bubble surface is determined by the parameters of the system. E.g. high surface viscosity slowsdownthesurfacedeformationrate.Unfortunatelyit isnotpossibletodescribethistransientphenomenonwith mathematicalformula,andthereforeitisnotpossibleto 75 deriveamodelthatcompletelysatisfactorydescribesthe disproportionationbehaviorofbubblesinafoam. The single compression experiment carried out in a Langmuir trough simulates the actual shrinking of the bubblesurface.Howevertheabsolutecompressionandthe compression rate are not equal in both situations. The absolutecompression of abubble surface,generally, is higher than the maximum absolute compression in the Langmuirtrough.Respectively100%and80%oftheoriginal surface is compressed. Therefore, it may be speculated thatthesurfacetensionofthebubblebecomeslowerthan canbemeasured intheLangmuirtrough.Inaddition,the decreaseof the surface tension depends strongly onthe compressionrate,becausevisco-elasticsurfacesaretime dependentasaconsequenceofrelaxationprocesses.With the single compression experiment the barrier is moved linearly, and therefore dlnA/dt increases during the experiment. Inaddition,thecompressionexerted tothesurfacein the Langmuir trough is not without shear, whereas the compression of the bubble surface is pure all-sided dilation. The shear forces might influence the results obtainedwiththeLangmuirtrough. From a physical point of view the single compression experimentisapoorlydefinedexperiment.Amathematical expressioncannotbegiventhatdescribestherheological behavior ofvisco-elastic surfaceson thebasis ofthis experiment. On the other hand, the caterpillar belt compression experimentisphysicallyratherwelldefined.Althoughthe dlnA/dt isnot entirely constant during theexperiment, becausethebarriersmovelinearlyandbecausetheyarea certaindistanceapart,astationary-statecompressionis accomplished. The surface dilational viscosity can be determinedatvariouscompressionrates,andthepowerlaw parameters m and n can be calculated. The experimental results, obtained with the caterpillar belt experiment, can be used to derive a diffusion model that includes 76 surface Theological aspects as has been proposed in chapter5.3. Taking these considerations into account it is not surprisingthatthepowerlawparametersmandnfoundwith thecaterpillarbeltexperimentdonotcoincidewiththe parametersfoundwiththedissolvingbubblemethodandthe model calculations as shown in table 5.4. The simple reason for this deviation may be that the powerlaw, althoughitratherwelldescribestherheologicalbehavior ofsurfacesinthecaterpillarbeltexperiment,doesnot accurately characterize the rheological behavior of the shrinkingbubblesurface.However,combiningresultsfrom thebubbledissolutionexperiment andmodelcalculations ithasbeenmadeveryclear that the surface tensionof the shrinking bubble surface may become very low. In additiontheformationofaninsolubleskinmayoccurat thebubblesurfacecausedbythecompressionofthebubble surface. It can be concluded that gas diffusion from bubblesmaybeverymuchinhibitedbythesurfacerheologicalbehaviorofthebubble. References Anderson,M.,Brooker,B.E.,"DairyFoams."In:Advances inFoodEmulsionsandFoams.Ed:E.Dickinson,G.Stainsby, ElsevierAppliedScience,pp.221.(1988). Boyle III,J., Mautone,A.J.,ColloidsandSurfaces 4:77 (1982). Brown,A.G.,Thuman,W.C.,McBain,J.W.,J. Colloid and InterfaceSei.8:508(1953). Cable,M.,Evans,D.J., J.Appl.Phys.38:2899 (1967). Cable,M.,Frade,J.R., Glastech.Ber.60:355 (1987). Cable, M., Frade, J.R., Proc. R. Soc. Lond. A. 420:247 (1988). Cheng,H.C., Lemlich,R., Ind.Eng.Chem. Fundam. 24:44 (1985). Clark,N.O.,Blackman,M.,Trans.Farad.Soc.44:1(1948). Cook,R.L.,Tock,R.W.,SeparationSei.9(3):185 (1974). 77 De Vries,A.J., Receuil des Traveaux Chimiques desPaysBas 77:209 and 283 (1958). DeVries,A.J., "Morphology, Coalescence and sizedistribution of foam bubbles" In:Adsorptive bubble separation techniques. Ed: R. Lemlich, Academic Press. New York, London,pp. 7. (1972). Dewar, I., Proc.R. Inst.Cr.Brit. 22:179 (1917). Duda, J.A.,Vrentas,J.S.,AIChE J. 15:351 (1969). Duda, J.A., Vrentas, J.S., Int. J. Mass Heat Transfer 14(3):395 (1971). Epstein, P.S., Plesset, M.S., J. Chem. Phys. 46:1505 (1950). Gal-or,B., Hoelscher, H.E.,AIChE J. 12(3):499 (1966). Haas, F.W., Tock,R.W., Separation Sei. 10(6):723 (1975). Johnson, B.D., Cooke, R.C., Limnol. Oceanogr. 25(4):653 (1980). Lifshitz, I.M., Slyozov,V.V., J.Phys.Chem.Solids 19:35 (1961). Markworth,A.J., J. Colloid and Interface Sei. 107(2):569 (1985). Monsalve, A., Schechter, R.S., J. Colloid and Interface Sei. 97(2):327 (1984). Narsimhan, G., Ruckenstein, E.,Langmuir2:494 (1986). Onorato, P.I.K., Weinberg, M.C., Uhlmann, D.R., J. Am. Ceram. Soc. 64(11):676 (1981). Owen,M.J.,Kendrick, T.C., J. Colloid and Interface Sei. 27(1):46 (1968). Princen, H.M., J. Colloid Sei. 18:178 (1963). Princen,H.M., Mason,S.G., J.Colloid and Interface Sei. 20:353 (1965). Princen, H.M., Overbeek J.T.C., Mason, S.G., J. Colloid and Interface Sei. 24:125 (1967). Prins, A., "Dynamic Surface Properties and Foaming BehaviorofAqueous Surfactant Solutions."In:Foams.Ed: R. J. Akers, Academic Press. London, New York. pp. 51. (1976). Prins,A., "TheoryandPracticeofFormationand Stability of Food Foams." In: Food emulsions and foams. Ed: E. 78 Dickinson, Royal Society of Chemistry. Leeds, pp. 30. (1986). Prins,A.,"PrinciplesofFoamStability."In:Advancesin FoodEmulsionsandFoams.Ed:E.Dickinson,G.Stainsby, ElsevierAppliedScience,pp.91.(1988). Ramchandran,N.,Didwania,A.K.,Sirkar,K.K.,J.Colloid andInterfaceSei.83(1):94(1981). Ranadive,A.Y.,Lemlich,R.,J.ColloidandInterfaceSei. 70(2):329 (1979). Rieser,L.A., Lemlich,R., J.Colloid and InterfaceSei. 123(1):299 (1988). Ruckenstein,E.,DavisE.J.,J.ColloidandInterfaceSei. 34:142(1970). Scriven,L.E.,Chem.Eng.Sei.28:2127 (1959). Sebba,F.,In:Foamsandbiliquidfoams-Aphrons.Ed:J. Wileyandsons.pp.58.(1987). Stavans, J., Glazier., J.A., Phys. Rev. Lett. 62:1318 (1989). Subramanian, S.R., Weinberg, M.C., J. Chem. Phys. 72(12):6811 (1980). Subramanian, S.R., Weinberg, M.C., AIChE J. 27(5):739 (1981). Tao,L.N.,J.Chem.Phys.69(9):4189 (1978). Tao,L.N.,J.Chem.Phys.71(8):3455 (1979). Van den Tempel, M., Lucassen-Reijnders, E.H., Adv. in ColloidandInterfaceSei.18:281 (1983). Van 'tRiet, K., Prins,A., Nieuwenhuijse, J.A., "Some EffectsofFoamControlbyDispersed NaturalOilonMass TransferinaBubbleColumn."Eur.Congr.Biotechnol.3rd, Volume3,VerlagChemie:Weinheim,WestGermany,pp.521. (1984). Vrentas, J.S., Vrentas, CM., J. Chem. Phys. 77:5256 (1982). Wagner,C , Z.Electrochem.65:581 (1951). Ward,C A . , Tucker,A.S.,J.Appl.Phys.46:233 (1975). Ward, CA., Findley, R.D., Rizk, M., J. Chem. Phys. 76(11):5599 (1982a). Ward, C A . , Rizk, M., Tucker A.S., J. Chem. Phys. 76(11):5606 (1982b). 79 Ward, C A . , Tikuisis, P., Venter, R.D., J. Appl. Phys. 53(9):6076(1982°). Ward, C.A., Tikuisis, P., Tucker, A.S., J. Colloid and InterfaceSei.113(2),-388.(1986). Weinberg, M.C., Onorato, P.I.K., Uhlmann, D.R., J. Am. Ceram.Soc.63(7-8):175(1980a). Weinberg, M.C., Onorato, P.I.K., Uhlmann, D.R., J. Am. Ceram.Soc.63(7-8):435(1980b). Weinberg,M.C.,Chem.Eng.Sei.36:137 (1981). Yung,C , Brockwell,J.L.,McQuillen, J.B., Chai,A.,J. Colloid andInterfaceSei.127(2):442(1989). Zak,M.,Weinberg,M.C.,Chem.Eng.Sei.35:1749 (1980). 80 BEERFOAMPHENOMENA Thefourphysicalprocesses,bubbleformation,drainage, coalescenceanddisproportionation,influencethebehavior ofbeer foaminadifferentway.Inthischapterseveral foamphenomenawillbediscussedandexplainedintermsof thesephysicalprocesses. 6.1.Thecreaminessofthefoam Oneofthefirsteye-catchingphenomenaofbeerfoamis thecreaminess.Creaminess isafoamcharacteristicthat is determined by the appearance, by the rheological propertiesandbythemouthfeelofthefoam.Acreamyfoam isbelievedtobepreferredbytheconsumer. Creaminess is a foam property that is difficult to define.Creaminessisafoamcharacteristic,thatdepends mainly on the bubble-size distribution, on the liquid fraction and the whiteness of the foam. A homodisperse size distribution of small bubbles is desired for a suitablecreaminess.Inaddition,thefractionofliquid inthefoammustbehigh,becauseitfacilitatestheflow propertiesofthefoam. Thecreaminessofthefoamdoesnotremainconstantwith time. The initial creaminess is determined by the way bubble formation takes place. Therefore, creaminess is mainlydetermined byheterogeneousbubblenucleationand growthandthemomentofbubbledetachment.Asdescribed inchapter 2,theparametersthatinfluencethisprocess are, amongst others, the carbon dioxide content, the dynamic surface tension of the beer under expansion conditionsandconvectionduringthedispenseofthebeer. Thisexplains,amongstothers,thatbeerdispensed froma tap appears to be more creamy than beer poored from a bottleorcan.Sincethereismoreconvectioninthetap, thebubblesproduced fromthetaparesmaller. 81 The creaminessof the foam after a certain period of time depends on the rate of drainage, coalescence and disproportionation. As a consequence of these processes the fractionof liquid inthe foamdecreases and larger bubbleswillappear.Thebubble-sizedistributionbecomes widerandthecreaminessofthefoamdecreases. Abeerfoamwithsmallbubblesisfavored.Thewaybeer is dispensed influences the size of the bubbles. Beer shouldthereforebedispensedinsuchamannerthatsmall bubblesareproduced. 6.2.Theriseofthefoam-liquidinterface Theriseofthefoam-liquid interfaceis,primarily,a resultofdrainage.Coalescenceanddisproportionationdo notdirectlyaffecttheriseofthefoam-liquidinterface. However,theseprocessesincreasetherateofdrainageand therewith indirectly the rate of the rise of the foamliquidinterface. Simple calculation gives insight in the importance of thisphenomenon.Thesituationisconsideredthattheonly processoccurringinthefoamisdrainage.Supposethata foaminitiallyis3cmhigh,andcontains60%gasand40% liquid. For fresh beer foam these figures are quite realistic.Alsosupposethatasaresultofdrainagethe foam contains 90% gas and 10% liquid after a certain periodoftime.Then,thefoamheightis2cm.Thetotal foamheighthasdecreasedbyathird.Thedecreaseinfoam heightmaytakeplaceinabouttwominutes,dependingon variousparameters,liketheviscosity.Thismeansthatby drainage alone, the foam volume can partly disappear whereasthetotalbubblevolumeremainsthesame. 6.3.Theinfluenceoftemperature Beerfoamismorestableatlowtemperaturesasmeasured withaRudintube(figure8.2).Thisphenomenoncannotbe 82 easily explained since the influence of temperature is many fold. The temperature has a dominant effect on variousotherparametersthatinfluencestherateofthe fourphysicalprocesses.Atlowtemperaturethesolubility ofthegasishigher,theviscosityofthebeerishigher, the(dynamic)surfacetensionishigherandthedensityof gasishigher. The nucleation of bubbles is greatly affected. As a result of a higher solubility of the gas the number of bubbles that nucleate becomes less. In addition, the bubbleswillbecomesmallerbecausethebubblegrowthrate decreases. Drainageisinfluenced bythechangeinviscosity.The drainagerateisbelievedtobeinverselyproportionalto viscosity (Eg.