Candidateentryandpoliticalpolarization: Anexperimentalstudy* JensGroßer(FloridaStateUniversity)a ThomasR.Palfrey(CaliforniaInstituteofTechnology)b December14,2016 Abstract Wereporttheresultsofalaboratoryexperimentbasedonacitizen‐candidatemodelwithprivate informationaboutidealpoints.Inefficientpoliticalpolarizationisobservedinalltreatments;that is, citizens with extreme ideal points enter as candidates more often than moderate citizens. Second, less entry occurs, with even greater polarization, when voters have directional information about candidates’ ideal points, using ideological party labels. Nonetheless, this directionalinformationiswelfareenhancingbecausetheinefficiencyfromgreaterpolarization is outweighed by lower total entry costs and better voter information. Third, entry rates are decreasingingroupsizeandtheentrycost.Thesefindingsareallimpliedbypropertiesofthe uniquesymmetricBayesianequilibriumoftheentrygame.Quantitatively,weobservetoolittle (too much) entry when the theoretical entry rates are high (low). This general pattern of observedbiasesinentryratesisimpliedbylogitquantalresponseequilibrium. *WewouldliketothankparticipantsatthePublicPolicyandSocial&EconomicBehaviorconference,UniversityofCologne, the1stSouthwestExperimentalandBehavioralEconomics(SWEBE)conference,UCIrvine,andtheNorth‐AmericanESA meetinginTucson,andatseminarsatCaltechandtheHertieSchoolofGovernance,Berlinfortheirhelpfulcomments.We arealsogratefulforfinancialsupportfromtheCEC‐COFRSAward,FloridaStateUniversity.Palfreyacknowledgessupport from NSF (SES‐1426560), the Gordon and Betty Moore Foundation (SES‐1158), and a Russell Sage Foundation Visiting ScholarFellowship(2014‐15), aDepartmentsofPoliticalScienceandEconomics,FloridaStateUniversity,Tallahassee,FL‐32306,[email protected] b Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA‐91125, [email protected] 1 1.Introduction Whorunsforoffice?Howmanycandidatescanweexpecttocompeteinawinner‐take‐allelection? Arethosewhorunforpoliticalofficerepresentativeoftheviewsofthegeneralpolity?Howmight entrydependupontheroleofpoliticalorganizations,suchasparties,intheselectionofcandidates? Here, we examine these and related questions in a laboratory experiment by testing predictions derivedfromacitizen‐candidateentrygameandcomparingentrybehavioracrossseveraldifferent environments. The citizen candidate model, which originates in Besley and Coate (1997) and OsborneandSlivinski(1996),departsfromthecanonicalspatialmodelofelectoralcompetitionwith exogenouspoliticians(Downs1957;Hotelling1929)intwoimportantways.1First,thecandidates arecitizenswithpolicypreferences(asinWittman1983)whovoteintheelectionand,onceelected, implementtheirowntasteasthecommonpolicy.Second,thevotingstageisprecededbyanentry stage where each citizen decides whether to throw her hat in the ring. Thus, a citizen’s objective functionnotjusttakesintoaccountthebenefitsofholdingoffice(“spoilsofoffice”)asinthecanonical model,butisalsoincludesthecostofcandidacyandtheindirectbenefitofreducingthepossibility of less desired policies that would be implemented by other potential candidates. Because the citizens themselves decide on whether to run for office, both the number and the ideological composition of entering candidates are modeled as equilibrium outcomes. Crucially, their entry decisions are asymmetric since citizens with different policy preferences will anticipate different benefits from policy implementation. Coordination problems are also present due to nontrivial strategicuncertainties. Inthestandardcitizencandidatemodel,allcitizensareendowedwithcompleteinformation about the exact location of all others’ ideal points, and hence can infer the exact location of each entering candidate. However, many empirical studies indicate that citizens tend to have limited knowledgeaboutthecandidates’exactstancesonpolicyissues(e.g.,Campbelletal.1960;Palfrey and Poole 1987). We can think of various reasons why this is the case. For example, time and willpower is scarce so that many citizens simply cannot be as well informed about the policy intentionsofcandidatesas,say,specialinterestgroups.Or,politiciansoftenremainquietabouttheir trueintentionsduringcampaignsduetostrategicincentivesanditisalmostimpossibleforcitizens todiscoverthesetastes,eveniftheyarewillingtoexerteffort.Morerealistically,citizenshaveonly 1Thecitizencandidateapproachhasitsrootsinworkonpolicy‐motivatedcandidates(e.g.,Wittman1983),strategicentry (e.g.,Feddersen,Sened,andWright1990;Palfrey1984),andDuverger’slaw(e.g.,Feddersen1992;Palfrey1989).Fora surveyofcitizencandidatemodels,seeBol,Dellis,andOak(2015). 2 incompleteinformationaboutthelocationoftheenteringcandidates,andthisleadsustoadopta Bayesiangameformulationoftheentrygame. Theexperimentisbasedonalaboratoryimplementationofthefollowingcitizen‐candidate entrygamewithincompleteinformation(GroßerandPalfrey2014).Anelectorateconsistingof citizens is electing a leader to implement a policy outcome by plurality voting. Each citizen has a privatelyknownidealpointinaonedimensionalpolicyspace.Theseidealpointsareiiddrawsfrom a commonly known, uniform distribution over the policy space. A citizen’s utility from the policy outcomedeclineslinearlyintheabsolutedistancefromheridealpoint.Thegamehastwodecision‐ makingstages.Inthefirststage(Entry),citizensdecideindependentlyandsimultaneouslywhether and pay a cost 0tobecomeacandidateintheelection, or not enter and bear no cost. In the secondstage(Voting),eachcitizencastsavoteforexactlyoneofthecandidates.Inthebaselinemodel citizensmustvotewithoutanyadditionalinformationaboutthecandidates’idealpoints(ofcourse, thecontendersknowtheirownidealpoint).Thecandidatewiththemostvotesbecomestheleader andreceivesabonus 0(i.e.,thespoilsofoffice)andheridealpointisautomaticallyimplemented asthecommonpolicy.Tiesarebrokenrandomly.Finally,ifnobodyenters,thenaleaderisrandomly selectedfromallthecitizensandheridealpointisimplementedasthecommonpolicy. Because symmetric BNE in cutpoint strategies is unique, potentially difficult issues of equilibriumselectionareavoided.Bycontrast,citizencandidatemodelswithcompleteinformation aboutcandidateidealpoints(e.g.,BesleyandCoate1997;OsborneandSlivinski1996)usuallyhave multipleequilibria,andthereforearemorecomplicatedtoevaluateempiricallyeveninthelab.A second advantage of the incomplete information approach is that distributional predictions are