Introduction to spin polarized tunneling Karthik V. Raman TIFR Centre for Interdisciplinary sciences (TCIS) TIFR Hyderabad Quantum Nature of Electrons Courtesy: J.M.D. Coey Magnetic moments associated with the electron Magnetic moments associated with the electron An electron orbiting a nucleus constitutes a current lo m An electron orbiting a nucleus constitutes a current loop with a me magnetic moment given by m A = current, A = loop area × e = -ev/2p r gives l = m er × v and l g = gyromagnetic ratio m = g ll =-(e/2me)l µl ħ µB=eħ/2me=Bohr magneton ħ µ Orbital g-factor =1 l is quantized; lz = mlħ mz = -glµBml The intrinsic spin angular momentum likewise gives rise to an intrinsic magnetic moment: ms = g ss = -(e/me)s ħ µ msz= -gsµBms, Spin g-factor = 2.0023 s is quantized; sz = msħ g s = 2g therefore spin angular momentum is twice as effective as orbital angular momentum in creating a magnetic moment. fi – The interaction energy of a moment m with a magnetic field B is – m.B Thus the general Zeeman interaction Hamiltonian for an electron is µ ħ Hz = (µB/ħ)(l + 2s).B Courtesy: J.M.D. Coey Spin-orbit interactions Interaction energy 1. Important for heavier atoms and inner shells 2. Lanthinide and Actenide series possess high SO coupling strength Ferromagnetism in metals s • Creation of crystal lattice leads to overlap and broadening of valence electrons • Band formation leads to larger bandwidth for s-electrons • d-bands are relatively localized compared to s-bands • Magnetism arises due to exchange splitting of the d-bands ~ 1eV d ΔEex Stoner criterion for itinerant ferromagnetism Magnetic Periodic Table 1H 2 He 4.00 1.00 66Dy Atomic Number 3 Li 4 Be 6.94 1 + 2s 0 9.01 2 + 2s0 11Na Atomic symbol Atomic weight 162.5 3 + 4f9 179 85 Typical ionic change Antiferromagnetic TN (K) 5B 6C 7N 14.01 8O 16.00 9F 10Ne 10.81 12.01 19.00 20.18 12Mg 13Al 14Si 22.99 1 + 3s0 24.21 2 + 3s0 26.98 3 + 2p6 28.09 30.97 32.07 17Cl 18Ar 35.45 39.95 19K 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn 31Ga 32Ge 33As 34Se 35Br 36Kr 38.21 1 + 4s 0 40.08 2 + 4s0 44.96 3 + 3d0 47.88 4 + 3d0 50.94 3 + 3d2 52.00 3 + 3d3 312 55.85 2 + 3d5 96 55.85 3 + 3d5 1043 58.93 2 + 3d7 1390 58.69 2 + 3d8 629 63.55 2 + 3d9 65.39 2 + 3d10 69.72 3 + 3d10 72.61 74.92 78.96 79.90 83.80 37Rb 38Sr 39Y 40 Zr 41Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 85.47 1 + 5s 0 87.62 2 + 5s0 88.91 2 + 4d0 91.22 4 + 4d0 92.91 5 + 4d0 95.94 5 + 4d1 101.1 3 + 4d5 102.4 3 + 4d6 106.4 2 + 4d 8 107.9 1 + 4d10 112.4 2 + 4d10 114.8 3 + 4d10 118.7 4 + 4d10 51 Sb 52 Te 121.8 127.6 126.9 83.80 55Cs 56Ba 57La 72Hf 73Ta 74W 75Re 76Os 77Ir 78Pt 79Au 80Hg 81Tl 82Pb 83Bi 84Po 85At 86Rn 13.29 1 + 6s0 137.3 2 + 6s0 138.9 3 + 4f0 178.5 4 + 5d0 180.9 5 + 5d 0 183.8 6 + 5d0 186.2 4 + 5d3 190.2 3 + 5d5 192.2 4 + 5d5 195.1 2 + 5d8 197.0 1 + 5d10 200.6 2 + 5d10 204.4 3 + 5d10 207.2 4 + 5d10 209.0 209 210 222 87Fr 88Ra 89Ac 223 226.0 2 + 7s0 227.0 3 + 5f0 61Pm 62Sm 63 Eu 64Gd 65Tb 66Dy 67Ho 68Er 69Tm 70Yb 71Lu 157.3 3 + 4f 7 292 158.9 162.5 3 + 4f 8 3 + 4f9 229 221 179 85 164.9 3 + 4f 10 132 20 167.3 3 + 4f 11 85 20 168.9 3 + 4f12 56 175.0 