[3.1])andthereforedrainagewillproceed sloweratlowertemperature.Ascanbeseeninfigure8.3 thedrainagerateasmeasuredwithaRudintubeisproportional to theviscosity, ifviscosity ismanipulated by varyingtemperature. Thedirecteffectoftemperatureoncoalescenceisnot well known. When film rupture occurs according to the spreadingmechanism,coalescenceisincreasedasaresult of the increase of bulk viscosity. In addition, the surfacetensionofbeerishigheratlowertemperatureand therewith the spreading of surface active material and thusfilmrupturemaybeenhanced (seechapter4). The effect of temperature on gas diffusion is by its indirecteffectonthedensityofthegas,thesolubility of thegas,and thesurfacetension.Thedensity ofthe gasisinverselyproportionaltotheabsolutetemperature andwillthereforehardlycontributetodifferencesinthe rateofgasdiffusion.Thevariations insurfacetension asaresultofvariationsintemperaturearerathersmall comparedtothevariationsingassolubility.Asaresult gas diffusion and disproportionation will proceed more rapidlyatlowertemperatures. Themostimportanteffectoftemperatureisbelievedto betheeffectonbulkviscosity.Atlowtemperaturesthe viscosityoftheliquid ishigherandthereforedrainage 83 proceeds slower. Consequently, the beer-foam interface risesslowerifthetemperatureislower.Inaddition,the films between the bubbles remain thicker. This brings about thatcoalescence becomes less likely and that the rate of disproportionation decreases. Summarizing the aboveconsiderations,theconclusionmaybedrawnthatat lowertemperature lessfoamappears,butthatitismore stableagainstbreakdownprocesses. 6.4.Thecoarseningofthefoam Coarsening of the foam means that the bubbles in the foam become larger. Consequently, the appearance of the foambecomeslessattractive.Coarseningofthefoamcan becausedbyeithercoalescenceorbydisproportionation within the foam. These processes however have to occur withinthefoam,becauseiftheyoccuratthetopofthe foamcoarseningdoesnottakeplace.Insteadthefoamwill collapseasdiscussedinchapter6.5. Thecoarseningofthefoambycoalescencewillproceed somewhatdifferentthanthecoarseningbydisproportionation. As a result of coalescence only larger bubbles appear, while as a result of disproportionation also smaller bubbles appear.The smaller bubbleshowever can hardly be seen by the naked eye and consequently the general impression of thecoarsening phenomenon will be equalforbothphysicalprocesses. Drainage only influences the coarsening of the foam indirectly. By drainage the film becomes thinner and therefore the chance that coalescence occurs increases. Disproportionation willproceedmorerapidlyasaresult ofdrainage,becausethediffusiondistancedecreases. 6.5.Thecollapseofthefoam Foam collapse is the reduction of foam height. Foam collapse ismainly theresult oftheescapeofgasfrom 84 the foam. Gas escapes from the foam either when gas diffuses from theupperbubble layer tothe surrounding atmosphereorwhenthefilmbetweenabubbleintheupper layerandthesurrounding atmosphereruptures.Thefinal resultinbothcasesisthatthefoamheightreduces. By simple observation of the upper bubble layer, it appears that,under normal conditions,coalescence does notmuchcontributetofoamcollapse.Thebubblesinthat layerappeartobestableagainstcoalescence.Onlywhen external surfaceactivematerialisadded (chapter4)or whenlargerairbubblesrisetothetoplayerofthefoam (chapter 6.7) coalescence may occur.However, innormal situations,thisdoesnothappenveryoften. Incontrast,gasdiffusionfromthefoamtothesurrounding atmosphere takes place rapidly. As described in chapter 5forasinglebubble,thedriving forceforgas diffusion fromtheupper layerof the foam ishigh asa consequenceofthedifference ingascompositionbetween theinteriorofthefoamandthesurroundingatmosphere. Partialgaspressuredifferencesashighas1Bardominate the gas diffusion process because initially the bubble containsonlycarbondioxideandtheatmospherecontains practically only nitrogen and oxygen. Therefore, carbon dioxide will diffuse outward and nitrogen and oxygen inward.However,thesolubilityofnitrogenandoxygenis much lower than the solubility of carbon dioxide.Since thediffusionrateisalsodeterminedbythesolubilityof thegas,carbondioxidediffusesoutwardmorerapidlythan nitrogenandoxygeninward.Theresultisthatthebubble intheupperlayerofthefoamshrinkstoabout2%ofits originalvolume.Thisshrinkingprocessdoesnottakemore than several seconds (figure 5.12). Thereafter, thegas composition in and outside the bubble is the same.The only driving force for the diffusion of nitrogen and oxygenoutwardagainistheLaplacepressure.TheLaplace pressurehoweverisverylowbecausethesurfacetension ofthebubblehasbecomeverylowasaconsequenceofthe shrinking process. In addition, an insoluble layer of surface active material may be present at the bubble 85 surface(figure5.16).Forthesereasonsthegasdiffusion outward will proceed very slowly. The small air bubbles in the top layer of the foam will be relatively stable againstgasdiffusionoveralongperiodoftime. Asaconsequenceoftheshrinkingofbubblesinthetop layerofthefoam,bubblesfromthenextlayercancometo the surfaceof the foam. Thesebubblesare subjected to exactly the same diffusion process and they shrink to about2%oftheiroriginalvolumeaswell.Thisseriesof eventswillrepeatitselfoverandoveragain,untilall bubbleshaveshrunken,oruntilthetoplayerisentirely filledwithsmallairbubbles. Gas diffusion from the top layer to the surrounding atmosphereisnottheonlygasdiffusionthattakesplace as a consequence of partial pressure differences. In addition,upwardcarbondioxideanddownwardairdiffusion from and tothe layersunderneath thetop layeroccurs. Thepartialpressuredifferenceswillpenetratethefoam. However,thediffusionofgasthroughvariouslayers,and thus through various liquid films,will proceed slower than diffusion from the top layer to the surrounding atmosphere. Anorderofmagnitudecalculationcangiveinformation abouttheimportanceofgasdiffusion fromthetoplayer ofthefoamforthecollapseofthefoam.Supposethatgas diffusion is the only process that takes place in the foam,andthatcoalescencedoesnotoccur.Afoamof3cm height,inaglasswithadiameterof6cmisconsidered. Supposethegasfractionisinitially0.6andallbubbles haveaninitial radiusof 200urn.Inthatcasethefoam contains approximately 1.5 million bubbles distributed overabout100layers.Ifthebubblesinthetoplayergo throughthediffusionprocessuntiltheirvolumeisabout 2%oftheiroriginalvolume,thentheareatheyoccupyin thesurfacebecomesaboutl/14thoftheoriginalarea.This meansthat,after14layersofbubbleshavebeensubjected to the diffusion process, the surface is completely occupiedwithshrunkenairbubbles.Thebubblesoriginally presentin14layersare,afteracertainperiodoftime, 86 presentinthetoplayer.Afterthat,diffusionofgashas totakeplaceoveralongerdistanceandthroughmorethan one liquid film and will therefore proceed slower. The process will repeat itself over and over again for all bubble layers,but the rate of gas diffusion decreases becauseinthecourseoftheprocessdiffusionhastotake placethroughmoreandmorelayers.Whenallbubbleshave gonethroughthediffusionprocessthefoamwillconsist ofabout7layersofbubbleswitharadiusofabout50um. Theheightofthefoamwill thenbe0.4 mm,taking into accountthatthegasfractioninthefoamhasbecome0.9. Theultimateresultofthisdiffusionprocessisverymuch inagreementwiththepracticalobservationthataftera certainperiodoftimethefoamhascollapsed,butthata singlelayerofverysmallbubblesappearstopersiston topofthebeer. Fromthesecalculationsitcanbeconcludedthatabeer foam canalmost completely collapse as aconsequenceof gasdiffusion.Itisamazingthatithappenswithoutthe disappearance of a singlebubble.Thenumber of bubbles does not change and remains 1.5 million bubbles in the abovegivenexample. Iftherapidcarbondioxideandairexchangethrougha single foam film takes 1 second (chapter 5.5),and if every14layersoffoambubblesbecomesonelayerinthe courseofthediffusionprocessinaconsecutiveway,the 100layersofbubblescollapseinabout400seconds.This is a result of the fact that layer after layer goes throughthediffusionprocess.Thetotalcollapsetimeof thefoam isthe sumofthediffusion timesrequired for alllayers.Itbecomesapparent,thatthetotalcollapse timeofthefoam isvery susceptibletotherateofthe diffusion process through a single film.An increaseof 0.1 second indiffusiontimeforasinglebubbleresults inanincreaseofabout40secondsinfoamcollapsetime intheabovegivenexample.Itmaybeconcluded thatthe collapseproceedswithintheaverageconsumptiontimeof theconsumer. 87 The observation that smaller bubbles give better beer foambehaviorcannoweasilybeexplained.After14layers ofsmallbubblesshrunkento2%oftheiroriginalvolume less gas has diffused out of the foam than when the bubbles would have been larger. In other words, a foam that contains smaller bubbles also containsmore layers andthereforethesameamountofgasmustdiffusethrough morelayersifthefoamcontainssmallerbubbles. Thepracticalobservation,thatthebubblesinthetop layer of the foam are much smaller than the bubbles underneath,canbeunderstoodwiththeknowledgeofthis gasdiffusionprocess. Nowalsotheobservation,thatanitrogenfoamismuch morestableagainstcollapsethanacarbondioxidefoam, canbeexplained. Gasdiffusion from anitrogen foamto thesurrounding atmosphereproceedsmuchslowerthanthe diffusionofcarbondioxide,becausethepartialpressure differences and the solubility of nitrogen are much smaller.Infact,ifthefoamcontains100%nitrogenand the surrounding atmosphere is air (80% nitrogen, 20% oxygen), the foam expands. In that case, the partial pressure differences for oxygen and nitrogen are equal (0.2P atm ),butthedirectionofthegradientisopposite. Thesolubilityofoxygenisabouttwicethesolubilityof nitrogen.Therefore,twotimesmoreoxygendiffusesinward than nitrogen outward. Consequently, the size of the bubblesinthetoplayerinitiallyincreasesandthefoam level rises.Thisphenomenon cannotbeobserved bythe nakedeye,becausetheincreaseisverysmall. A little amount of nitrogen in apredominantly carbon dioxidefoamalreadygreatlyimprovesthestabilityofthe foamagainstcollapse.Ifnitrogenispresentthebubbles shrinkmoreslowly.Inaddition,thebubblesdonotshrink rapidly until 2% of the original volume. Instead, the transition from rapid gas diffusion, driven by partial pressuredifferences,toslowgasdiffusion,drivenbythe Laplacepressure,willbeatalargervolume.Thismeans thatlessareawillbecomeavailableforthelayerunderneaththetoplayertocometothefoamsurfaceandalso 88 thatitwilltakelonger.Therefore,theoverallcollapse of the foam will be significantly slowed down. This explainswhy theaddition ofnitrogen tobeer issucha successful way to improve head retention times,Carroll (1979), Kuzniarski (1983), Butterworth (1983), Hedderick (1984). Acarbondioxidefoamunderacarbondioxideatmosphere ismorestableagainstcollapsethanacarbondioxidefoam underanitrogenatmosphere.Ifacarbondioxideblanket coversthebeerfoam,thediffusionofcarbondioxideis driven only by the Laplace pressure and not by large partialpressuredifferences.Therefore,gasdiffusionis comparatively slow, and the foam ismore stableagainst collapse.Thebubblesinthetoplayerofthisfoamremain larger than when the surrounding atmosphere contains nitrogen(comparefigure5.11and5.12).Theappearanceof the foam therefore is lessattractive if carbondioxide coversthefoam. A last observation gives evidence that foam collapse takes place by the described gas diffusion mechanism. Afterfoamcollapse,amonolayerofsmallbubblesremains on the beer surface for a long period of time. If foam collapsetakesplacebycoalescence,asforexampleisthe case if spreading material is added to the foam, all bubbles disappear. In that case, the monolayer of very small airbubbleswill notremainonthesurfaceofthe beer.Thebeerthenappearstobecompletely flat.Thus, a very easy distinction between foam collapse by gas diffusionandbycoalescencecanbemadethisway.Bygas diffusion bubblesbecome smaller and remain on thebeer surface. By coalescence the bubbles become initially largerandthendisappearcompletely. Coalescence does apparently not takeplace in thetop layerofthefoam.Thisconfirmsthehypothesispostulated inchapter4,thatcoalescencemainlytakesplaceiffilms areexpandedandthedynamicsurfacetensionishigh.The compressed bubble surfaces inthe top layerof thefoam arenotverysusceptibletocoalescence. 