qualitativepredictionsaboutpolarizationandthenumberofentrantsismorerobusttoawiderange of environmental parameters one expects to encounter in the field. In fact, existing empirical evidencestronglysuggeststhatpolicypreferencesofpoliticiansaremorepolarizedthanthecitizens theyrepresent(e.g.,BafumiandHerron2010;DiMaggio,Evans,andBryson1996;Fiorina,Abrams, andPope2006;McCarty,Poole,andRosenthal2006).Beyondthisempiricalsupport,ourapproach offersatheoreticalfoundationforpossiblemechanismsthatcanleadtopoliticalpolarization.The experimentprovidesadditionalevidencebygeneratingdataonentrybehaviorincarefullycontrolled environments,inordertoassesstheplausibilityofthesetheoreticalmechanisms. This citizen‐candidate entry game with incomplete information yields sharp predictions about the distribution of the entrants’ ideal points and the rate of entry. The key property of equilibrium is political polarization in the sense that candidate entry is from the extremes of the policy space, contrary to usual centrist predictions of most models of political competition. 3 Specifically, the unique symmetric Bayesian Nash equilibrium (BNE) in the baseline entry game consistsofaleftandrightcutpoint, , ,whereeachcitizenwithanidealpointateithercutpoint ortotheleftof ortotherightof entersthepoliticalcompetition,whileeverycitizenwithan idealpointbetweenthetwocutpointsdoesn’tenter.2Basedonthisequilibrium,onecanalsocompute expectedeconomicwelfareanditsvariouscomponents,andderivecomparativestaticspredictions of interest such as the effects of electorate size, entry costs, benefits of holding office, and the distributionofidealpointsonentrydecisionsandwelfare. The intuition for why asymmetric information about citizen and candidate ideal points createspoliticalpolarizationcanbeexplainedbyasimpleexample.Suppose,forexample,thepolicy spaceis 1,1 andtherearethreeentrantswithidealpointsat 1,0,and1,respectively.Then,each candidate has a one‐third chance of winning the election (i.e., they each vote for themselves and, becauseidealpointsareprivateinformation,eachnon‐candidatevotesrandomlyforoneofthem). Withidenticalentrycostsandoffice‐holdingbenefits,theyonlydifferintheirexpectedpolicylosses if a rival candidate happens to win. In our example, for each of the two extreme candidates the expectedlossequals1,whiletheexpectedlossisonly2/3forthemoderatecandidate.Thisillustrates whatturnsouttobeageneralpropertyofthemodel:extremecitizenshaveastrongerincentiveto enterthepoliticalcompetitionthanmoderatecitizens,andisthebasisfortheemergenceofpolitical polarizationinthemodel.Thisresultholdsmoregenerallyforanysmoothprobabilitydistribution ofidealpoints(GroßerandPalfrey2014)andweaklyconcavepreferencesofvoters.Importantly, polarizationiswelfarereducingsinceexantetheexpectedtotalpolicylossisminimizedwhenthe commonpolicyisacentristidealpoint. Whileincompleteinformationissurelyanimportantconsiderationinelections,themodel described above explores a polar case where citizens are completely uninformed about the candidates’idealpoints,exceptfortheinferencetheycanmakefromequilibriumstrategies,towit, thatentrycomesfromtheextremes.Itisinterestingtoexploreanintermediatecaseofincomplete information that also corresponds to the widely observed phenomenon that ideologically‐based partiesactasgatekeepersinthecandidateentrystage.Asaresultmostcitizensareawareofthe partyaffiliationsofcandidates,whichareforexamplecommunicatedvianominatingconventions, andsincepartiesareideologicaltheycanusethiscrucialpieceofinformationasacrediblecueabout a candidate’s ideal point, for their voting decision (e.g., Ansolabehere, Rodden, and Snyder 2008; SnyderandTing2002). 2IntheVotingstage,eachcandidateoptimallyvotesforherselfandeachnon‐candidateoptimallyvotesrandomlyfora candidate.Theexpectedpolicyoutcomedoesnotchangeifabstentionisallowed. 4 Toaccountforrelevantpartycues,weextendthebasiccitizen‐candidateentrygamewhere a left and a right party each nominates a candidate from the pool of entrants on their side of the politicalspectrum,andcitizensareinformedabouteachnominee’spartyaffiliation.Thisprovides some useful voting information, although the exact ideal points of the party nominees are not revealed.This“directionalinformation”hastwoimportanteffects.First,itleadstofewerandeven morepolarizedentrantsthanintheabsenceofparties.Thisisbecauseacitizenalwaysvotesforher preferredpartynomineeso,availingtheownvote,herupdatedbeliefthatthisnomineeprevailsin theelectionisgreaterthan50percentforoursymmetricdistributionofidealpoints(cf.Goereeand Großer2007).Asaconsequence,ceterisparibus,theprobabilityofbecomingtheleaderisgreater withthanwithoutparties(weassumethateachentrantisequallylikelyherparty’snominee)which, inequilibrium,translatesintoalowerincentivetorunforoffice,moreextremecutpoints,andthus fewerentrants.Second,politicalpartiesenableimplicitvotecoordination;thatis,citizensvoteforthe nomineewhoseidealpointisfromthesamedirectionastheownone.Importantly,suchcoordination iswelfareenhancinginexpectationsincethemajoritypartyismorelikelytowin.Noticethatwhile themajoritycansometimesalsobedefeatedifnoneofitscitizensrunsforoffice,thismustnotbe inefficient as they are all more moderate than the respective cutpoint. Overall, in expectation, politicalpartiesraisewelfaresincethelowertotalentryexpenseandgreaterchancesofthemajority partyoutweighthegreatertotalpolicylosscausedbymoreextremeleaders. Byincludingtreatmentsbothwithandwithoutpoliticalparties,ourexperimentoffersaclean testofthehypothesisthatparty‐organizedelectionsincreasepoliticalpolarizationonaveragebutat the same time do not reduce welfare. The experiment also varies the environment in two other dimensions: electorate size and entry cost. Both of these have intuitive qualitative effects, that is, expectedentryrates(i.e.,entryasafractionoftheelectoratesize)decreaseinbothelectoratesize and entry cost. The decrease in entry rates arises from the equilibrium cutpoints becoming more extreme,whichimmediatelyimpliesthatpoliticalpolarizationisincreasinginboththeelectorate sizeandtheentrycost. Looking ahead at the results briefly, in all treatments conducted in the experiment, we observethekeypolarizationeffect:theprobabilityofcandidateentryisincreasinginthedistance between the median and a citizen’s ideal point. All of the model’s primary comparative static propertiesofentrybehaviorfindsupportinthedata.And,allthemodel’sprimarycomparativestatic propertiesaboutwelfarearealsosupported.Quantitatively,relativetothetheoreticalequilibrium, we observe higher rates of entry for those treatments where entry is predicted to be below 50 percent and weakly lower entry rates for those treatments where predicted entry is above 50 5 percent.ThispatternofdeparturefromBNEisconsistentwithpastexperimentsonentryinmuch differentsettings(seeGoereeandHolt2005)andisageneralpropertyofregularquantalresponse equilibriuminthesegames(Goeree,HoltandPalfrey2005,2016). 