Why the first digit of the values of (Jeffreys) physical quantities tends to be 1 or 2 ? Albert Tarantola Preamble Needs@"Histograms`"D SeedRandom@0D Run with 24 000 points Let us select 24 000 as the number of values. n = 24 000; We generate 24 000 values with constant probability density in the range (-100,+100): x = Table@Random@Real, 8-100, +100<D, 8n<D; Let us print a few of them: Do@Print@xPiTD, 8i, 1, 12<D 2 BenfordLaw.nb -93.6293 28.0416 44.8605 16.1768 86.2303 27.3468 85.6849 -90.212 40.4607 -14.9532 38.7222 -96.2569 The histogram of the 64 values is totally unremarkable: Histogram@x, HistogramCategories Ø 50D 600 500 400 300 200 100 -50 0 50 100 We now take the exponential of these values: X = Exp@xD; Let us print a few of them (remark the first digit is more frequently an "one" or a "two" than a "eight" or a "nine"): Do@Print@XPiTD, 8i, 1, 24<D BenfordLaw.nb 2.17432 µ 10-41 1.50775 µ 1012 3.03857 µ 1019 1.0605 µ 107 2.8141 µ 1037 7.52621 µ 1011 1.63116 µ 1037 6.62843 µ 10-40 3.73141 µ 1017 3.20563 µ 10-7 6.5587 µ 1016 1.57096 µ 10-42 9.96534 µ 1020 2.31391 µ 1026 5.57056 µ 10-17 1.35796 µ 1041 2.74402 µ 1040 6.19154 µ 1040 4.25461 µ 1025 5.61376 µ 1037 2.61438 µ 1015 31 235.8 6.1763 µ 10-42 4.5804 µ 1026 To isolate the first digit, we evaluate the mantissa of the numbers, we multiply ther mantissa by 10 and take the integer part: XX = MantissaExponent@XD; Y = Table@XX@@i, 1DD, 8i, 1, n<D; YY = 10 Y; Z = IntegerPart@YYD; Let us print a few of them: Do@Print@ZPiTD, 8i, 1, 24<D 3 4 2 1 3 1 2 7 1 6 3 3 6 1 9 2 5 1 2 6 4 5 2 3 6 4 BenfordLaw.nb BenfordLaw.nb And we can now make the histogram of the first digit of the quantities X = Exp[x] : H1 = Histogram@Z, HistogramCategories Ø 80.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5<D 7000 6000 5000 4000 3000 2000 1000 2 4 6 8 This is the Benford law! Here we have built it mathematically. But we find it everywhere in Nature -> Nature works somehow this way. In fact, let us compare this experimental histogram with the Benford law. The Benford law is: Benford@k_D = Log@10, Hk + 1L ê kD; Its plot is: H2 = ListPlot@n Table@Benford@kD, 8k, 1, 9<D, PlotRange Ø 80, 7300<D 7000 6000 5000 4000 3000 2000 1000 0 2 4 6 8 5 6 BenfordLaw.nb We can plot together the experimental histogram and the Benford law (excellent agreement): Show@8H1, H2<D 7000 6000 5000 4000 3000 2000 1000 2 4 6 8
© Copyright 2026 Paperzz