89 6.6.Cling Clingisthephenomenonthatapartofthefoamadheresto thewallwhentheupperlevelofthefoamdecreases.The firstobservationmadeisthatthegasdiffusionprocess ofcarbondioxideoutwardandairinwardisessentialfor the deposition of cling. The small bubbles at the foam surfaceadheremorestronglytothewallthanlargerones. Theabilityofbubblestoadheretothewallandtostick togetherappearstobedependentontheshrinkingofthe bubble.Thisisconfirmedbyanexperimentcarriedoutby Glenister at al (1966). When a glass is covered with a glass plate and the foam is allowed to collapse, no bubblesadheretotheglasswall. Inanequalglassthat isnotcoveredandcontainsthesameamountofbeerfoam, clingisformed. Whenasipistakenfromtheglass,theshrunkenbubbles in the upper layer turn to the wall. Apparently, they sticktogether.Somewhereatsomearbitraryplacebreakage occursinthetoplayer.Thebondbetweenthebubbleand theglasswallseemstobestrongerthanthebondbetween bubbles. As a result of cling the foam collapses in an uneven way.Next totheglasswall aring-shaped depression in the layer of small air bubbles appears as a result of cling.Thereforegasdiffusionofcarbondioxidefromthe foamislocallyacceleratedthere.Asaconsequence,foam collapses more rapidly near the glass wall than in the middle of the glass. Consequently, a small heap-shaped buildupoffoammayappearinthecenteroftheglass. 6.7.Theinfluenceofairentrapment Asdiscussed inchapter2.1foambubblescanbeformed by agitation. While dispensing beer into a glass, a plungingmotioncanbeproduced.Asaresultairbubbles comeintothebeerfoam.Ingeneraltheseairbubblesare largerthanthecarbondioxidebubbles.Asimilarpartial 90 pressuredifferencebetweentheairbubblesandsurrounding carbon dioxide bubbles is present as between the surrounding atmosphereandthecarbondioxidebubblesin the top layer of the foam.Consequently, carbondioxide diffusion takes place into the air bubble. Very minor amountsof air diffusestothebubbles inthe immediate periphery of the air bubble. The air bubbles suck the carbon dioxide from the surrounding bubbles and become larger.Thebuoyancy forceoftheselargeaircontaining bubbles increases and consequently they may risetothe surface. As a result the foam becomes less attractive. Also these bubbles may coalesce. In this manner gas escapes from the foam. Entrapped air bubbles can thus contributetofoamcollapsebytransportingcarbondioxide totheatmosphereabovethefoam.Therefore,thewaythat beer ispoured outcanmakealotofdifference forthe behaviorofthefoam.Asarule,airentrapmentshouldbe avoided. 6.8.Theinfluenceofchemicalcomposition Foams, with the same chemical composition, may have differentfoambehavior.Theessenceofthisstatementis thatinafoamthechemicalcomponentsmaybedistributed throughout the foam in a different way. Three examples willbegiven. Two foamswith exactly the samechemical composition, but with different bubble-size distributions may behave different.Thecreaminessof the foam and thereforethe appreciationoftheconsumerwillbedifferent.Ingeneral thefoamwiththesmallerbubblesisfavored.Inaddition, the foam with smaller droplets is more stable against collapsebygasdiffusionasexplainedinchapter6.5. Twofoamswiththesamechemicalcomposition,containing thesameamountofnitrogen,canhaveadifferentcollapse behaviour. The onlydifference between the foamsmaybe that in one foam all nitrogen in enclosed in a single bubble,whereasintheotherfoamthenitrogen isevenly 91 distributedthroughoutthebubbles.Thecollapseofafoam containing a single nitrogen bubble can be enhanced as explained in chapter 6.7. When all bubbles contain the sameamount of nitrogen however,the foam is stabilized againstcollapse. When two foamshave thesamechemical composition and contain the sameamount of lipid material,thenegative effectofthislipidmaterialonthebehaviorofthefoam may be different. This difference can be caused by the fact that the lipid material inone case is present as droplets,andintheothercaseismolecularlydissolved. Lipid dropletscaninitiatecoalescenceandthusenhance foamcollapseenormouslyasexplained inchapter4.When lipid material is dissolved a relatively small negative effectonfoambehaviorcanbeobserved. References Butterworth,M.J.,TheBrewer69:407 (1983). Carroll,T.C.N.,Tech.Quart.MBAA16(3):116 (1979). Hedderick,J.B.,TheBrewer70:116 (1984). Kuzniarski,J.N.S.,TheBrewer69:362 (1983). Glenister,P.R., Segel,E.,Koeppl,K.G.,ASBCProc.pp. 150 (1966). 92 BEERFOAMSTABILITY Thepoordefinitionoffoamstabilityhasoftenleadto misunderstandingsandconfusionoftongues.Thereforethe need of an appropriate and straightforward definition arose soonafter thebeginning of thisresearch work on beerfoam.Howevertheefforttoredefinetheconceptof foam stability has failed. The main reason for this failure is that the word stability can only be used in relationtoasingleproperty,i.e.amomentarymeasurable characteristic,ofasystem.Therefore,itispossibleto define the stability of a single foam property. Foam itself is not a property but a system that has various propertieslike:(i)totalvolume(ii)theamountofgas, (iii)theamountofliquid,(iv)bubble-sizedistribution, (v) distribution of bubbles throughout the foam, (vi) optical properties likecolour and shine, (vii)several rheological properties like viscosity and elasticity, (viii)organolepticalproperties,and(ix)temperature. Aqueousfoams,onceformed,areinthermodynamicterms unstable.Consequently thephysicalprocesses,drainage, coalescenceanddisproportionationtakeplace.Thismeans thatthefoampropertieswillvaryasafunctionoftime. Everysinglefoampropertyhasitsownstability. Thestability ofabeerfoamproperty indicateshowthis propertyvariesasafunctionoftime. Afoammayhaveverystableandunstableproperties.It isimpossibletodefinefoamstability.Stability,itself isnotapropertyeither,becauseitcannotbemeasured momentary.Therefore,foambehaviorcannotbeexpressed withasinglefoamnumber.Unfortunately,different foam numbersmustbemeasured toobtainacompletepictureof the behavior of the foam. This will be discussed in chapter8inmoredetail. Itmaybedifficulttoacceptforthebrewing industry thatfoambehaviorcannotbeexpressedwithasinglefoam 93 number.Ofcourse,thedesireforsimplicitydominatesin thedaytodaypracticeofbrewing. A way to elucidate the argument, that a single foam number cannot expresstheoverall foambehavior, isto comparefoambehaviorwithtaste.Itisgenerallyaccepted that a single taste number can not be given. Always a singletasteproperty,likelightstruck flavour,bitterness,oroneofthenumerousothertastes,ismeasuredand presentedseparately.Anenormouseffortismadebylarger breweriestotestthetasteofbeerinallitsaspectsand detail. The use of taste panels is common practice. Chemical analysis are continuously carried out on many identifiedtastecomponentswithsophisticatedequipment, likeGLCandHPLC.Eveniffoambehaviorisnotascomplex astastetheanalogyisperfect.Theonlydifferenceis, that it is not generally accepted that for the proper characterizationoffoamasimilareffortshouldbemade. Inaddition,theinterpretationoftastenumbersismore orlesscommonknowledge,while,incontrast,theinterpretation of different foam numbers is not. In other words,theavailableknowledgeaboutfoambehaviorisvery limitedcomparedtotheknowledgeabouttaste. 94 8.MEASUREMENTOFFOAMBEHAVIOR 8.1.Introduction Inchapter 6 and 7 itwas concluded that theoverall behavior of a foam can not be measured with a single apparatus,norcanitbeexpressedbyonefoamnumber.An argument in favorof this statement isthat anenormous amount of methods and procedures have been proposed to determinefoamcharacteristics.Inpractice,beerfoamis measuredwithseveralreadilyavailablemethods.TheBlom method,theRudintubeandtheNibemfoamstabilitytester areamongthemostwellknownexamples. The method described by Blom (1934)is based on the measurementoftherateofliquiddrainagefromthefoam. With this method degassed beer is put in a separation funnel and carbon dioxide is diffused into the beer throughaporcelaincandleinordertoproduceacertain amountoffoam.Theseparationfunnelisthenplacedona balance.Theliquidthatdrainsfromthefoamisseparated from the foam and directed away from the balance to a separatecontainer.Thedecreaseoftheweightofthefoam ismeasured atcertaintimeintervals.Blom (1934)found that the rate of drainage can be described as a first orderkinetic.Afterashortlagperiod,thelogarithmof theweightofthefoamisproportionaltotime,following thenextempiricalequation: Wt=W0e"kt [8.1] With theobtained results ahalf-life timeof the foam canbedetermined: ln2 t%= [8.2] whereWtistheweightofthefoamafteracertaintimet, W0istheinitialweightofthefoam,kisaconstantand 95 t^isthefoamhalf-lifetime. TheBlommethodisimproveduponandautomatizedinthe CarlsberglaboratoriesasreportedbyRasmussen(1981)and Rosendal and Rasmussen (1982). The apparatus can run a measuringandrinsingprogramforthedeterminationof50 samples during normal working hours. The initial foam volume and half-life timeof the foam are automatically obtained.Oneoftheimprovementsmadeisthatthefoamis nolongerproduced bydiffusingcarbondioxidethrougha brittle porcelain candle. The candle is difficult to replace by a candle that gives the same reproducible results. Instead the foam is formed by pressing the carbonatedbeerthroughanozzlewithwelldefineddimensions.Thefoamisthusproducedinasimilarwayasbya tapinabar,and therefore itmaybeexpected thatthe initialbubble-sizedistributionand thegascomposition isalmost the sameasinpractical situations.With the automated apparatus, different initial foam volumes are produced and therefore also a "foamability" number is obtained.The "foamability"numberdependsmainlyonthe carbondioxidecontentofthebeer.Theinitialheightof the foamand therising of the foam-liquid interfaceis measuredwithaconductivityprobe.However,theprobemay interfere with the physical processes occurring in the foam.Forexample,theprobemayinducecoalescence.Ina second generation apparatus,developed at the Carlsberg research laboratories, the foam measurement with the conductivity probe is replaced by anoptical technique. Also the sampler has been improved upon. Nowadays, the samples can be directly drawn from a large variety of bottlesandtins. TheRudintube,developedanddescribedbyRudin(1957), isbasedonamethoddescribedbyRossandClark (1939). ThesimilaritybetweentheRudintubeandtheBlommethod is that with both measurements the rate of drainage is obtained.TheRudintubeisalongtubeofsmalldiameter. At the bottom of the tube there is a sintered glass filter, through which a gas (e.g. nitrogen or carbon dioxide)canbespargedintotheprimarilydegassedbeer. 96 The time, that elapses while the foam-liquid interface risesbetweentwomarksatthelowerend of thetube,can be taken as a characteristic foam number. Also a foam half-life time or Head Retention Value (HRV) can be defined. Instead of the weight of the foam (Eg. [8.1]), theheight oftheliquid-foam interfacecanbetakenasa measure of the drained liquid. Ross and Clark (1939) defined a S-value for the rate of drainage from a foam. Thedefinition of the2-valueisbased onthe logarithmic relation between theamount ofdrained liquid andtime: E= [8.3] 2.303 log((a+b)/b) where aisthevolumeof beerdrained from the foam and b isthevolumeofbeerthatremained inthefoamattimet. The E-valueisequal to1/k (Eg. [8.1]and [8.2]). A Foam Flashing Value (FFV) was defined by Hudson (1960). Afterthefoamwasproducedbyexpandingbeerwith anorifice thedrainage of 200ml of foamwas measured. 