2.Relatedliterature Weareawareofjustthreeothercitizencandidateexperiments,whichallstudypluralityelections with complete information about candidate ideal points and vary the entry cost (Cadigan 2005; Elbittar and Gomberg 2009; Kamm 2016).3 Specifically, Cadigan (2005) uses a pen‐and‐paper experimentwithelectoratesoffiveparticipantswhohavedistinctidealpointsandindependently andsimultaneouslydecideonwhethertobecomeacandidate.Theelectoralcompositionandideal points are constant throughout, but after each election ideal points are reallocated among the participants.Further,participantsautomaticallyvotesincerelyforthecandidatenearesttotheown locationtoselecttheleader,whoreceivesabonusandwhoseidealpointisdeclaredthecommon policy.Ifnobodyenters,thenoneparticipantisrandomlyappointedtheleader.ElbittarandGomberg (2009)andKamm(2016)employsetupssimilartotheonejustdescribed,butafewdifferencesare worth mentioning. For example, their experiments are computerized and sincere votes are exclusively cast by an infinite number of non‐candidate robots with uniformly distributed ideal points over the continuum 0,100 . Also, Elbittar and Gomberg use electorates of three or five participantslocatedatthreefeasiblepolicies,andthedefaultpolicyifnoneofthementersisthatall must pay a large penalty.4 We can summarize the three main common results of these citizen candidateexperimentsasfollows.First,therearemorecandidatesonaveragewhentheentrycostis lower. Second, relative to Nash equilibrium (NE), there is over‐entry on average. Third, the qualitative predictions of entry are mostly supported by the data and some learning towards equilibriumplayisobserved.Lookingmorecloselyattheirresults,iftheentrycostishightheunique NEisthatonlythemediancitizenenters(ElbittarandGomberghavetwoequilibria,eachwhereone of two median citizens enters). The median participant does indeed enter often but, against the 3Ourstudyisalsorelatedtosimplerentryexperiments.Forexample,FischbacherandThöni(2008)examineawinner‐ take‐allmarketwhereamonetaryprizegoestoarandomlyselectedentrant,andtheexpectedamountfallsinthenumber ofentrants.Theyfindover‐entryrelativetoNashequilibrium,andmoreseveresoinlargergroups.Or,CamererandLovallo (1999) find under‐entry with asymmetric, randomly allocated rank‐based payoffs. Both studies contain features also presentinourwork,namely,theprobabilityofgettingthebonusfallsinthenumberofentrantsandexpectedpayoffsare asymmetric due to various different ideal points. Finally, Goeree and Holt (2005) use quantal response equilibrium (McKelveyandPalfrey1995,1998)tomakesenseofbothover‐andunder‐entryinvariousentryexperiments. 4Inthecitizencandidatemodeladefaultpolicyisnecessarytoensurethatacommonpolicyisexecutedinequilibrium.But out‐of‐equilibriumplayoccursinthelabandinElbittarandGomberg(2009)thepenaltyresultedinbankruptcyofsome participants.SeeGroßerandPalfrey(2014)foradiscussionofdifferentdefaultpolicies. 6 prediction, so do her or his immediate neighbors (albeit to a much lesser extent in Cadigan). By contrast,twoequilibriaariseforalowentrycost,onewithonlythemediancitizenenteringandone withthemedian’simmediateneighborsentering(again,ElbittarandGomberghavemultiplesuch equilibria).However,intheexperimentscoordinationononeofthesepurestrategyequilibriausually doesn’t occur. Next, in addition to plurality elections Elbittar and Gomberg (2009) study run‐off electionsandKamm(2016)examinesproportionalrepresentation.ElbittarandGombergobservea predictedshiftinaverageentrytowardsthemedianinrun‐offelectionsrelativetopluralityvoting. Kamm adopts proportional representation à la Hamlin and Hjortlund (2000), where the common policyisthevote‐weightedaverageofthecandidateidealpointsandtheleaderbonusisgiventothe contenderwithmostvotes(tiesarebrokenrandomly).Aspredicted,hefindsmorepolarizedentry thanwithpluralityvoting.Althoughwetooexplorepluralityvotingandhowtheentrycostaffects the decision to run for office, our study is very different from these other citizen candidate experiments. In particular, we explore incomplete information about candidate ideal points, as opposed to the complete information they study, which yields mostly unique distributional predictionsofwhoenters.And,wealsopresentthefirstcitizencandidateexperimentexamininghow partiesandelectoratesizeinfluencepoliticalpolarizationandwelfare. 3.Themodel WeadapttheGroßerandPalfrey(2014)citizencandidatemodelwithacontinuouspolicyspacefor thecaseofadiscretepolicyspace,whichisimplementedintheexperiment.Anelectorateof citizens iselectingaleadertoimplementacommonpolicy fromthesetΓ 1,2, … ,100 .Eachcitizenihas aprivatelyknownidealpoint thatisaniiddrawfromauniformdistributionalsooverΓ,wherei’s payofffromthepolicyoutcome, , | |,islinearlydecreasingintheabsolutedistance betweenheridealpointandthepolicyoutcome, . 3.1.Equilibriumwithoutparties Wefirstdescribeandanalyzethecasewheretherearenoparties.Inthefirststage(Entry),citizens independentlyandsimultaneouslydecidewhethertoenterasacandidateandpayacost 0,or notenterandbearnocost.Inthesecondstage(Voting),eachcitizen(includingeachoftheentrants) votesforoneofthecandidates,possiblyherself.Thecandidatewiththemostvotesiselectedand receives an office holding benefit of 0. Ties are broken randomly. If no citizen enters, then a defaultpolicy,d,takeseffect,randomlyselectingonecitizenastheleaderwhoreceives butdoes not pay . The leader’s ideal point is implemented as the policy outcome. Summarizing, the total payoffofcitizen isgivenby 7 | , , , whereKisaconstant, 1ifsheentered( | , 1 0otherwise)and 1ifsheistheleader( 0 otherwise).Weassumecitizen isriskneutralandmaximizestheexpectedvalueof . The perfect Bayesian equilibrium (PBE) of our citizen candidate game has the following properties.5 In the Voting stage, each candidate votes for herself and each non‐candidate votes randomlywithequalprobabilityforoneofthecontenders.InthesymmetricBNEoftheEntrystage eachcitizen followsthecutpointstrategy ̌ where , 0 ∈ 1, … , 1 ∈ 1, … , is