Physics 170 - Mechanics Lecture 12 Strings & Springs Pulleys and Ropes An ideal pulley is one that simply changes the direction of the tension: Pulleys Strings and ropes often pass over pulleys that change the direction of the tension. In principle, the friction and inertia in the pulley could modify the transmitted tension. Therefore, it is conventional to assume that such pulleys are massless and frictionless. Example: Connected Masses A block of mass m1 is connected by a string and pulley to a hanging mass m2. Find the acceleration a and string tension T. 1 2,y 1 T2 - m22g = - m2a 2 T2 =T1 Translational Equilibrium A person lifts a bucket of water from the bottom of a well with a constant speed v. Because the speed is constant, the acceleration must be zero, and the net force on the bucket is zero, so T1 = W. . Springs Stretching a Spring The unloaded spring has a length L0. Hang a weight of mass m on it and it stretches to a new length L. Δs=L-L0 vs. the applied force Fsp=mg. We find that Fsp=kΔs, where k is the “spring constant”. Hooke’s Law for Springs force increases linearly with the amount the spring is stretched or compressed: The constant k is called the spring constant. k has units of N/m or kg/s2. Hooke’s Law The linear proportionality between force and displacement is found to be valid whether the spring is stretched or compressed, and the force and displacement are always in opposite directions. Therefore, we write the forcedisplacement relation as: Spring Forces The force always opposes the compression or extension of the spring.
© Copyright 2026 Paperzz