200 (B2 - B J FFV = [8.4] J B, 2 whereBAistheamountofbeerthatdrainsfromthefoamin 90sand B 2isthetotalamountofliquid inthe foam. The FFV is not often used in the brewing industry as a beer foam characteristic. Pierce and Pursell (1959) closely investigated the validityoftheempiricalrelation [8.1], [8.2]and [8.3]. They found that these equations can only be used after a certain time-lag, and within certain limits of time, especially ifother gasses thancarbondioxide are used. An explanation for the unusual behavior of different gassesintheRudintubewasgivenbyBishopetal (1975). He stated that the half-life time value of the foam is very susceptible to impurities inthecarbondioxidegas. The influence of these impurities can be explained with 97 differences ingas solubility (seechapter 6.5) andnot withtheoccurrenceofoxidation. Another explanation fordeviations of the logarithmic relation between the rate of drainage and the time is suggestedbyRossandCutillas(1955).Theystatethatthe decrease of the total interfacial area in a foam as a resultofgasdiffusionislogarithmicallyrelatedtotime as well. The rate of liquid drainage depends on the progressofthethreephysicalprocessesinvolved inthe breakdownofthefoam,drainage,coalescenceanddisproportionation.Itmaybearguedthatinitiallydrainageis themainprocess,and that at a later stage coalescence and disproportionation become more important. The most dominantprocessdetermineswhethertheempiricalrelation of Eq. [8.1] or Eg. [8.3] is valid. Consequently, the validity of theseequationsmayvery muchdepend onthe timeintervalthatisusedtomeasurefoamdrainage.Ross andCutillas(1955)explainedthatwithalighttransmissionmethodaseparationcanbemadebetweentheeffects ofdrainageofliquidinfoamfromthatofgasdiffusion, which causes a decrease of interfacial surface area. SimilarresultswereobtainedbySegeletal (1967).They stated that,assuming first-order kinetics,twostraight lines can be drawn to fit a logarithm-of-drained-beer versus time curve and two reaction constants can be determined.Theyconcludedthatthetworeactionconstants mustreflectonseparateprocesses. AreviewontheRudindrainagetubetechniqueisgiven byBamforth (1985). Herepeated thestatementofKlopper (1954),thatresultsofdrainagemeasurementsmustbeused with reservation because theconsumer assesses the foam itselfandnotthedrainagerate. TheuseoftheRudintubeorothermethodsbasedonthe rateofdrainagehaveseveraldisadvantages.Thesedisadvantagesaremainlythatthefoamandthemeasurementare verydifferentfromthepracticalsituationasobservedby theconsumer. (i)Thebeer isdegassed previous tomeasurement.The samplesarethenspargedwithadifferentgasandfoamis 98 produced.Thegascompositioninthefoammaybedifferent from thegascomposition inthepractical situation.In thatcase,ameaningfulfoamnumberwillnotbeobserved, even if the same phenomena could be assessed as the consumerdoes.Forexample,theeffectofnitrogenationon therateofbeer foamcollapsecannotbemeasured with theRudintube. (ii)IntheRudintubethebubblesareproducedthrough aporousglassfilter.Therefore,theinitialbubble-size distributioninthefoamis,amongstothers,determinedby thegasflowrateandthesizeofthepores.Thisinitial bubble-size distribution may bevery different from the initial sizedistribution inpractice and therefore the progressofdrainage,coalescenceanddisproportionation, andthusthebehaviorofthefoammaybeinfluenced.The effect of the initial bubble-size distribution on beer phenomena, like creaminess and foam collapse,havebeen described respectively inchapter 6.1 and 6.5. E.g. The effectoftheinitialbubble-sizedistributionontherate ofgasdiffusionwasalsodiscussedbyLemlich(1978)and RanadiveandLemlich(1979).Bamforth(1985)alsostressed that the method is very susceptible to the size of the pores in the filter used to sparge gas bubbles in the beer. Apparently, the initial bubble size in the Rudin tubehasagreateffectondrainage.Thedrainagerateof a foamwithsmallerbubblesappearstobelowerthanthe drainagerateofafoamwithlargerbubbles. (iii)Another drawback of the Rudin tube is that the geometryofthetubeisverydifferent fromthegeometry of a normal beer glass.Wall effects may influence the breakdownof the foam. Therateofgasdiffusion tothe atmosphere above the foam will be lower than in the practical situation because the surface area is very small.Thatthegeometryofthetubeisveryimportantfor the obtained results is confirmed by Ross and Suzin (1985), who carried out experiments incylindrical-and conical-shapedvessels. (iv)Thecompositionoftheatmosphereabovethefoamin the Rudin tube will be different. The rate of carbon 99 dioxidediffusionfromthefoamtothesurroundingatmosphere as described in chapter 6.5. will be influenced. Therefore,thefoamwillnotcollapseasinpractice.In fact,thecollapseofthefoamisnotevenassessedwith thismethod,sinceonlytherateofdrainageisobserved. (v)IntheRudintubemuchfoamisproducedfromasmall amountofbeerincomparisonwiththepracticalsituation. Thismaymeanthatthesurfaceconcentration inthefoam ofadsorptedsurfaceactivematerialissmallerthanina practicalsystem.Thedepletionofsurfaceactivematerial will influence the reliability of the measurement in a negativeway. TheRudintubetechniqueisthemostwidespreadmethod used in the brewing industry nowadays. However, each breweryhasmadeitsownmodificationanddefineditsown procedures.Therefore,thenumberscannotbecomparedto eachother. Not allbeer foammeasurement techniques arebased on the rate of drainage of liquid from the foam. Three methods have been put forward that are based on the measurementoffoamcollapse.Oneofthemethodsisknown as themethod of De Clerck and De Dijcker (1957). With this method foam is dispensed into a glass at standard conditions. Afterwards, the collapse of the foam is measuredbyfocussingamicroscopeontothefoamsurface. Thesecondmethodisbasedonthemeasurementofvertical transmissionoflightthroughthefoam.Withthismethod, amongstothers,reviewed byWilsonandMundy (1984),the total height of the foam is measured, because both the riseofthefoam-liquidinterfaceandthecollapseofthe foamcontributestoagradualincreaseoflighttransmission. A similar apparatus was described by Savel and Basaravâ (1989) who used an optical glass detector to measurethetransmissionoflight.Bymovingthedetector theycouldseparatelymeasurethelevelofthefoam-liquid interface and the foam height. They claimed that the breakdown of foam can be described by a rather complex empiricalrelation,thatwillnotberepeatedhere. Themostwellknownmethodtomeasurefoamcollapseis 100 theNibemfoamstabilitytester.Themethodwasdeveloped byKlopper (1977)andKlopperandVermeire (1977ab). The foam is produced in a glass with a foam flasher. The flasherworksverysimilartoatap,andisavailablefor bottlesandtins.WiththeNibemfoamstabilitytesterthe collapse of the foam in the glass is measured with a conductivityprobe.Theprobefollowstheupperfoamlevel asafunctionoftime.Thetimeelapsefrom1cmto4cm below the top of the glass is measured every cm. In generalthetotaltimeelapsefrom1cmto4cmistaken as a measure for foam behavior. The method gives only information about thecollapse of the foam. Information about other beer foam phenomena is not obtained. In general,thereproducability oftheresultsoftheNibem foamstabilitytesterislowerthanthereproducabilityof foam numbers obtained with the Rudin tube, although controversial standard deviations are presented in the literature(PiendlandLegat(1980),WackerbauerandGreif (1980),Ulimann(1982)andWeyh (1988)).Fromexperience, the reproducability of the Nibem foam stability tester dependsmostlyonthecontrolofthetemperature,ofthe cleannessoftheglassandofthegascompositionofthe atmosphere surrounding theglass.Thetemperatureofthe sampleispreconditionedat20°Cbuttheapparatusisnot temperature controlled, and therefore the laboratory temperaturecaninfluencetheoutcomeofthemeasurement. Since the collapse of the foam is measured, the gas diffusionfromthetoplayertothesurroundingatmosphere andcoalescenceinthetoplayerofthefoamaremeasured. Thecleannessoftheglassmayinfluencethecoalescence rate, and therewith the collapse time as discussed in chapter 4. The gas composition above the glass isvery importantfortherateofgasdiffusiontotheatmosphere. During foamcollapseacarbondioxideblanket settleson topofthefoam.Asaresult,thegasdiffusionratefrom the foam decreases.When the carbon dioxide blanket is disturbedbyairturbulence,thecollapserateisaltered. This effect on the foam collapse rate is so pronounced thatthereproducabilityofthemeasurementmaydependon 101 the slamming of adoor, theopening of a window orthe occasionalpassingbyofacolleague. The Nibem foam stability tester was compared to the Rudin tube method by Weyh (1987). In the same study,a comparisonofbothmethodswithadispensetest,described byPlank (1963),wasmade.Thismethodisverysimilarto themethoddevelopedbyDeClerck andDeDijcker (1957). Thedispensetestisbasedonthecontrolled,motor-driven dispenseofbeerintoaglass,followedbythemeasurement offoamcollapsewithamicroscope.TheE-values,obtained withtheRossandClarkmethod,poorlycorrelatewiththe Nibem number. The correlation depends very much on the kind ofbeersthatareexamined. Thisisnot surprising since,withthetwomethods,differentfoamsanddifferent phenomena are measured under different conditions. A somewhat better relation appears to exist between the Nibemnumbersandtheresultsofthedispensetest.This canbeexplainedbecause,inprinciple,thesamephenomena aremeasured.Stillthecorrelationbetweenthemethodsis notasgoodasmighthavebeenexpected.Thewaythebeer ispoured intotheglassseemstoinfluencethecollapse rateofthefoam. Clingcanbemeasured with aphotocell that scansthe glasswall,whereuponclingwaspreviouslyproducedunder welldefinedconditions.Amethodbasedonthisprinciple wasdescribedbyKlopper (1973).Aphotographictechnique waspresentedbyGlenisterandSegel(1964)whoalsocame upwiththeconceptofprimaryandsecondarycling.They defined primary cling as the first ring obtained in a glasswherebeerwaspreviouslysuckedoutatsuccessive, regular intervals. Secondary cling is defined as the consecutive rings. Although the first ring is always largerthantheothers,ascanbeunderstoodfromchapter 6.6, there is no fundamental basis for the distinction betweentwokindsofcling.Yetanothermethodtomeasure clingwaspresented by Jackson and Bamforth (1982). The cling can be produced in a similar way as described by GlenisterandSegel (1964).Theclingisthenrinsedfrom theglasswithwaterandtheabsorbanceat230nmofthe 102 resulting solution is then taken as a measure for the totalamountofcling. Althoughtheabovementionedmethodsandtechniquesgive ampleinformationonfoamcharacteristics,evenmorebeer foampropertieswerestudiedbyGlenisteretal(1966)and Segelet al (1967). Theydiscussed methods toassesthe whiteness of a foam, the density of a foam, the foam strengthandthefoamviscosity.Thewhitenesscansimply bemeasuredwithareflectometer.Thedensityofthefoam isdefinedastheratiooftheliquidinthefoamandthe foamvolume.Thedensityofthefoamisthereforeequalto the liquid fractionof the foam and can be measured in variousobviousways.Foamstrength (orrobustness)isa measureforresistanceofafoamagainstexternallyadded surfaceactivematerial.Understandardconditions,cetyl trimethylammoniumbromidewasaddedtothebeerandfoam characteristicsweredeterminedasnormal.Glenisteretal (1966) measured the viscosity of the foam by dropping glassbeadsthroughafoamcolumnandapplyingStokeslaw asalsodescribedbyWaniskaandKinsella (1979).Forall sortsofreasons,notdiscussedhere,theproperviscosity of a foam isnotmeasured with thistechnique (see e.g. Princen (1983)).However,theresultofthismeasurement mayverywellbeagoodcharacteristicforthecreaminess ofafoam. Other method to establish foam characteristics are described. However, they are not commonly used for the characterization of beer foam.With thesemethods other foampropertiesthandrainagerateorcollapseratecanbe measured. OneofthesemethodswasdescribedbyNishiokaandRoss (1981,1983),Nishioka (1986).Themethod isbasedonthe measurementofthepressurebuild-upinaconfinedvolume, thatisaresultofthecoarseningofthefoam.Theloss of total surface area with time can be related to the pressureincreaseasdescribedbytheauthors.Therefore, with these results quantitative information is obtained about the combined progress of disproportionation and coalescence. 