an ideal point pair with 1 1 , … ,100 , ∪ 50 and 2 101 .6 That is, the cutpoint strategy ̌ dictatesthateachcitizenwithanidealpointatormore“extreme”than or runsfor office, and each citizen with an ideal point more “moderate” than and does not run. The equilibrium cutpoints are derived by comparing a citizen’s expected payoffs for entering and not entering, given that other individuals are using such cutpoints (see appendix for details). For the specificationassumedhere,ifallothercitizens , areusingcutpointstrategy ,theoptimal entrystrategyofacitizentype istoenterifandonlyif 1 1 | ∈ , 1 1 1, … , 1 1 1 3 , | ∉ 1, … , 1 , wheretheleft‐handside(LHS)givesthedifferencebetweentheexpectedbenefitfromenteringand expectedbenefitfromnotentering,excludingthecostofentry,whichappearsontheright‐handside (RHS).Weusethenotation ≡∑ todenotethenumberofentrantsand todenotetheex‐ante probabilitythatarandomlyselectedcitizen enters.Ifnobodyenters,thenthedefaultpolicyd takes effect, where the expected loss from the absolute distance in citizen ’s ideal point and the commonpolicy,orpolicyloss,isgivenby , | ∈ 1, … , 1 1 1 | | 100 , 4 5FordetailsseeAppendixAandGroßerandPalfrey(2014). 6Thesymmetryofthecutpointsaroundthemedianidealpointarisesbecausetheuniformdistributionofidealpointsis symmetricaroundthemedian.Ingeneral,thecutpointscanbeasymmetricallylocatedifthedistributionisasymmetric.See GroßerandPalfrey(2014)fordetails. 8 andifatleastonecitizen , enters,therespectiveexpectedpolicylossisgivenby | ∉ 1, … , 1 1 | | 100 | | 100 . 5 TheLHSof 3 hasastraightforwardinterpretation.Thefirsttermcorrespondstotheeventthatno citizen enters,whichoccurswithprobability 1 .Theintuitionisthatifonlycitizen enters,thenshecanensureleadershipbyenteringandsoreceives andavoidsanexpectedloss 4 from someone else’s policy decision. Note that if does not enter, these two payoffs accrue with probability1/ and 1 / ,respectively,duetothespecificationofthestochasticdefaultpolicy, d.ThesecondtermontheLHSof 3 representstheeventwhereatleastoneothercitizen enters. Foreachpossiblenumberofentrants 2,includingherself,citizen bothreceives andavoidsa lossfrompolicywithprobability1/ .Theexpectedpolicylossisdifferentdependingonwhether theleader’sidealpointisinthesamedirectionas ’sidealpoint,whichiscapturedbythetwoterms inbracketsin 5 .Finally,ourexperimentalparametersyieldinteriorequilibriumentrycutpoints, whichiscomputedbysetting and andthensolving(3)atequality. 3.2.Equilibriumwithparties In elections where the entry stage is organized by ideological political parties, the two decision‐ making stages have the following differences. First, all citizens with an ideal point ∈ 1, … ,50 ( 51, … 100 ) automatically belong to the Left (Right) Party. If one or more citizens from a party choose to enter, then one of them becomes the party nominee in the election. For simplicity we assumeeachcandidatefromthepartyisselectedastheparty’snomineewithequalprobability.The partyaffiliationofeachnominee,albeitnotexactidealpoint,isthenrevealedtoallcitizens.Further, eachcitizenvotesforanominee,possiblyherself.Ifonlyonepartyhasanominee,everyonemust voteforher.Ifnobodyenters,thenthedefaultpolicy isactivated.Asinthecasewithnoparties,the chosenleader’sidealpointisimplementedasthepolicyoutcome. ThePBEofthecitizencandidategamewithpartieshasthefollowingstructure.IntheVoting stage,eachnomineevotesforherselfandeachnon‐nominee,entrantornot,votesforthenominee whoyieldsherthehighestexpectedpayoff.Thiswillbethenomineefromtheirownparty(whose idealpointisexpectedtobeclosertotheowntaste),ifthereisone.InthesymmetricBNEequilibrium oftheEntrystageeachcitizenfollowsacutpointstrategyasin 2 .Analogoustoexpression(3),the optimalentrystrategyofacitizenwithidealpoint intheRightPartyistoenterifandonlyif(and similarforacitizenintheLeftParty): 9 1 1 | ∈ , 1 1 1 | ∈ 1, … , 1 1 1 2 , 1 1 1 2 1, … , | ∈ 1 1 2 6 1 2 . enteringfromeitherdirectionisdenotedby ,and and thenumberofentrantsfromtheLeftandRightPartyisdenotedby , … ,100 1 2 , … ,100 Theex‐anteprobabilityofarandomcitizen | ∈ 2 , , ,respectively,with ≡ . Also note that the probability a random citizen enters as Left Party candidate (or Right Partycandidate)is /2sincethedistributionofidealpointsisuniform.Thewinprobabilityofthe RightPartyisdenotedby 0 1/2 1 with 0 0,andtheexpectedpolicy 0 lossesintherespectivetermsaregivenby , | ∈ 1, … , , , 1 | ∈ 1, … , | ∈ , … ,100 | 1 1 | 100 1 /2 | 1 /2 | | 100 ; 8 | 100 ; 7 . 9 ThefirsttermontheLHSof 6 isthesameasin 3 andrepresentsthecasewherenocitizen enters.Thesecondtermgivesthecaseswhereatleastone alsoentersfromtheRightParty,butno oneentersfromtheLeftParty.Intheseevents,citizen anticipatesgains / avoidance,1/ , | ∈ , … ,100 because one of the randomlyappointedthenomineeofthisparty.Thethirdtermon least one citizen Right Party entrants is 6 givesthecaseswhereat enters from the Left Party, but only citizen enters from the Right Party, 10 and,frompolicyloss so 1andshesecurestheRightPartynomination.Duetosymmetry,eachofthe 1non‐ entrantswithidealpointsstrictlywithintheequilibriumcutpointpairpreferstheLeftorRightParty nomineewithprobabilityone‐halfforeach,andvotesaccordingly(asaccountedforbytheindex of the summation). Since citizen is in the Right Party, her expected net gains from entry are and , | ∈ 1, … , (i.e., the policy loss avoided if the opponent nominee runs unopposed). Note that declines with each Left Party entrant, who is expected to vote for this party’snominee.ThefourthtermoftheLHSof 6 representsthecaseswhereatleastonecitizen enters from each direction, which yields a mix of the second and third terms. Finally, our experimentalparametersyieldinteriorequilibriumentrycutpointscharacterizedbysolutionsto(6), atequality. 