3 + 4f 14 Ferromagnetic TC (K) 35 58Ce 59Pr 140.1 4 + 4f 0 13 140.9 3 + 4f2 90Th 91Pa 232.0 4 + 5f 0 231.0 5 + 5f0 97.9 60Nd 144.2 3 + 4f3 19 92U 238.0 4 + 5f2 145 150.4 3 + 4f5 105 93Np 94Pu 238.0 5 + 5f 2 244 152.0 2 + 4f7 90 95Am 96Cm 97Bk 243 247 247 98Cf 251 15P 16S 53 I 173.0 3 + 4f13 99Es 100Fm 101Md 102No 103Lr 252 257 259 258 Nonmetal Diamagnet Ferromagnet TC > 290K Metal Paramagnet Antiferromagnet with TN > 290K Magnetic atom Antiferromagnet/Ferromagnet with TN/TC < 290 K Radioactive BOLD 54Xe 260 Courtesy: J.M.D. Coey Courtesy: J.M.D. Coey Fermi Surfaces (k-space) • In Free electron model, the electronic states i.e. k points are uniformly distributed along kx,ky and kz direction. • Fermi surface is a sphere • Introduction of lattice potential breaks this symmetry & Fermi surfaces are anisotropic in k-space and also spin-dependent http://www.phys.ufl.edu/fermisurface/ Fermi surfaces in Ferromagnets bcc- Fe (majority) bcc- Fe (minority) hcp- Co (majority) fcc-Ni (majority) hcp- Co (minority) fcc-Ni (minority) Band structures of Ni, Co and Fe showing the position of Fermi level Ni 1422 emu/cc 484 emu/cc Large d band DOS at EF for Ni 1714 emu/cc Tat-Sang Choy et al., JAP 86 562 (1999) M. Zeise and M. J. Thorton (Eds.), Spin electronics, (2001) Mott’s two current model Spin-disorder scattering Current J=J +J Js= J - J Assumptions E • Spin-flip transitions are neglected • Conduction is almost by means of s-electrons, they have low effective mass than d-electrons EF Density of states N(E) Sub-band contributions to spin polarization density of states n n d s conductance High negative polarization i n n Pn n n i Low positive spin polarization i i Pnv2 i i i j,FMa nj vF,2t j j Separate currents j=s,p,d effective mass me and Fermi velocity play an important role s-band: large bandwidth (M. B. Stearns, JMMM 5,167 (1977) what states decay fastest s-like, d-like, etc d-band: localised compared to s-band s - d hybridization: Itinerant electrons in ferromagnetism of 3d metals s-like conduction electrons : positively polarized Butler et al, (2001); Tsymbol et al (1997); Oleinik et al (2000); Mathon and Umerski (2001) Courtesy: J.M.D. Coey Evolution of spintronics P. M. Tedrow, R. Meservey, PRL 26, 192 (1971). He3 cryostat, upto 5T field Robert Meservey Paul Tedrow • Studying superconductivity in thin films of Pb (bulk Tc 7.2K) and Al (bulk Tc 1.2 K) • Performing conductance studies in metal/insulator/ superconductors and SC/insulator/SC junction devices Base temperature, 300 mK Tunneling….. E x VB VB-Ex Ex simple potential barrier d How to realize tunneling? metal-insulator-metal tri-layers Thin film growth e- from filled to empty states need a bias voltage … metal insulator metal Determining tunneling current Fermi-Dirac function f (E) E eV Occupied states in Left electrode 1- f (E + eV) Tunneling probability at Energy E I tunneling (V) = I l®r (V)- I r®l (V) Unoccupied states in Right electrode Tunneling is exponential VB VB-Ex Ex d • tunneling current, free electrons – exp. in barrier thickness, height – exp. in voltage I ~ GV + gV3 dI/dV ~ V2 –can extract barrier parameters • typical Al2O3-based junction • how do we use this sensitivity? – STM ! Superconductivity (BCS theory) Below TC Normal metal C Fermi surface per pairs SC state Cooper pair energy per electron = Δ SC electrons BCS density of states in H = 0 T = 0K T > 0K Relative to Fermi level Fermi surface In a magnetic field applied in-plane Zeeman split states in SC E Al/Al2O3/Ag Increasing field Quasi Particle DOS BCS density of states in H: For Spin For Spin Tunnel Conductance k = quasi particle energy, = half SC energy gap, = 1/kT SC as a spin-detector ? Meservey – Tedrow Technique of SPT spectroscopy SC / Insulator / ferromagnet tunneling Tunneling e spin polarized P = ( n - n ) / ( n + n ) Spin Polarization (P) (Nv2) - (Nv2) P (Nv2) + (Nv2) Physics Today, J. S. Moodera et. al. (April 2010) First demonstration of Spin Polarized Tunneling !!! …….in Ni/Al2O3/Al junctions PRL 26, 192 (1971) PNi ~ 5 – 6% Measured spin polarization (with Al2O3 barrier) Earlier results Current values Fe 40% 44% Co 35% 42% Ni 5-11% (later 23%) 46% Permalloy 32% 48% Co0.5Fe0.5 -55% Why Al as the spin detector? o Smooth, ultra thin films easily and reproducibly prepared o Clean, surface oxide, great as a tunnel barrier o Comfortable Tc and High HcII (~5 tesla) o Low S-O scattering and long spin life time What about other materials? V, a-Ga, Be, VN, V-Ti alloy Using Vanadium Probing Absolute Spin Polarization at the Nanoscale, Nano Lett. 14, 7171 (2014) Highly interface sensitive measurements ! Tunnel into ultrathin FM onset of FM? FM 1976 Backed by Al - full P in ~2ML Polarization for ultrathin barriers Total polarization Analysis with the two current model P Al/Al2O3/Fe junction 0.6 id Pd isp Psp id isp -1.00 -0.75 -0.25 0.4 Pd -0.50 0.00 0.8 0.9 P id,0 1.0 i j i j ,0 e 0.2 4 8 j t 12 tAl O (Å) 2 Fe 16 id,0 , kd, Pd Al3+ 3 Tunneling measurements indicate sp - and d - spin current O2- isp,0 , ksp, Psp O chemisorbed Al Spin Polarized Tunneling -What we learn• Superconductors : 2, phonon spectrum. spin-orbit, orbital depairing, Fermi liquid effects…. Poster • Ferromagnets : DOS itinerant electrons - Interfacial density of states Surfaces, Interfaces and Proximity effects Band structure ? • Excellent spatial (Å), energy (eV) resolution • Probes at low T and high H; • Extremely surface sensitive, E 0 Spin-polarized electron tunneling • R. Meservey and P. M. Tedrow Physics Reports, Vol. 238, Issue 4, (1994), Pages 173-243 (A Review) Concept of Tunneling Magnetoresistance Magnetoresistance effect Parallel State Spacer Layer M1 M2 Non-magnetic metal, semiconductor, or insulator FM2 FM1 Low Resistance Magnetoresistance effect Anti-Parallel State Spacer Layer M M Non-magnetic metal, semiconductor, or insulator FM2 FM1 High Resistance Switching M by external magnetic field FM1 Spacer Layer MR curve Anti-parallel Resistance (R) H Parallel 0 Magnetic field (H) FM2 Magnetic Tunnel Junction showing magnetoresistance response 1995 Co/Al2O3/NiFe (8A Al Oxidized) R(k) 4.5 77 K - 34 % 295 K - 25 % 4.0 NiFe Al2O3 Co 3.5 Substrate 3.0 2.5 -60 MTJ -40 -20 0 20 40 60 Field (Oe) J. S. Moodera T. Miyazake JMR agrees with Julliere䇻s