103 Other methods are based on the measurement of the conductivity of a foam.Chang and Lemlich (1980)stated thattheratiooffoamconductivitytoliquidconductivity isproportionaltotheliquidhold-upinafoam.Agnihotri and Lemlich (1981) and Datye and Lemlich (1983) later added that this relation is mostly independent of the surfactantusedandtheinhomogeneityinbubblesize.The sizeofthebubblessomewhatinfluencestheconductivity of the foam. The conductivity of a foam with smaller bubbles is lower than the conductivity of a foam with largerbubbles. Substantial research work hasbeendone on thedetermination of bubble-size distributions in aqueousfoams. Thebubble-sizedistributioninfoamscanbedeterminedin variousways. Forbeer foam,Glenister et al (1966)and Segel et al (1967) described a method to measure the bubble-sizedistribution.Thebubble-sizedistributionwas measured from photographs takenof thetopof thefoam. Thismethodmayadequatelygivethesizedistributionof the bubbles in the top layer of the foam, but, as was discussed inchapter 6.5,underpracticalconditionsthe bubblesinthetoplayerofthefoamaremuchsmallerthan the bubbles inside the foam. Therefore, the bubble-size distribution of bubbles in the top layer by no means represent the size distribution of bubbles inside the foam. Othermethodstomeasurethebubble-sizedistributionin a foam are based on the measurement of observed bubble diameters in a cross section of the foam. This cross sectioncaneitherbeobtained byphotographing thefoam throughaglasswallorbyfreezingandcuttingthefoam (DeVries (1972)). Seleki and Wasiak (1984)described a different method. With this experiment the foam is led through a capillary, and the distance between the foam films in that capillary is taken as a measure for the bubble size.The method was used by Rieser and Lemlich (1988)todeterminethegasdiffusionrateinafoamfrom theevolutionofaninitiallybimodalbubble-sizedistribution.Thedeterminationofthebubble-sizedistribution 104 of a foam by measuring the chord length distribution obtainedrunningaconductivityprobethroughagas-liquid dispersion was described by Lewis at al (1984). They calculated the bubble-size distributions from the chord lengthdistribution,usingastatisticalmethodofThang andDavies(1979). 8.2.AimandApproach Withthemethods,describedabove,foamnumberscanbe obtained. Here a modified Rudin tube, a modified Nibem meterandtheoriginalNibemmeterwereused.Thesefoam numbersgiveinformationabouttheprogressofoneormore foamphenomenaasafunctionoftime.Insomecases,total drainageismeasured,inothercasesfoamheight.However, thesefoamnumbersareareflectionoftheoccurrenceof oneormorephysicalprocesses.Sincetheprogressofthe physical processes depends on the apparatus used, and since different properties are measured with different methods,thefoamnumbers,thatareobtainedwithdifferentmethods,do notnecessarily have tocorrelatewith eachother,norwiththeconsumersassessmentofthebeer foam behavior.With themethods formeasuring beer foam characteristicsafoamnumberisobtainedthatisaresult of some total effect of bubble formation, drainage, coalescenceanddisproportionation.Ifitwerepossibleto measuretheprogressofthefourphysicalprocessesina foamseparately,abetterinsight inthecharacteristics ofafoamcouldbeobtained. Strictly,thereisonlyoneobjectivemethodtomeasure foam behavior and that is to measure the bubble-size distributionasafunctionoftimeandplace.Themeasurementoftheevolutionofthebubble-sizedistributionshas not yet been used to make a distinction between bubble formation,drainage,coalescence anddisproportionation, although theoretically itmust bepossible.The initial bubble-size distribution gives information about the bubble formation process.Themeasurement of thevolume 105 fractionofliquidinthefoamasafunctionoftimeisa measure for therateofdrainage.A distinction between coalescence and disproportionation can be made because there isa fundamental difference between theeffectof coalescenceanddisproportionationontheevolutionofthe bubble-sizedistribution.Onlylargerbubblesappearasa resultofcoalescence,whereasdisproportionationresults in both larger and smaller bubbles. Hence, a bimodal distributionisobtainedinthelattercase.Adistinction can be made between coalescence and disproportionation usinggasesofdifferentsolubility.Therateofdisproportionationdependsverymuchonthegassolubility.By usinggasesofdifferentsolubilitylikenitrousoxideor carbondioxideontheonehandandnitrogenoroxygenon theotherthedisproportionation ratecanbeinfluenced. Coalescence willmostly be independent of theusedgas. Therefore,usinggaseswithverydifferentsolubilities, anestimatecanbemadeofthecontributionofdisproportionation and coalescence to the evolution of the size distributioninafoam. Inthischapteranewmethodtoassessanumberoffoam phenomenawillbeintroduced.Themethod isbasedonthe simultaneousmeasurementofthebubble-sizedistribution, the levelof the foam-liquid interface and the levelof thefoamheightasafunctionoftime.Thedrainagerate, thechangesinthegasfraction,thefoamcollapserate, andthechangesinfoamvolumearethusobtained.Inorder tomeasureallthesefeaturesanopticalglass-fibreprobe waspiercedthroughthefoamatconsecutiveintervals.The resultsobtained with thenewmethod werecompared with thebubble-sizedistributionsmeasuredwithaphotographic method. 8.3.Experimental Thecharacteristicsofbeerfoamwereassessedinthree different ways. A Rudin tube, a Nibem foam stability tester and a new method to measure amongst others the 106 bubble-sizedistributioninafoamwereused. The Rudin tube was made of a temperature controlled PharmaciaChromatographycolumn(600x25mm).Atthebottom oftheinnertubeaG2-glassfilterwasmelted.Withthis filterbubblesofapproximatelythesamesizeareproduced aswhenabeer isdispensed fromabottle.Thebeerwas degassedbyshakingregularlyinair.Priortomeasurement thecolumnwas filledwiththesamegasasthegasthat was used during the actual measurement. Then, 50ml of beersamplewasputintothecolumnandfoamwasproduced bysparginggas(C02orN2)intothecolumnuntilthetotal systemhadreachedaheightof33cmabovethefilter.The gasflowratewasmaintained at2.1xl0"6 m3s_1. Thetime, thatelapseswhenthefoam-liquidinterfacerisesbetween twomarks on the column (at 3and 8cm above theglass filter), wasmeasured. Measurements were carried out at 25°C, unless indicated otherwise. The S-value, HRV, or half-lifetimewerenotcalculated. TheNibem foam stability testerwasused in twoways. The firstway isexactly asdescribed by Klopper (1977) andKlopperandVermeire (1977ab).Themodification,that was also used, was made to enable the measurement of previouslydegassedbeersamples.Inaglass,ofthesame dimensionsasusedforthestandardmeasurement,100mlof degassed beer was added. The foam could be produced by diffusing gasthroughaporousG2-glassfilter.Only C02 wasused,becausethenitrogenfoamistoostableagainst collapsetoallowreproduciblemeasurement.Thecollapse rateofthefoamwasmeasuredwithaconductivityprobeas usual,withtheexceptionthatduringthemeasurementthe glass was covered with a small container to avoid air turbulenceandtherewithtoimprovethereproducabilityof themeasurement. Thebubble-size distribution, the foam height and the level of the foam-liquid interfaceweremeasured witha newlydeveloped technique.Theapparatusisbasedonthe useofanopticalglass-fibretechniquedeveloped atthe TechnicalUniversity ofDelft,TheNetherlands (Frijlink etal(1986)andFrijlink (1987)).Theapparatusconsists 107 of threemajorparts,asshowninfigure 8.1: firstlya mechanism formoving the fibre up and down the foam at knownspeed,secondlythefibreitselfcombinedwiththe opto-electronic unit, and thirdly equipment for data acquisition and for the calculation of the bubble-size distributionsandotherfoamproperties. MOTOR GLASS-FIBRE TTL SIGNAL OPTO- DATA ELECTRONIC ACQUISITION UNIT PROCESS1NG Figure 8.1 : The optical probe method to determine bubble size distributions. Fromtheopto-electronicunitlightisemittedintothe fibre. The end of the fibre consists of a very small rounded tip of diameter ca. 20urn,the diameter of the fibreitselfbeing 200um.Theessenceof themethod is thattheamountoflightreflectedatthetipofthefibre dependsontherefractiveindexofthemediumsurrounding thetip.Iftherefractiveindexofthemediumisapproximately the same as the refractive index of the glass almostnolightisreflected.However,iftherefractive index of the medium is much lower than the refractive index of the glass, part of the light is reflected. Therefore,whenthetipissurroundedwithgas,morelight is reflected than when the tip is in liquid. A beam splitterseparatesthereturningbeam;halfisreturnedto 108 thesource and lostand theotherhalf isreceived bya light-sensitive cell and converted into an electronic signal.Theopto-electronicunitalsocontainsaanaloguedigitalconvertertomakedataacquisitioneasier. Onmovingthefibrethroughafoam,thatwasproduced inanidenticalwayasforthemodifiedNibemmethod,an alternating signal corresponding to gas and liquid is obtained. If the speed of the probe is known (ca. 10 cms"1),thetimeintervalsofgasandliquidareameasure forthebubble-sizedistributioninthefoam.Eitherthe analogueorthedigital signalcanbeused tocalculate thebubble-sizedistribution. Withthecalculationofthebubble-sizedistributiona problem similar to the 'tomato salad' problem is to be solved.Theobservedone-dimensionalgaslengthsarenot equaltotheactualthree-dimensionalbubbleradiibecause a cross sectionofabubbleishardlyevermadethrough two polar ends. Furthermore, bubbles of large diameter have a greater chance of being pierced by the optical probe than bubbles of smaller diameter. A statistical method can be used to calculate the three-dimensional bubble-size distribution from the one-dimensional chord length distribution. Several methods are available for this purpose (Thang and Davies (1979), Kawakami et al (1988), Clark and Turton (1988), Ruan et al (1988)). A method described by Weibel (1980) was used here. The method makesuseof thegas fractionof the foam,which follows from the measurement of the upper level of the foam and the levelof the foam-liquid interface. Ifthe experiment iscarried out atconsecutive time intervals the rate of drainage, the collapse of the foam and the changes in foam volume are detected in addition to the evolutionofthebubble-sizedistribution. The results of the optical glass-fibre method were compared with a photographic method. In that case,the bubble-sizedistributionswereobtained bymeasuringand counting bubbles on a photograph taken through a glass wall. The photographic method has several disadvantages e.g. (i)theglasswallmight distort thebubbles, (ii) 109 the glass wall might enhance coalescence, (ill) the bubblesat theglasswall arenotrepresentative ofthe foambubbles,and(iv)themethodisverytimeconsuming. Althoughthephotographicmethod hasthesedisadvantages anorderofmagnitude comparison of bothmethodscanbe made. 8.4.Results Infigure8.2thedependenceoftheRudinfoamnumberon temperature is displayed for beer E. It can be clearly seenthatthefoamnumber,asmeasuredwiththismethod, increaseswithlowertemperatures. 340 f ° 320 m C 30O E r 280 ' - (i> 260 240 '• 220 • 200 ': 0 5 10 IS 20 temperature <°C) 25 30 Figure 8.2: The foam number asa function of the temperature measured with the Rudin tube. This is incorrespondence with expectations.With the Rudin tube drainage is measured. Because the rate of drainageisproportionaltobulkviscosity(Eq.[3.1])and becausebulkviscosityincreaseswithlowertemperatures, analmostlinearrelationshipbetweenthetemperatureand theRudin foam number canbeexpected. From thisresult theconclusioncanbemadethatthefoamnumberobtained 110 withaRudintubeverymuchdependsonthebulkviscosity ofthebeerunderinvestigationandonthetemperatureof themeasurement. 340 r t 0 a m n m b e r 0 > 300 0 / ...