4.Experimentaldesign The experiment was conducted at the Experimental Social Science Laboratory at Florida State University.7Atotalof148studentsparticipatedineightsessionsof16or20participantseach,with eachsessionlastingabout1.5hours.Earningswereexpressedinpointsandexchangedforcashfor $1per250pointsattheendofasession.Participantsearnedonaverage$22.91,including$7for showingup. In a 222 treatment design, we varied the “entry cost” ( subjects and “group size” ( 4 and 10) and “party mode” ( 10 and 20 points) within and Party) between subjects.Eachsessionhadtwopartsof30decisionperiodseach,wheretheentrycostchangedfrom oneparttothenextandthecostorderchangedacrosssessions.Participantsknewtherearetwo parts,butwereinstructedaboutthesecondpartonlyaftercompletingthefirstone.Inalltreatments, at the start of each period the subject pool was randomly divided into separate 4‐ or 10‐person groupsthatdidnotinteractwithoneanotherinthisperiod,andeachparticipantreceivedanewideal pointand,entirelyindependently,anewletterIDlabel.Theywereinformedthatidealpointsareiid randomdrawsfromauniformdistributionovertheintegers 1, 2, … , 100 andprivateinformation (i.e.,notshowntoothers),andthatletterIDsareiiddrawsfromauniformdistributionoverthewhole alphabetandrevealedtoeveryoneinthegroup(albeittheparticipantbehindaletterIDremained anonymous).Inagivengroupandperioddifferentindividualscouldhavethesameidealpointbut neverthesameletterID. Eachperiodconsistedoftwoconsecutivestageswheretheparticipantsindependentlyand simultaneouslymadetheirdecisionswithoutcommunication.IntheEntrystage,eachgroupmember 7 The software was programmed as server/client applications in Java, using the experimental open source package Multistage(http://multistage.ssel.caltech.edu:8000/multistage/).Torecruitparticipants,weusedORSEE(Greiner2015). 11 decidedonwhethertoenterthepoliticalcompetitionandpaycpoints,ornotenterandbearnocost. IntheVotingstage,inNoPartytheletterIDforeach(independent)candidatewasdisplayedonthe computer screen with a button labeled with her or his letter ID (a candidate’s own label was highlightedinred).InParty,oneoftheentrantswithanidealpoint ∈ 1, … , 50 ( 51, … , 100 )was randomly selected as the Left (Right) Party nominee, with equal probability for each, and a lone entrantwasthenomineeoutright.Ifnobodyenteredfromaparty,thenthepartyhadnonominee. EachnomineewasdisplayedonthecomputerscreenwithabuttonlabeledwithherorhisletterID (anominee’sownlabelwashighlightedinred).8Thus,everyonewasinformedthatanominee’sideal pointisfromtheleftorrightsubsetofidealpoints,buttheexactlocationwasnotrevealed.Next,each participant voted by clicking one of the candidate or nominee buttons and could not abstain.9 Candidatesandnomineeswerenotforcedtovoteforthemselves.Thecandidateornomineewiththe most votes was appointed the leader and received a bonus of 5 points, with ties broken randomly.Ifnobodyentered,thenoneparticipantwasrandomlyandequiprobablyappointedthe leader (and received 5 points but did not pay c). Either way, the leader’s ideal point was implementedasthepolicyoutcome.Aftertheelection,everyonewasinformedaboutthenumberof votes for each candidate or nominee, the leader’s letter ID, the policy outcome, the own period earnings,andremindedwhethersheorheenteredandwasaleader(andthuspaidcandreceived b).10Inaddition,thebottomofthescreencontainedahistorypanelwhereatanytimeparticipants could view this information from all previous periods. Participants were paid for all 2 30 60 periods.Oneunpaidpracticeroundwasconductedtofamiliarizethemwiththeuserinterface.11 Table 1 summarizes our experimental design (first six columns) and quantitative BNE predictions of the relevant observable variables (last five columns; denoted by an asterisk and subscript e for expected values). Each treatment ∗ , ∗ , , has a unique symmetric cutpoint pair that determines the individual entry probability, ∗ (and thus the expected number of 8Intheexperiment,aparticipant’sidealpointwastermed“yourbestoutcome.”InParty,welabeledleftandrightas“low number” and “high number” and citizens and nominees as “low/high number members“ and “low/high number candidates,“ respectively. Also, with two nominees the button of the Left Party nominee was always to the left of the opponent’sbutton.InNoParty,“candidate”buttonswerecenteredandorderedrandomlyfromlefttoright,independent ofletterIDs.Infact,inagroupandperioddifferentparticipantscouldseedifferentIDorderings. 9Sinceintheorynon‐nomineesinPartystrictlyprefervotingtoabstainingwhilenon‐candidatesinNoPartyareindifferent betweenthetwooptions,wechosemandatoryvotingtokeeptheNoPartyandPartydesignsassimilaraspossible.Future experimentscanexplorevoluntaryvoting. 10Whiletheleader’sexactidealpointwasalwaysrevealedbythepolicyoutcome,wedidnotdiscloseanyoneelse’sideal point.However,inPartywithtwonomineestheirvotetalliesindicated,albeitsomewhatimperfectlyduetounexpected votinginthelab,howmanyidealpointswerefromtheleftandrightdirection,respectively.Wechosetogiveparticipants relativelylittlefeedbackinordertokeeptheexperimentaldesignclosertothetheory. 11Theonlinesupportingmaterialincludesinstructionsandsamplescreenshotsofthecomputerdisplay.Duetoaminor programmingerrorthatwelearnedaboutonlyafterallthedatawascollected,theidealpoint100neveroccurred.Our analysisofthedataassumesthatparticipantswereunawareofthis. 12 ∗ entrants, ∗ ), for which we also compute the ex‐ante expected individual payoff, / ,where ∗ ∗ 100and ∗ denotestheexpectedpolicyloss. Table1:ExperimentaldesignandsymmetricBNEpredictionsintheentrygame n 4 4 4 4 10 10 10 10 Design #Subjects # (Sessions) Elections 36(2) 270 32(2) 240 36(2) 270 32(2) 240 40(2) 120 40(2) 120 40(2) 120 40(2) 120 c Party 10 No 10 Yes 20 No 20 Yes 10 No 10 Yes 20 No 20 Yes BNEpredictions #Obs. 1,080 960 1,080 960 1,200 1,200 1,200 1,200 Cutpoints [ ∗, ∗] [42,59] [34,67] [20,81] [17,84] [21,80] [14,87] [10,91] [08,93] ∗ 0.84 0.68 0.40 0.34 0.42 0.28 0.20 0.16 ∗ 66.98 69.09 64.59 66.69 59.71 61.24 57.59 59.90 ∗ 25.87 25.36 28.66 27.76 36.59 36.46 38.91 37.40 ∗ 8.40 6.80 8.00 6.80 4.20 2.80 4.00 3.20 Note:Allsessionshadtwoparts,eachwithadifferententrycostfor30periods.Eachtreatmentusedaleader bonusof 5pointsandauniformdistributionofidealpointsovertheintegers 1,2, … ,100 .Notethatthe twoPartytreatmentswith 10pointshaveanadditionalBNEwithtwocutpointpairs(seefootnote17). 