model: JMR = 2P1P2/1+P1P2 ( PCo = 35% and PPY = 45% ) Even best junctions, show T and V dependence effects, defects…. Extremely interface sensitive. – magnons, phonons, band …Why did it take so long ? • In-situ deposition • Controlled oxidation of thin film of Al Tunneling from the Fermi surface – k space approach to tunneling Tunneling probability depends on convolution of the Fermi surface cross sections between left and right FM electrodes Antiparallel alignment Parallel alignment Magnetism & Magnetic materials (Cambridge), J.M.D. Coey Improvement of TMR effect 2004 2007 reaching > 500% at RT !! Giant Magnetoresistance (GMR) / Pseudo spin valve effect 2007 Peter Grünberg & Albert Fert 1988 Fe/Cr stack Polarized neutron Reflectometry Fe/Cr/Fe wedge trilayer structures Phys. Rev. B 39, 4828(R)-1989 Explained by RKKY Interactions Observation of oscillatory exchange coupling Physical Review Letters 64 (19), 2304 (1990) Exchange Bias Effect in GMR devices F1 F1 F2 F2 Spacer Layer FM1 Tunnel barrier FM1 FM2 P1 FM2 Semiconductor or Metal P2 Spin Valve MTJ Jullière’s Model TMR 2 P1P2 1 P1P2 Modified Jullière’s Model 2 P1 P2e ( d d o ) / s GMR 1 P1 P2e ( d d o ) / s Half metallic ferromagnets Theoretical prediction of 100% spin polarization Si - band gap Band gap for one spin direction ! Half metallic ferromagnet CrO2 Other examples: NiMnSb, SrFeMoO, Co2MnSi Fe - no band gap Spin filtering…. Creating spin polarization by spin selection! Mag. semicond. EuS, EuO and EuSe T < TC 2EX (0.36 eV) |T| 2 >> |T| 2 M Tunnel Current: J() exp (-()½ d) P= J - J J + J M EuS or EuO barrier EuO as Spin-Filter, higher Tc and exch. splitting 0.6eV Spin Filter MTJs Parallel Low R Anti-Parallel High R EuS TMR = EuS RAP – RP RP 2 PSF PFM = 1 - PSFPFM FM is a spin detector Spintronics : Contribution to technology Pioneering works in GMR & TMR effect 1956 IBM 350 Storage capacity 3.75MB In-plane recording medium Hard Disk Drive Structure & Components Head Gimbal Assy (HGA) Cover Slider Read & Write Heads Suspension Spindle Motor Electronics Card *TMR = Tunnel Magneto-Resistive R/W head Slider ~1mm ) Disk Assembly Voice-Coil Motor VCM < 1990 Suspension BaseCasting Actuator (VCM & HeadSuspension Assembly AMR sensor Gimbal Disk Shields Return Pole *TMR Read Element CIP GMR sensor 1990 - 2000 TMR sensor 2001 - 2007 CPP GMR & TMR sensor 2007 - present Coil Main Pole Recording Medium SUL Lube Overcoat (carbon) Recording layer Growth Control Soft Underlayer Substrate (glass or AlMg) Recording Medium Perpendicular magnetic recording Storage medium: Stability of a 䇺bit䇻 Magnetic anisotropy energy (MAE) of the bit 1. Magneto-crystalline anisotropy – induced by SO coupling High Z materials will have large anisotropy energy (Co/Pt multilayer/alloy) 2. Shape-anisotropy – By shape of the bit 3. Magneto-static energy – Magnetic field created by the bit that can demagnetize the bit Magnetic Field lines B For technology MAEbit > 10 kBT Confidential 1 0 Spin transfer Torque Conservation of electron angular momentum Univ. of Hamburg • STT-MRAMs using new class of ferromagnet/insulator materials
© Copyright 2025 Paperzz