«" (s) 260 220 /o • - * ' ' 1.2 / 1.4 1.6 1.8 2 v i s c o s i t y (mNsm~2> 2.2 2.4 Figure 8.3: The foam number as a function of the viscosity, measured with the Rudin tube. The viscosity was adjusted with temperature (•••) and with dextran (—). Inordertoestablishwhethertemperatureisrelatedto theRudinfoamnumberbyitseffectonbulkviscosityonly or by its effect on other parameters as well, thebulk viscositywasalsoincreasedwithdextran.Thefoamnumber ofthesampleswasagainmeasuredwiththeRudintube.In figure 8.3 the results are given. As can be seen the relation between the foam number and thebulk viscosity shows a linear correlation when the bulk viscosity is variedbymeansofthetemperature.Thelinearrelationshipbecomes lesspronounced when thebulk viscosity is increasedbyaddingdextran.Inadditiontheslopeofboth linesisdifferent,givingevidencethatmoreparameters than only the bulk viscosity influences the rate of drainage. In addition, there is not a good correlation betweenthebulkviscosityandtheRudinfoamnumberwhen measuredwithdifferentbeersascanbeseenintable8.1. However,thelinesinfigure8.3 showmorethanenough similaritytoconcludethatthebulkviscosityofthebeer 111 is a very important parameter for the foam number determinedwiththeRudintube.Theobservationthatbeer foam is more stable at lower temperatures can thus be explained (seealsochapter6.3). Intable8.1thefoémnumbersobtainedwith7beersare displayed asmeasured with theNibemmeter andwiththe Rudintube,usingcarbondioxideandnitrogen.Inaddition thebulkviscosityofthebeersisgiven. Table 8.1:Foam numbers for various beers asdetermined with the Rudin tube with C 0 2 and N 2 and with the standard and modified Nibem foam stability tester. beer A B C D E F C Rudin C 0 2 Rudin N 2 (s) (s) 142 235 206 250 241 293 273 643 757 633 715 727 654 722 1 (mNsm"2) 1.21 1.34 1.34 1.29 1.34 1.34 1.32 Nibem modifiedNibem (s) (s) 175 215 224 254 278 137 92 108 165 163 176 285 422 Thereappearstobeaverylargedifferencebetweenfoam numbersdeterminedwithcarbondioxideandnitrogen.With nitrogen much higher foam numbers areobtained.Mostly, drainage and coalescence appear to occur in a nitrogen foam.Disproportionation willproceed very slow,because the solubility of nitrogen is low. In a carbon dioxide foamdisproportionation willcontribute significantly to the amount of liquid drainage, because gas diffusion proceeds rapidly as a result of the high solubility of carbondioxide.Consequently,muchlowerfoamnumbersare foundforcarbondioxidefoams.Apparently,disproportionationcontributesindirectlytodrainageandistherefore animportantprocessforthefoamnumberasmeasuredwith theRudintube.TheupperlevelofthefoamintheRudin tuberemainsthesameformostbeers.Therefore,coalescence does not seem to be an important process inbeer foam. The foam numbers, determined with the modified Nibem 112 foamstabilitytester,arelowerthanthenumberswiththe standard Nibem meter. This must be a consequence of the difference in bubble formation. The bubbles produced by the foam flasher are smaller than the bubbles produced with the porous glass filter. The difference may also be explained by a difference in gas composition. With the standard Nibem method the foam contains the original gas of the beer, whereas with the modified Nibem method purified carbon dioxide isused. Thebeersallhaveapproximately thesamebulkviscosity exceptbeerA and toalesserextent beer D. Thismust be one of the main reasons that the foam numbers for beer A are low compared to the foam numbers of theotherbeers. From the obtained foam numbers, in particular from the numbers obtained withtheRudintubeusing carbon dioxide and the standard Nibem method, it may be concluded that theoverall behaviorof the foamof beerA isverypoor. Beer B very rapidly collapses as can be concluded from the results obtained with both the standard and the modified Nibem foam stability tester. Even in the Rudin tube foam collapse can be observed for beer B. In the Rudintubetheupper levelof thefoamof theother beers remains almost atthe initial height.TheRudinnumber of beerB,measuredwithnitrogen,isextremelyhigh,meaning that coalescence does not contribute to the collapse of the foam toa largeextent.Therefore, therapid collapse measured, when carbon dioxide was used, must be a result ofgasdiffusion.ThefoamnumberofbeerB,obtained with thestandard Nibem foam stability tester ishigh compared to the number, obtained with the modified Nibem foam stability tester. This can only be explained if the original gas of beer B contains less soluble gas, that stabilizes the foam againstcollapse. The foam behavior of beer C is comparatively poor. In particular, thefoam number,obtained with theRudin tube using nitrogen, is lower than the foam numbers of the other beers.Thismustbearesultof coalescence and not of drainage, because the bulk viscosity of beer C is not lower than the bulk viscosity of the other beers. It 113 appearsthatinthefoamofbeerCmorecoalescenceoccurs thaninthefoamoftheotherbeers. The foam numbers of Beer D and E are rather normal, although the standard Nibem foam number for beer D is somewhatlow.Thismaybearesultofthecompositionof theoriginalgas.ThebulkviscosityofbeerDissomewhat lowerthanthebulkviscosityofbeerE. ThenumbersofbeerFarealsorathernormalalthoughit appears that more coalescence and less gas diffusion occursinthisfoamthaninthefoamsofbeerDandE. BeerGhasunusual high foamnumbersasmeasured with bothNibemmethods.Thiscanbeexplained bytheextreme highsurfacedilationalviscosity incompressionandthe abilitytoformbubbleghostsasexplainedinchapter5.5. AfterbeerGwasdegassed,thebeerwassomewhatturbid. Thisphenomenonwasnotobservedbyusingtheotherbeers. TheliquidofbeerGcancompletelydrainfromthefoamif thefoamisprotectedagainstcollapsebyacarbondioxide blanketontopofthefoam.Inthatcase,adry,aerated structure remains after drainage.Thecreaminessof the foambecomesvery lowand thecolorof the foambecomes grey-brownwithinashortperiodoftime.Thecollapseof thefoamisunevenandtheappearanceofthefoamisnot very attractive. In the case of beer G, the high foam numberscertainlydonotrepresentgoodfoambehaviorfrom aconsumerpointofview. Figure8.4showsthebubble-sizedistributionofafresh beer E foam generated by sparging nitrogen through a G2-glassfilterwithwelldefinedpores.Thefoamisalmost homodisperse directly after generation and the bubbles haveameanradiusofabout100pm (notethatthenumber ofbubblesisplottedonalogarithmicscale). Figure8.5showsthesamefoam,butthreeminuteslater. The bubble-size distribution has widened and the mean bubbleradiushasincreased.Mostimportantistheobservationthatnobubbleshavebecomesmaller,meaningthat disproportionationdidnotoccur. Usingcarbondioxideinsteadofnitrogenpracticallythe samebubble-sizedistributionisobtained directly after 114 generationofthefoam (figure8.6).Afterthreeminutes howeveracompletelydifferentpictureisobtained.Avery largenumberofsmallerbubblesthaninitiallypresentwas measured. From figure 8.7 it isclear that bubbleshave shrunkenasaconsequenceofgasdiffusionandthebubblesizedistributionhaswidenedmuchmorethanwhenthefoam containednitrogen.Itisevidentthatdisproportionation hastakenplace. 250 450 650 850 1050 RADIUS (xl0-Bm) Figure 8.4: Bubble size distribution of a nitrogen beer foam at t=0 min. 250 450 650 850 1050 RADIUS Ocl0-6m) Figure 8.6: Bubble size distribution of a carbon dioxide beer foam at t=0 min. 50 250 450 650 850 1050 RADIUS (xl0-6m) Figure 8.5: Bubble size distribution of a nitrogen beer foam at t=3 min. 250 450 650 850 1050 RADIUS (X10"B1) Figure 8.7: Bubble size distribution of a carbon dioxide beer foam at t=3 min. The distributions determined with the photographic method on the same foams are presented in figures 8.8-8.11. The discrepancy between the two methods is smallerthanappearsfromthedistributions,becausethe numberofbubblesisonalogarithmicscale.Ingeneral, somewhat larger bubbles are observed with the optical probemethod thanwiththephotographicmethod.Thismay bearesultofthefactthatlargerbubblesarenotseen attheglasswallwiththephotographicmethod,orbecause the optical probe method induces some coalescence. In 115 addition, the initial bubble-size distribution iswider whenmeasuredwiththeopticalglass-fibreprobemethod. Theexplanation forthisobservation ismostlikelythat thebubble-sizedistributionasmeasuredwiththeoptical glass-fibreprobemethodisarepresentationoftheentire foam, whereas the bubble-size distribution, measured photographically,givesthebubble-sizedistributionata specific foam height.All inall,theconclusion maybe drawnthatthedistributionsdeterminedwiththeoptical glass-fibre probe method and the photographic method, correspondqualitativelyandquantitativelyverywell. 6 w5 ai 4 ft Iff, CG 3 w CO x: ?6 E= S3 §H 250 450 650 850 RADIUS (Xl0- 6 m) Figure 8.8: Bubble size distribution of a nitrogen beer foam at t=0 min. 250 450 650 850 1050 RADIUS (Xl0-6m) Figure 8.10: Bubble size distribution of a carbon dioxide beer foam at t=0 min. -J 0 50 11 tju 650 850 RADIUSi k (H0-Bm) Figure 8.9: Bubble size distribution of a nitrogen beer foam at t=3 min. 250 450 650 850 1050 RADIUS (xl0-Bm) Figure 8.11: Bubble size distribution of a carbon dioxide beer foam at t=3 min. 8.5.Discussion Themeasurementof foambehaviorisnotasimpletask. Althoughitisnotdifficulttomeasuresomekindofbeer foam characteristic with one of the described, readily 116 1050 available, methods that have been developed within the lastdecades,theobtainedresultsmaybeverymisleading. Thesebeerfoamnumbers,ingeneral,donotgiveagood impressionofthefoambehaviorasitisassessedbythe consumer. The methods do not correlate with each other either.Apparently,onlypartofthetotalinformationis obtained.Agoodexampleofthelatterisgivenintable 8.1,whereseveralmethods,tocharacterizebeerfoam,are compared.Atthemost,atendency canbe found thatthe behavior of the foam increases from beer A to beer G. Although these beers are very extreme in their foaming behavior, the ranking for the beers is different for different methods. The main reasons are that; (i)with mostmethodsthefoamisnotproduced inthesamewayas in practice, and therefore the initial bubble-size distribution is different, (ii)in some methods beers are degassedpriortomeasurementand foamedwithagasofa different composition. In that case, effects of gas composition and concentration in theoriginal beerscan not be measured, (iii) the geometry of the measuring cylinderdoesnotcorrespondwiththepracticalsituation, (iv)forsomemethods,thecompositionofthesurrounding gasatmosphere isnotidenticalwiththenormaldrinking conditions.Inthatcase,thecollapsebygasdiffusionis notmeasuredcorrectly,althoughthisisthemainprocess forthebreakdownofthefoaminpractice, (v)theratio beertofoamisoftendifferent,resultinginadifferent depletion of surface active material, (vi)mostly, the temperature during the measurement is not the drinking temperature,(vii)lastbutnotleast,differentphenomena areobserved, e.g. drainageinsteadofcollapse. A better impression of the foam behavior is obtained when more sophisticated experiments arecarried out.In addition, to the rise of the foam-liquid interface and collapse the foam, the bubble-size distribution can be measuredasafunctionoftimetoobtainmoreinformation about the foaming behavior. Gasses with a different solubility, preferentially nitrogen and carbon dioxide, canbeusedtodiscriminatebetweendifferentprocessesas 117 described.Additionally,theviscosityofthebeercanbe measured tofindoutwhetheradistinctivebehaviorofa foamcanbeexplainedbyadifferenceindrainagerateor bytheprogressofotherprocesses.Ifatypicalbehavior isfound,thatcannotbereadilyexplained,thecompositionofthedissolvedgasinthebeermayberesponsible. Therefore,foamcharacteristicswiththe"natural"gasand thegascompositioncanbemeasured.Ifalltherelevant experimentsarecarriedoutacompleteimpressionoffoam characteristicscanbeobtained. Nevertheless,itremainsdifficult tomakeaquantitativedistinctionbetweenthedifferentphysicalprocesses occurring inthe foam.Thequantitative distinction can notbegivenbecausethefourphysicalprocesses,bubble formation, drainage, coalescence