5.Hypotheses ThefirsthypothesiscapturesthemostimportantpropertyoftheBNEintheEntrygame: H1:PoliticalPolarization.Ineverytreatment,theentryratesareaweaklyincreasingfunctionof thedistancebetweenidealpointsandthemedianofthepolicyspace. The next four hypotheses specify the primary comparative statics derived based on BNE, from directly comparable pairs of treatments that differ only with respect to one variable (as comparedtosecondaryqualitativepredictionswheretreatmentsdifferintwoorthreevariables). H2:PartyEffect.Holdingtheentrycostandgroupsizeconstant,expectedequilibriumentryislower withparty‐mediatedelectionsthanwithoutparties.Thisimpliesfourspecifichypothesesintermsof pairwisecomparisonsfor ∗ ∗ ∗ ∗ 4,10, 4,20, 10,10, 10,20, ∗ ∗ , , (theeffectisthesamefor 4,10, ; 4,20, ; ∗ 10,10, ; ∗ 10,20, . , , ): H3:SizeEffect.Holdingtheentrycostandpartymodeconstant,inequilibrium,theprobabilityof entry isdecreasingin .Thisgivesfourspecifichypothesesintheformofpairwisecomparisons for : a) Entryprobability: ∗ , 10, ∗ , 10, ; 13 ∗ , 20, ∗ ∗ ∗ , 20, ; , 10, ∗ , 10, ; , 20, ∗ , 20, . H4: Cost Effect. Holding the group size and party mode constant, expected equilibrium entry is decreasingin ,whichimpliesfourhypothesesintermsofpairwisecomparisonsfor (theeffectis ): thesamefor ∗ ∗ ∗ ∗ 4, , 10, 4, ∗ , ∗ , 10, 4, ∗ 10, 4, ∗ , , , , 10, ; ; ; , . H5: Welfare Effect. The hypotheses for equilibrium expected welfare, measured by expected individualpayoffs, ,havethesamesignsasfor inH3(sizeeffect)andH4(costeffect),butthe oppositesignsinH2(partyeffect). a) Party: ∗ b) Groupsize: 4,10, ∗ 4,20, ∗ 10,10, ∗ 10,20, ∗ ∗ 4,10, ; ∗ , 10, ∗ , 10, ; 4,20, ; ∗ , 20, ∗ , 20, ; ∗ 10,10, ; ∗ ∗ 10,20, . ∗ , 10, ∗ , 10, ; , 20, ∗ , 20, . c) Entrycost: ∗ 4, ∗ , 10, ∗ 4, ∗ 10, ∗ , ∗ , 4, ∗ 4, ∗ , , 10, ; , , 10, ; ; , . As an even more stringent test of the equilibrium model, the BNE of the entry game also generates predictions about the complete order of qualitative predictions across all treatments, varyingallthetreatmentvariablessimultaneously. H6:Entryrateordering.Inequilibrium,theorderingof acrossalltreatmentsis: ∗ 4,10, ∗ ∗ ∗ 4,10, ∗ 10,10, 10,10, 10,20, ∗ H7:Welfareordering.Inequilibrium,theorderingof ∗ 4,10, ∗ 4,10, ∗ 10,20, ∗ ∗ 10,10, 14 4,20, ∗ 10,20, 4,20, ; acrossalltreatmentsis: ∗ 4,20, ∗ 4,20, ∗ ∗ 10,20, . 10,10, 6.Experimentalresults:AnexaminationofH1‐H7 This section presents and analyzes the aggregate data as it relates specifically to the seven hypotheseslistedabove.Inthenextsection,wetakeadeeperlookattheindividualleveldata. 6.1Thepolarizationhypothesis(H1) Thepolarizationhypothesisspecifiesthatmoreextremecitizensare(weakly)morelikelytoenteras candidates.ThisisimpliedbytheBNEoftheentrygameforalltreatmentsintheexperiment.An exactcomparisonofthedatatothetheoryclearlyrejectsBNE,whichmakesthesharppredictionthat entryratesshouldbeeitherzerooronedependingonwhetheracitizen’sidealpointissufficiently extreme.Ofcoursethedataisnotdiscontinuouslikethis.Therefore,wefitalogitregressionmodel oftheprobabilityofentryasafunctionofthedistanceofanidealpointfromthemedian.Sincethis isastrategicgameratherthanasimpleindividualchoice,sothatiftheplayers’entryfunctionsare logitfunctionsratherthanstrictcutpointpairs,thisinturnchangesalloftheplayers’responsesin thegame.Thus,weanalyzethedatausinglogitquantalresponseequilibriumofthegame,orlogit QRE(McKelveyandPalfrey1995,1998;Goeree,Holt,andPalfrey2016). QRE is a statistical generalization of NE that allows for decision‐making errors that are systematic in the sense that more lucrative decisions are made more often than less lucrative decisions. In the logit specification of QRE, the parameter 0 represents the slope of the logit responsefunction,withlowervaluesindicatingaflatterresponse(“highererror”)andhighervalues indicateasteeperresponse.If 0,decisionsarepurelyrandomsoeachcitizentype ∈ 1, … ,100 enterswithprobabilityone‐half.Therationalitylevelstrictlyrisesin until ∞,whereeveryone is virtually fully rational and follows the BNE cutpoint strategy. In particular, each citizen type enterswithprobability ∈ 0,1 strictlyinbetweenzeroandone,whichdependssmoothlyon theidealpointandisnolongeracutpointstrategythatdictatesa“zeroorone”binarychoiceforall . This leads to a set of equilibrium conditions that are somewhat different from 2 to 9 (see Appendix A). The QRE entry probabilities are computed by simultaneously solving one‐hundred differentconditions,oneforeachpossible .12GiventheseQREentryprobabilitiesasafunctionofλ, weestimateλbymaximumlikelihood.Toavoidoverfitting,theestimatedparameterisconstrained tobeequalacrossalltreatments.13 12Notethat 101 inequilibriumduetoouruniformdistributionofidealpoints,soweneedonlysolveforfifty conditions.Also,wecomputeQREentryprobabilitiesassumingnoerrorsintheVotingstagesinceunexpectedvotesare quiterareinthelab(asdocumentedinthenextsection). 13WealsoestimatedtheQREmodelusinganout‐of‐sampleapproach.Ratherthanconstrainingλtobeconstantacross treatments,weestimateditseparatelyforeachtreatmentusingonlytheodd‐numberedperiods,andthenusedthoseodd‐ periodestimatestocomparepredictedandactualvaluesfortheeven‐numberedperiods.Theconclusionsaresimilar,and thein‐samplefitsforthatalternativeapproacharesignificantlybetter. 15 Table2showsforeachtreatmenttheobservedentryrate, ,andtherespectiveBNEand QREentryrates(columns4‐6),whereQREentryratesareevaluatedattheestimatedvalueof .The theoreticalpredictionsareexact,inthesensethattheyarebasedontheactualdrawsofidealpoints realizedintheexperiment(i.e.,empiricaldistribution),andhenceareindicatedbysubscriptemp, whilestillassumingthatcitizensrespondtothetheoreticaluniformdistribution.14Importantly,the complete order of qualitative predictions across all treatments is preserved when changing to empirical BNE and QRE. The observed rates of entry are averaged over all periods and QRE predictions use 0.083, the maximum likelihood estimate for all periods and treatments combined.Furthermore,thescatterplotinFigure1depictsforeachtreatmenttheBNEentryrate ∗ on the horizontal axis against the average observed rate (markers) and QRE rate (markerslinkedbydottedline)ontheverticalaxis. Table2:Entry‐Predictionsanddata n 4 4 4 4 10 10 10 10 c Party 10 10 20 20 10 10 20 20 No Yes No Yes No Yes No Yes .687 .673 .560 .496 .519 .445 .426 .321 ∗ .844 .671 .417 .364 .426 .256 .181 .152 .602 .570 .459 .436 .465 .423 .330 .302 Note:Standarderrorsof areallintherange .013, .016 .BNEisindicatedbyanasteriskandQREby ,the maximumlikelihoodestimateofthedegreeoferror. AninterestingpatterninthedatathatisclearlyseeninFigure1isthat,relativetoBNEwe find over‐entry for the treatments where ∗ where ∗ 1/2 and (weak) under‐entry for the treatments 1/2. This is not just a coincidence, but is a general property of regular QRE in these games. The independent random noise in QRE flattens out the treatment response in entry rates comparedwithBNE,bypullingtheratesawayfromBNEinthedirectionof 1/2(seeGoereeand Holt2005;Goeree,HoltandPalfrey2016). 14Forexample,inNoPartytheempiricalBNEentryrateinatreatmentiscomputedbydividingthenumberofobserved idealpointsatormoreextremethanthetwotheoreticalBNEcutpointsbythetotalnumberofobservedidealpoints.And, theempiricalQREentryrateinatreatmentistheaverageofalltheoreticalQREratesper idealpoint,weightedbythe respectiverelativefrequenciesofobservedidealpoints. 16 Figure1:Entryrates–Predictionsanddata Note:ThedatamarkersandempiricalQRE 0.083 entryratesuseallperiods. Figure2displaysforeachtreatmenttheobservedandempiricalQREentryratesperblockof tenidealpoints(solidlines),theBNEcutpointpair(crossmarkersatthetop),andthetheoretical QRE entry rate function (dashed lines) at the estimated value of .15 With pure noise, dashedlinewouldbeahorizontalthrough 0.5andinBNE, 0, the ∞,itwouldbeastepfunction withentryratesequaltooneforallidealpointsatormoreextremethanthetwocutpoints(cross markers)andequaltozeroforallidealpointsstrictlywithinbothcutpoints.16(seeappendix).Not surprisingly, the sharp BNE cutpoint pairs are not found in the aggregate data.17 Instead, in all treatmentstheentrycurvesareU‐shaped,whichisageneralpropertyofQREinthesegames.18 15FigureB1inAppendixBdisplaystheaverageentryratesfornormalizedidealpoints,thatis,thedifferencebetweenown idealpointandthecloserofthetwoBNEcutpoints. 16FigureA1inAppendixAdisplaystheQREentryprobabilitiesforvariousdegreesoferrorfortheNoParty,n=4,c=20 treatment.Theseentryprobabilitiesforothertreatmentsvaryasexpected,butwithsimilaroverallshapes. 17Wereportananalysisofindividualcutpointsinthenextsection.Behaviorinvoterturnoutexperimentsissomewhat moresimilartoBNEcutpointsthaninourstudy(e.g.,LevineandPalfrey2007).Morenoiseindecisionsheremayarise frommorecomplexityinthecitizencandidategameandlittlefeedbackaboutotherparticipants’idealpoints(seefootnote 10),whichhamperslearningtowardsBNE. 18NoticethesmallhillsinQREaroundthemedianinParty(lowertwopanelsinFigure2)whereindividualshaveastronger incentivetoenterthantheirsomewhatmoreextremeneighbors.Forsufficientlylowentrycosts,thisleadstoanadditional BNEwithtwocutpointpairs.Thefirst“outer”pairdictatesthatallcitizenswithidealpointsatormoreextremethanthese cutpointsenter,andthesecond,narrower“inner”pairaroundthemediandictatesthatallcitizenswithidealpointsator withinthispairenter.ThetwoPartytreatmentswithalowentrycosthavesuchanadditionalBNE.Notethatweobserve verysimilargeneralentrypatternsinallourtreatments. 17 Figure2:Entryratesperidealpoint(dataaveragedinblocksoften)–Predictionsanddata 18 ThestatisticalsignificanceoftheU‐shapeofentryratesissupportedbyalogitregression (clusteredbyindividuals;seeTable3)ofentrydecisionsonextremenessofacitizen’sidealpoint, measuredby /49,where , ∈ 50,51 dependingonwhichiscloserto , (we chosenotthe“true”medianof50.5tonormalizethecoefficientbydividingbythemaximumdistance of 49 50 1or100 51).The regressionalsocontrols forthethreetreatmentvariablesanda measureofexperience(firstfifteenperiodsversuslastfifteenperiodsineachpart).Thecoefficient of /49ispositiveandhighlysignificantsothemoreextremetheownidealpoint,the , morelikleyaparticipantistorunforoffice.ThisprovidesstrongsupportforH1.Wenextturntothe hypothesesaboutspecifictreatmenteffects. Table3:Random‐effectslogitregression(alldata) Dependentdummyvariable:Entrydecision(1if Constant Coeff.&Const. 0.637*** (Std.error) (0.211) , 1) , 49 1.242*** (0.087) Dummyindependentvariables Entrycost Groupsize Party (1if 20) (1if 10) (1ifParty) ‐0.714*** ‐1.054*** ‐0.425* (0.051) (0.231) (0.230) Blockof15 periods(1if2nd) ‐0.028 (0.050) Note:*(**;***)indidcatesaone‐tailed5%(1%,0.1%)significancelevel.Thedataisclusteredattheindvidual level. 6.2.Treatmenteffectsonentryratesandwelfare(H2‐H5) Entryrates(p) AsclearlyseeninTable2andFigure1,alltwelvepredictedprimarytreatmenteffectsonentryrates findsupportinthedata.Forthepartyeffect(H2),holdingconstantthegroupsizeandentrycost,the observed entry rates are always greater in No Party than Party. For the size effect (H3), holding 19 constanttheentrycostandpartymode,theyarealwaysgreaterwith 4than10.And,forthecost effect(H4),holdingconstantthegroupsizeandpartymode,theyarealwaysgreaterwith 10than 20points.TheresultsofthelogitregressionreportedinTable3supportthesetreatmenteffects:the coefficientsofParty,Groupsize,andEntrycostareallnegativeandstatisticallysignificant.Whilethe regressionusesallthedata,thesameresults occurwhenonly therespectivesessionsofprimary treatment comparisons are employed, except for the Party dummy with 4 and 10 (the coefficientisinsignificant).Overall,ourexperimentprovidesstrongevidenceinfavorofH2toH4 withrespecttoentrydecisions.Finally,whetherentrydecisionsaremadeinthefirstorsecond15 periodsinatreatmentmakesnodifference(i.e.,thecoefficientofBlockof15periodsisinsignficant).19 Welfare( ) We next turn to H5, which addresses the comparative statics predictions of aggregate welfare, as measuredbyaveragepayoffs.Table4givespertreatmentobservedandpredicted(usingempirical idealpointdistributions)averageindividualpayoffs.Notethatallprimaryqualitativepredictionsof payoffsareidenticalforBNEandQRE ,independentofwhethertheyaretheoreticalorempirical predictions(seeappendix).Forthewelfareeffect(H5),alltwelveprimaryqualitativepredictionsfind support in the data. In terms of quantitative comparisons with the equilibrium predictions, in all treatmentstheactualaveragepayoff isgreaterthaninBNEandweaklysmallerthaninQRE , butthedataandQREpredictionstendtobemuchclosertooneanother.20 Table4:Averageindividualpayoffs–Predictionsanddata n 4 4 4 4 10 10 10 10 c 10 10 20 20 10 10 20 20 Party No Yes No Yes No Yes No Yes 69.26 70.42 64.22 68.03 64.44 68.31 62.61 64.35 Note:Standarderrorsfor ∗ 67.00 69.06 64.00 66.56 60.28 63.98 59.25 61.89 70.67 72.14 66.95 68.73 65.01 68.31 63.24 65.91 areintherange .71, .82 . Next,Table5givestheresultsofanOLSregression,clusteredbyindividualsandpoolingall data,withtheindividualpayoffinperiodtasthedependentvariableandthesamefiveindependent 19Wefindnosignificantlearningeffectsinthedatawhenusingotherspecificationsoftime. 20RecallthattheQREwasestimatedtofitthechoiceprobabilitiesoftheparticipants,notbyfittingtheexpectedpayoffsin thegame.TableB3inAppendixBshowsaveragepayoffs,brokendownbypolicylosses,entryexpenses,andthespoilsof office.TableB4showstheobservedvaluesforleadersandnon‐leaders,respectively. 20 variablesasinTable3.Ascanbeseen,allofthepredictedeffectsarehighlysignificantandlargein magnitude.And,asinthelogitregressionforentryrates,thereisnoevidenceoflearning. Table5:Random‐effectsOLSregressions(alldata) Dependentvariable:Individualperiodpayoff | Constant Coeff.&Const. 75.44*** (Std.error) (0.76) Dummyindependentvariables | Entrycost . 