and disproportionation areinterrelated.Theinterrelationsarecomplicated. Theinitialbubble-sizedistributioninfluencestherate ofdrainage,coalescenceanddisproportionation.Drainage willproceedslowerifsmallerbubblesarepresentbecause therearemoremotionlesssurfacestoslowdowndrainage. Whensmallerbubblesarepresentcoalescencewillnotbe asdestructiveaswhenlargerbubblesarepresent,because there aremuchmore filmstorupture.Theeffect ofthe initialbubble-sizedistributionongasdiffusionfromthe top layerof the foam tothesurrounding atmospherehas beendiscussedbeforeinchapter6.5;afoamwithsmaller bubbles ismore stable against outward gasdiffusion.A wide bubble-size distribution will enhance disproportionation inside the foam, because the Laplace pressure differences in that case are larger. As a result of drainagethefilmthicknessbetweenthebubblesdecreases withtime,andthisingeneralresultsinfasterdisproportionation and more coalescence. If coalescence or disproportionation occurmoredrainagewillbeobserved. Inaddition,coalescencewill acceleratedisproportionation because, owing to coalescence, the bubble-size distribution becomes wider and the Laplace pressure differencesincrease.Furthermore,disproportionationmay enhancecoalescence.Asaconsequenceofdisproportiona- 118 tion film rearrangements in the foam may lead to an increaseincoalescence. These are only a few of the possible interrelations between bubble formation, drainage, coalescence and disproportionation.Becauseoftheseinterrelationsitis impossible to distinguish between these processes in a quantitative way. However,agood qualitative orevena semi-quantitativedistinctioncanbemade. Themeasurementoftheevolutionofbubble-sizedistributionsinfoamswithgassesofdifferent solubilitycan makeacontributiontoaspecifieddeterminationoffoam characteristics.Therefore,theopticalglass-fibreprobe techniquemaycontributetotheassessmentoffoamcharacteristics.Forbeerfoamitisagoodworkingmethodthat givesrapidandconclusiveinformationabouttheprogress ofthefourphysicalprocesses.Inaddition,themethodis comparativelyeasytooperate. References Agnihotri, A.K., Lemlich, R., J. Colloid and Interface Sei.84(1):42 (1981). Bamforth,C.W.,J.Inst.Brew.91:370 (1985). Bishop,L.R.,Whitear,A.L.,Inman,W.R., J. Inst.Brew. 81:131 (1975). Blom,J.,PetitJ.Brass.42:388 (1934). Chang,K.S.,Lemlich,R., J. Colloid and Interface Sei. 73(1):224 (1980). Clark,N.N.,Turton,R.,Int.J.MultiphaseFlow14(3):413 (1988). Datye,A.K.,Lemlich,R.,Int.J.MultiphaseFlow9(6):627 (1983). DeClerk,J., DeDijker,G.,EBCProc.Copenhagenpp.43 (1957). DeVries,A.J., "Morphology,CoalescenceandSizeDistributionofFoamBubbles."In:AdsorptiveBubbleSeparation Techniques.Ed:R.Lemlich,Ac.Press,N.Y.London,pp.7. 119 (1972). Frijlink, J.J., van Halderen, P.A., Hofmeester J., Warmoeskerken,M.M.CG.,I2-procestechnologie3:19 (1986). Frijlink, 3.3., Physical Aspects Of Gassed Suspension Reactors,PhD.Thesis,TechnicalUniversityDelft,Netherlands(1987)pp.119. Glenister,P.R., Segel,E.,ASBCProc.pp.55.(1964). Glenister,P.R., Segel,E,.Koeppl,K.G.,ASBCProc.pp. 150. (1966). Hudson, J.R., Development of Brewing Analysis 1st ed. London (1960). Jackson,G.,Bamforth,C.W.,J.Inst.Brew.88:34 (1980). Kawakami,M.,Tomimoto,N.,Kotazawa,Y.,Ito,K.,Trans. Iron.Steel.Inst.Jpn.28(4):271 (1988). Klopper,W.J.,J.Inst.Brew.60:217 (1954). Klopper,W.J.,EBCProc.Salzburgpp.363 (1973). Klopper,W.J.,TheBrewersDigest52(1):51 (1977). Klopper,W.J.,Vermeire,H.A.,Brauwissenschaft30(9):276 (1977"). Klopper,W.J.,Vermeire,H.A.,Voedingsmiddelentechnologie 10(3):7 (1977b). Lemlich,R., Ind.Eng.Chem.Fundam.17(2):89 (1978). Lewis,D.A.,Nicol,R.S.,Thompson,J.W.,Chem.Eng.Res. Des. 62:334 (1984). Nishioka, G., Ross, S., J. Colloid and Interface Sei. 81(1):1 (1981). Nishioka, G., Ross, S., Whitworth, M., J. Colloid and InterfaceSei.95(2):435 (1983). Nishioka,G.M.,Langmuir2:649 (1986). Piendl,A,Legat,H,Brauwissenschaft33(2):32 (1980). PierceJ.S.,Purseil,J.R.,EBCCongr.proc.7th.Romepp. 246. (1959). Plank,H.,PhDThesis,THMünchen-Weihenstephan. (1963). Princen, H.M., J. Colloid and Interface Sei. 91(1):160 (1983). Ranadive,A.Y.,Lemlich,R,J.ColloidandInterfaceSei. 70(2):392 (1979). Rasmussen,N.J.,CarlsbergRes.Commun.46:25 (1981). Rieser,L.A., Lemlich,R.,J.Colloidand InterfaceSei. 120 123(1):299 (1988). - Rosendal,I.,Rasmussen,N.J.,MBAATech.Quart.19(4):153 (1982). - Ross, S., Clark, G.L., Wallerstein Lab. Commun. 6:46 (1939). - Ross,S., Cutillas,M.J., J. Phys.Chem. 59:863 (1955). - Ross,S., Suzin,Y, Langmuir 1(1):145 (1985). - Ruan,J.Z.,Litt,M.H.,Krieger,I.M.,J.Colloid Interface Sei. 126(1):93 (1988). - Rudin,A.D.,J. Inst.Brew. 63:506 (1957). - Savel,J., Basarovâ,G.,MonatschriftfürBrauwissenschaft 6:249 (1989). - Segel,E,Glenister,P.R., Koeppl,K.G.,Tech.Quart.MBAA 4:104 (1967). - Selecki, A., Wasiak, R., J. Colloid Interface Sei. 102(2):557 (1984). - Thang, N.T., Davis, M.R., Int. J. Multiphase Flow 5:17 (1979). - Ullmann, F., Brauerei Rundschau 93(12):249 (1982). - Wackerbauer, K., Greif, H., Brauwissenschaft 33(4):123 (1980). - Waniska, R.D., Kinsella, J.E., J. Food. Sei. 44:1398 (1979). - Weibel, E.R., Estimation of Particle Size Distribution from Measurements of Intercept Lenght on a Random Line. In: Stereological Methods, Vol. 2. Ed: Academic. Press N.Y. London,pp. 215. (1980). - Weyh,H.,MonatschriftfürBrauwissenschaft,3:108 (1987). - Weyh, H., Monatschrift für Brauwissenschaft, 11:441 (1988). - Wilson, P.J., Mundy,A.F.,J. Inst.Brew.90:385 (1984). 121 9.CONCLUSIONS The appearance of the foam is one of the important aspects of beer quality. The appearance of the foam is foremostdeterminedbytheprogressoffourphysicalprocesses,i.e.bubbleformation,drainage,coalescenceand disproportionation. Bubble formation is an important process because it initiallydeterminescreaminess,theamountof foam,the bubble-size distribution in the foam, the bubble wall compositionandthegascompositionthroughout thefoam. Bubble formation depends on beer properties, like the dynamic surface tension under expansion conditions, the wettingproperties,thegascontentandthegascomposition.Thisprocessalsodependsontheconditionsduring thedispenseofthebeer.Averyeffectivewaytoimprove beerfoambehaviorisbydispensingthebeerinsuchaway thatsmallcarbondioxidebubblesareformed.Inaddition, apropercontrolofthegascompositionandthetemperature is essential. Large hydrodynamic shear forces and small nucleation siteswith good wetting propertiesmay contributetotheformationofsmallbubbles.Theentrapment of air during the dispense of the beer should be avoided. The bubble formation process isvery important forfoambehaviorbecausetheinitialfoampropertiesvery much influence theprogress of thethree other physical processes. Drainage and disproportionation appear to be themost importantprocessesforthedisappearanceofthefoam.The drainagerateismainlydetermined bybulkviscosityand thereforethetemperatureofthebeerisoneofthemain parameters,thatinfluencesthebehaviorofthefoam.For disproportionationtwodifferentsituationscanbedistinguished. If gasdiffusion occurs inside the foam, large bubbles grow at the expense of smaller bubbles. This coarsening process proceeds rapidly as shown in chapter 8.4.Ifgasdiffusesfromthetoplayerofthefoamtothe surrounding atmosphere, the foam collapses.This isthe 122 mostimportantprocessforthebreakdownofthefoam.If thisdiffusionprocesscanbesloweddownforjustasmall periodoftimeforeachbubblelayer,thefoamwilllast muchlonger.Thisisaresultofthefactthatthewhole diffusionprocesselapsesinatimethatisequaltothe sum of the time required for each bubble layer in the foam. Improvement of the stability of the foam against collapse can be made effectively by nitrogenation as explainedinchapter6.5.Gasdiffusioncanalsosignificantly be slowed downby surfaceviscosity. The surface tensionincompressionmustbelowinordertodecelerate gasdiffusion,becausetheLaplacepressureisthedriving forceforgasdiffusionifthegascompositionthroughout the foam isuniform. The formation of insoluble surface layersincompressionappearstogohandinhandwiththe decreaseofthesurfacetension.However,forthedecelerationofgasdiffusion,alowsurfaceviscosityisless effective than nitrogenation. In addition, the initial bubble-size distribution is important. A narrow initial size distribution of small bubbles is in favor of good foambehavior. Coalescencedoesnotcontributetothecollapseofbeer foamtoalargeextentundernormalconditions.However, coalescencebecomesaverydominatingprocessifexternal spreading material is added to beer foam. Dirty beer glasses or consumer lips may be a source of spreading material, that can initiate coalescence. The effect on beerfoambehaviorcanbedisastrousfortheappreciation oftheconsumer.Normally,acollapsed foammaystillbe appealingbecauseamonolayerofsmallbubblesremainson topofthebeer.Ifcoalescencetakesplacethebeerlooks completelyflat.Theonlywaytoavoidcoalescencebythe spreading mechanism appears to be to avoid spreading. Therefore, the beer must have a low surface tension in expansion. However, beers have very similar surface rheological behavior inexpansion, especially at higher expansion rates. Therefore, beer foam will remain very susceptibleforspreadingmaterial. 123 LIST OF SYMBOLS Roman symbols a = drained beer volume [m 3 ] A = area [m 2 ] b =beervolume ina foam =drained beervolume in90 s [m 3 ] B2 = total drained beer volume [ml] c = activity [ m o l e m"3] Ci = activity ofcomponent i [ m o l e m"3] d = thickness of the spread layer =volume/surfacemean diameter [m] dlnA/dt = relativedeformation rate [s"1] (dlnA/dt^ =dlnA/dt at inflection point [s"1] m [mV1] ID, =diffusion coefficient = IDofcomponent i F = force [N] FFV = Foam Flashing Value [-] g HRV = gravity = head retention value [ms" 2 ] k [s"1] m = constant = fraction of gas iinthe atmosphere = slit length =powerlaw parameter [-] n =powerlaw parameter [-] = amount of gasi [mole] = total amount of gas [mole] K 1 n tot [ml] [m] [mV1] [s] [-] [m] 0 =perimeter ofbubble attachment [m] P P =penetration depth [m] [Nm"2] Pc = atmospheric pressure =capillary pressure Pi =partial pressure of gas i [Nm" 2 ] Ptot [Nm"2] Pi = total pressure =pressure inbubble1 p2 Q =pressure inbubble 2 = flow rate [Nm"2] r = radius [m] r„ = bubble radius at t =0 [m] = bubble radius att =t [m] 124 [Nm"2] [Nm"2] [m 3 s" 1 ] =radiusof bubble1 m] =radiusof bubble 2 m] R = initial radiusof a droplet m] R =gas constant Jmole^K"1] S =gas solubility m o l e m" 3 ] Si =gas solubility ofcomponent i m o l e m" 3 ] t = time s] *% =half-life time s] t«, =critical drainage time s] T = temperature K] u =bursting velocity ms"1] v = velocity ras-1] v0 = initial velocity ms-1] V =bubble volume m3] =bubblevolumeatplateau value m3] v0 w0 wt =bubblevolume att =0 m3] =weight ofbeer foam at t =0 m] =weight ofbeer foam at t =t m] z =diffusion distance m] Greek symbols = Mach a n g l e -] =bulk viscosity Nsm" 2 ] = surfacedilational viscosity Nsm" 1 ] TT =disjoining pressure Nm" 2 ] f a = density kgm" 3 ] = surface tension Nm" o,dyn =dynamic surface tension Nm" ae =equilibrium surface tension Nm" a °i =o at inflection point Nm" °o =o intheoil phase Nm" = interfacial tension oil-water Nm" = spreading tension Nm" = a in thewater phase Nm" o„ = foam characteristic (Eg. [8.3]) s] e = film thickness m] ec = initial film thickness m] ec =critical film thickness m] i =topology factor m] 125 SUMMARY Thefoamingbehaviorisoneofthemainqualitycharacteristicsofbeer.Theappearanceandbehaviorofthefoam has to be in accordance with the expectations of the consumer. The foam characteristics of beer foam are determined by the progress of four physical processes, viz. bubble formation,drainage,coalescenceanddisproportionation. Inbeerfoamtwokindsofbubblesareinitiallypresent. The first kind of bubbles is formed by heterogeneous nucleation from the supersaturated beer solution. These beer bubbles are comparatively small and contain carbon dioxide. Homogeneous nucleation does not take place in beer,becauseanenormoussupersaturationwouldbenecessaryforthespontaneousformationofbubbles.Thesecond kindofbubblesisformedinbeerbyairentrapmentduring the dispense of the beer. These bubbles are in general largerthanthecarbondioxidebubblesandcontainair. Drainageoccursinbeerfoam.Therateofdrainageisa resultofacomplexinterplayofgravity.Plateauborder suction,geometry aspects and balancing parameters.The parameters that slowdowndrainage arebulk and surface viscosity. Coalescence in beer foam can be caused by externally added lipid components. The two mechanisms that may be responsible for this phenomena are thehydrophobicparticlemechanism andthespreadingmechanism.Anumberof parameters can be used to distinguish between these mechanisms. In the case of the hydrophobic particle mechanismthesizeofalipiddropletthatinitiatesfilm rupture must be at least equal to the film thickness, whereas the droplets may be smaller in the case of the spreadingmechanism. Inaddition,thespreadingparticle mechanism canonly work when the spreading condition is met.Therefore,thecompositionofthelipiddropletand theprevailing,dynamicsurfacetensionofthefilmmust allow spreading.Theviscosity of the film liquid isan important parameter todistinguish between the two film 126 rupture mechanisms, because at a higher bulk viscosity coalescence is more easily initiated by the spreading mechanism andmoredifficultbythehydrophobicparticle mechanism. A falling film apparatuswas used toexamine thestability of a freefalling beer film under various conditions.Emulsionsofdifferentcompositionanddroplet-size distribution were added to stable free falling beer films.Some emulsionscaused hole formation inthe falling film. The number of holes formed in the film dependedondropletsizeanddropletcomposition.Droplets ofapproximately thesamesizeasthefilmthicknesshad to be put in the beer and a certain minimum amount of emulsifier had to be added to the emulsion in order to cause hole formation.A number of spreading experiments andvarioussurfacerheological experimentswerecarried outinordertostudytherelationbetweenthespreading of surface active material and the (dynamic) surface tension. A good correlation between the spreading of surface active material and hole formation in the free falling filmwasfound.After sometimeofoperationthe droplet-sizedistributionoftheaddedemulsionappeared toshifttosmallerdropletswhenholeswereformedinthe falling film. An increase of the bulk viscosity of the beer resulted in an enormous increase of the number of holesthatwereformedinthefilmperunitoftime.Thus, from these results arguments in favor of the spreading mechanismwereobtained. Theradius-versus-timecurvesofbubbles,thatshrinkas a result of gas diffusion, often showed an inflection point. Therefore,theeffect of thegascomposition inandoutsidethebubblesandtherheologicalaspectofthe bubble surface on the rate of disproportionation was examined.Agasdiffusionmodelwasdeveloped,including thepossiblepresenceofgaseswithdifferentsolubilities andincludingapowerlawthatdescribesthedependenceof thesurfaceviscosityonthesurfacedeformationratein compressionandexpansion.Experimentswerecarriedoutto measure anumber of surface rheological aspects incompression. The dissolution rateof bubbles wasmeasured. 127 Largepartialpressuredifferencesappeartodictatethe rateofdisproportionation.Additionally, thesolubility ofthepresentgasesdeterminesthegasdiffusionrateto a largeextent.When thegascomposition throughout the foam isuniform therateofdisproportionation isdeterminedbythesurfacedilationalviscosity ofthebubble. Experimentalresultsareverymuchinagreementwithmodel calculations, unless an insoluble skin formation takes place atthebubble surface asaconsequence of surface compression. As a result of insoluble skin formation, bubbleghostsmaybepresentinbeerafterfoaming. Severalbeerfoamphenomenacan,atleastqualitatively, be explained with the knowledge of the four physical processes. The creaminess of the foam, the rise of the foam-liquid interface,theinfluenceoftemperature,the coarseningofthefoam,foamcollapse,cling,theinfluenceofairentrapmentandtheinfluenceofthecomposition of beer aredescribed. Thedisappearance of the foam is mainly caused by liquid drainage and gas diffusion from thetoplayerofthefoamtothesurroundingatmosphere. Only when externally added spreading material initiates filmrupture,coalescencecontributestofoamcollapse. Because there are so many beer foam phenomena and properties, anoverall foam stability number cannot be given. Consequently, different methods must be used to measuredifferentfoamphenomenainordertofullycharacterize beer foam behavior. A newly developed optical glass-fibreprobetechniquewasusedtomeasurethebubble sizedistribution,theheightofthefoamandthelevelof thefoam-liquidinterfaceasafunctionoftime.Withthis techniqueandtheuseofgasesofdifferentsolubilitya qualitative distinction can be made between the four physicalprocesses. 128 SAMENVATTING Hetgedragvan het schuim iséénvande belangrijkste kwaliteitskenmerkenvanbier.Hetuiterlijkenhetgedrag vanhetschuimmoetenzijnzoalsdatdoordeklantwordt verwacht.Hetschuimgedragwordtbepaalddoorhetverlopen vanvier fysischeprocessen.Dezeprocessenzijnbellenvorming,drainage,coalescentieendisproportionering. In pas gevormd bierschuim komen twee soorten bellen voor. De eerste soort bellen ontstaat door heterogene kiemvorming in een oververzadigd bier.Deze bellen zijn betrekkelijk klein en bevatten koolzuur. Homogene kiemvormingvanbellenkomtinbiernietvooromdateenenorme oververzadiging nodig isvoorspontanebellenvorming.De tweede soortbellen inbier ontstaat door de inslagvan lucht tijdens het inschenkenvanbier.Deze bellen zijn inhetalgemeengroterdandekoolzuurbellenenbevatten lucht. Desnelheid,waarmeedrainageplaatsvindtinbierschuim, ishetresultaatvaneeningewikkeldewisselwerkingtussen dezwaartekracht,dezuigingvandePlateauzomen,compenserendeparametersengeometrischeaspecten.Deparameters die drainage tegenwerken zijn o.a. de oppervlakte- en bulkviskositeit. Coalescentieinbierschuim kanwordenveroorzaaktdoor van buiten toegevoegde, vetachtige deeltjes. De twee mechanismen, die verantwoordelijk kunnen zijn voor dit verschijnsel, zijn het hydrofobe deeltjes mechanisme en hetspreidingsmechanisme.Eenaantalparameterskanworden onderzocht om onderscheid te kunnen maken tussen deze mechanismen. In het geval van het hydrofobe deeltjes mechanisme moet de diameter van het deeltje minstens gelijkzijnaandefilmdikte,terwijlhetdeeltjekleiner magzijninhetgevalvanhetspreidingsmechanisme.Daar komt nog bij dat aan de spreidingsconditie moet worden voldaan om het spreidingsmechanisme te laten werken. Daarom moet de deeltjessamenstelling en de heersende, dynamische oppervlaktespanning dusdanig zijn dat het spreiden van oppervlakte-aktief materiaal kan optreden. 129 Ookdeviskositeitvandefilmvloeistofiseenbelangrijke parameter waarmee onderscheid kan worden gemaakt tussen beide mechanismen, omdat bij een hogere viskositeit filmbreukmakkelijkerkanwordenveroorzaaktinhetgeval van het spreidingsmechanisme en moeilijker inhetgeval vanhethydrofobedeeltjesmechanisme.Eenvallendefilm apparaat werd gebruikt om de stabiliteit van een vrij vallende bierfilm te onderzoeken onder verschillende condities.Emulsiesvanverschillendesamenstellingenmet eenverschillendedeeltjesgrootteverdeling werdenaande stabiele vallende bierfilm toegevoegd. Sommige van die emulsiesveroorzaaktengatvormingindevallendefilm.Het aantalgatendatwordtgevormdindefilmisafhankelijk van de grootte en de samenstelling van de deeltjes. Druppels van ongeveer dezelfde grootte alsde filmdikte moesten aanhet bierworden toegevoegd om gatvorming te veroorzaken. Bovendien moest aande druppels een zekere hoeveelheid emulgator worden toegevoegd. Een aantal spreidingsproeven en oppervlaktereologische experimenten werd uitgevoerd om het verband tussen het spreiden van oppervlakte-aktiefmateriaalendedynamischeoppervlaktespanning tebestuderen. Eengoede correlatie tussenhet spreidenvanoppervlakteaktiefmateriaalenhetoptreden vangatvormingindevrijvallendefilmwerdgevonden.De deeltjesgrootteverdeling van de toegevoegde emulsies blekenteverschuiveninderichtingvankleineredeeltjes wanneer gaten werden gevormd in de vallende film. Een verhogingvandebulkviskositeitvanhetbierresulteerde ineensterketoenamevanhetaantalgatenindevallende film per tijdseenheid. Het coalescentiemechanisme in bierschuim, dat optreedt wanneer vetachtige componenten vanbuitenafwordentoegevoegd,blijktdushetspreidingsmechanismetezijn. De straal-tegen-tijdcurvesvan bellen die krimpen als gevolgvandisproportioneringvertonenvaakeenbuigpunt. Daaromisdeinvloedvandegassamenstellinginenbuiten debellenendeinvloedvandereologischeeigenschappen van het beloppervlak op de disproportioneringssnelheid onderzocht.Eengasdiffusiemodelwerdontwikkeld,waarbij 130 rekening is gehouden met de mogelijke aanwezigheid van tweegassenmeteenverschillendeoplosbaarheidenwaarbij een machtwet is gebruikt om de afhankelijkheid van de oppervlaktedilatatieviskositeitvandevervormingssnelheid in zowel compressie als expansie tebeschrijven. Enkele experimenten zijn uitgevoerd om een aantal oppervlaktereologischeaspectenincompressietebepalen.Desnelheid waarmeebellenoplossenwerdgemeten.Partiëlegasdrukverschillenblijkendedisproportioneringssnelheidinbelangrijkematetebepalen.Bovendienisdeoplosbaarheidvan deaanwezigegassenbepalendvoordegasdiffusiesnelheid. Wanneer degassamenstelling inhet gehele schuim gelijk iswordt de disproportioneringssnelheid bepaald door de oppervlaktedilatatieviskositeit vandebel.Deverkregen experimenteleresultatenkunnengoedwordenbeschrevenmet modelberekeningentenzijinhetbeloppervlakeenonoplosbare laag wordt gevormd door de oppervlaktecompressie. Wanneer onoplosbare lagen worden gevormd tijdens de compressie van het bieroppervlak kunnen "bubbleghosts" inbiervoorkomennadathetbierheeftgeschuimd. Verschillendeverschijnselendievoorkomeninbierschuim kunnenwordenverklaard metbehulpvandekennisvande vier verschillende fysische processen. De romigheid van hetschuim,hetoptrekkenvanhetvloeistof-schuimgrensvlak,deinvloedvandetemperatuur,hetvergrovenvanhet schuim,hetinzakken,cling,deinvloedvandeinslagvan luchtendeinvloedvandesamenstellingvanhetbieris beschreven.Hetverdwijnenvanhetschuimblijktvooralte komen door drainage en gasdiffusie vanuit de bovenste bellenlaag van het schuim naar de atmosfeer boven het schuim. Alleen wanneer vetachtige componenten, die van buitenafwordentoegevoegd,hetbrekenvanfilmsveroorzaken,draagtcoalescentiewezenlijkbijtothetinzakken vanhetschuim. Omdater zoveelverschillendeverschijnseleneneigenschappenvanbierschuimzijn,ishetnietgoedmogelijkom destabiliteitvanschuiminééngetaluittedrukken.Dit heefttotgevolgdatverschillendemethodesmoetenworden gebruikt en verschillende verschijnselen moeten worden 131 gemeten om het schuimgedrag volledig te karakteriseren. Eenoptischeglasvezelkabeltechniekisgebruiktombellengrootteverdelingeninschuim,dediktevandeschuimkraag endehoogtevanhetvloeistof-schuimgrensvlak tebepalen alsfunctievandetijd.Metgassen,dieeenverschillende oplosbaarheid hebben, is een kwalitatief onderscheid gemaakttussendevierverschillendefysischeprocessen. 132 CURRICULUMVITAE A.D.Ronteltapwasbornonthe12thofNovember1957in Pladju,Indonesia.HewasraisedinHollandwherehe graduated fromhighschoolin1976.Afterspendingone yearatthe"VrijeHogeschool"inDriebergen,hestarted tostudyFoodTechnologyattheAgriculturalUniversity inWageningenin1977.Inthefinalyearsofhisstudy hespecialized inFoodchemistry,Biochemistryand ProcesTechnology.Aftergraduatingin1985,hestarted theresearchworkonbeerfoamofwhichthisthesisis thefinalresult. 133
© Copyright 2026 Paperzz