49 ‐14.14*** (0.91) (1if 20) ‐3.24*** (0.53) Groupsize Party (1if (1ifParty) Blockof15 periods(1if2nd) 2.59*** (0.53) ‐0.03 (0.53) 10) ‐3.18*** (0.54) Note:*(**;***)indicatesaone‐tailed5%(1%,0.1%)significancelevel.Thedataisclusteredattheindvidual level. Thereasonforthewelfaregainsfromparty‐organizedelectionsisthat,comparedtoNoParty, majoritycandidatesinPartywinmoreoftenonaveragesinceiftherearetwonominees,eachcitizen votesfortheonelocatedinthesamedirectionasherself(belowweshowthatparticipantsmostly voteinthisway).Thatis,partylabelsprovidevaluableinformationtoallthecitizenssotheoutcome morecloselyreflectsthetruedistributionofpreferences.Figure3indicatesthatforboth 4and 10(leftandrightpanel,respectively)themajoritywinsindeedsubstantiallymoreofteninPartythan No Party in situations where it might also lose.21 The only exception are majorities of nine participants,whichalwaysprovidedtheleaderinbothpartymodes. Figure3:Actualwinproportionandvotecoordinationadvantageofmajorityparties 21FigureB2inAppendixBdisplaysthefrequencydistributionsofthenumberofparticipantsperdirection. 21 6.3Completeorderingofentryratesandwelfareacrosstreatments(H6andH7) As noted earlier, because BNE produces quantitative predictions about entry and welfare for any parameter configuration, it also generates hypotheses about comparisons across treatments that differintwoorthree of thetreatmentvariables.Infact,asstatedinH6 andH7,BNEgeneratesa completestrictorderovertheeighttreatmentswithrespecttobothentryratesandwelfare. Forentryrates,thisismostclearlyseeninFigure2bytheleft‐rightorderingofthelabeled datapointsforeachtreatment:withonlyoneexception,thedatamarkersareincreasingintheBNE entryrate.Infact,outofall28possiblequalitativecomparisonsonlyonehasanunpredictedsign, namely 4,20, 10,10, ,forwhichthepredictions ∗ 0.417and 0.426areveryclosetooneanother.ThisprovidesstrongevidenceinfavorofH6.Itisalsoworth mentioningthatwhiletheBNEandQRE rates, except for , 4, modelsgeneratethesametreatmentorderingofentry 10 the latter predictions are always nearer to the data. Interestingly, relative to BNE we find over‐entry if ∗ 0.5 and (weak) under‐entry if ∗ 0.5, a patternthatwasalreadyreportedinvariousotherbinarychoice,entryexperimentsandexplained usingQRE(GoereeandHolt2005).Asnotedbefore,thelogitQREmodelalsogeneratesthisentry pattern.However,itisalsothecasethattheobservedentryratesareshifteduprelativetotheQRE fittedestimates.Finally,thecompleteorderofexpectedwelfare,asmeasuredbyaverageindividual payoffsgiveninTable4,isalsomostlyconsistentwiththeBNEandQRE predictions(notethat thetwomodelspredictsomewhatdifferentorders).Outof28possiblequalitativecomparisons,24 and25arecorrect,respectively.Thisincludesalltwelveoftheone‐variabletreatmentcomparisons discussed in the last section, and twelve and thirteen out of sixteen of the comparisons between treatmentsthatdifferedinmorethanonedimension.Thus,thedataprovidesomesupportforH7, butweakerthanthesolidsupportthatwefindforH6. 7.Experimentalresults:Individualbehavior 7.1Votingbehavior The predicted voting behavior in BNE is quite simple: 1 each candidate in No Party and each nomineeinPartyvotesforherself; 2 withtwonomineeseachnon‐nomineevotesfortheonewhose idealpointisfromherownsubsetofidealpoints,leftorright.Welabelvotingdecisionsthatare inconsistentwiththesepredictionsasunexpected.22Table6showstheobservedaverageindividual rateofunexpectedvotingforeachtreatment.Therateofeachparticipantisequallyweightedand 22Ofcourse,unexpectedvotesneveroccurfornon‐candidatesinNoParty(whoarepredictedtovoterandomly)norfor electionswithzerooroneentrant,sothesesituationsareexcludedfromtheanalysis. 22 computedbydividinghernumberofunexpectedvotesbythenumberofcasessheorheisacandidate respectivelynomineeornon‐nominee.Ascanbeseen,candidatesandnomineesdoindeedmostly voteforthemselves.Specifically,inNoParty(Party)unexpectedvotesbycandidatesornomineesare observedonly0.8to4.2(0to3.5)percentofthetime.Similarly,non‐nomineesinPartyrarelycast unexpectedvotes(only2.0to6.5percentofthetime).Thus,overallvotingbehaviorisverycloseto BNE. Table6:Observedunexpectedvotes n 4 4 10 10 4 4 10 10 c Party 10 No 20 No 10 No 20 No 10 Yes 20 Yes 10 Yes 20 Yes Averageindividualratesof unexpectedvotes(std.errors) Candidates/ Nominees Non‐nominees .042(.017) ‐ .026(.015) ‐ .025(.014) ‐ .008(.004) ‐ .035(.025) .052(.020) .007(.007) .020(.011) .000(.000) .057(.018) .000(.000) .065(.021) Note:Electionswithzerooroneentrantareexcluded.Non‐nominee’sratesareforthePartytreatmentsonly. Standarderrorsarecomputedusingthedifferencesineachindividual’srateandtheaverageindividualrate. Figure5displaysthedistributionofthenumberofunexpectedvotesacrossallparticipants, with the number of such votes on the horizontal axis (from zero to the maximum observed of eighteen)andtherespectivefractionofindividualsontheverticalaxis.Thefigurealsoseparatesout the observations for independent candidates, nominees, and non‐nominees as they face different decision tasks.23 The diagonal axis shows combinations of party mode and group size, with data pooledforbothentrycosts.Thefigureindicatesthatonlyveryfewparticipantsvotedunexpectedly. Specifically,77.8and82.5percentoftheindependentcandidatesin4‐and10‐persongroupsalways votedaspredicted,andthesenumbersare87.5and100percentfornomineesand71.9and57.5 percentfornon‐nominees,respectively.Andoftheparticipantswhocastatleastoneanomalousvote, manydidsojustonceorlittlemorethanthis.Hence,thefewdeviationsfromequilibriumvotingare duetothebehaviorofonlyahandfuloftheparticipantsintheexperiment.Forexample,thethree largestindividualcountsofunexpectedvotesareseventeenbyacandidatein , 4 and 23 Compared to nominees in Party, there can be more than two contenders to choose from by candidates in No Party, includingthemselves.And,non‐nomineesinPartymustrealizethattheirexpectedpayoffisgreateriftheyvoteforthe contenderwhoseidealpointisfromthesamedirectionastheownone,whilenomineessimplyvoteforthemselves. 23 thirteen and eighteen by two non‐nominees in , 10 , where the latter of them never entered. Figure5:Numberofunexpectedvotesperindividual Note:Thefractionsareshownperindependentcandidates,nominees,andnon‐nomineesandarepooledfor bothentrycosttreatments,sothefigureconnectsonlythepartymodeandgroupsize. Next, we analyze whether the observed rates of unexpected voting depend on the ideal point.24Figure6showstheratesontheverticalaxisandtheabsolutedistanceintheownidealpoint andthecloser“median”idealpoint,50or51,onthehorizontalaxis.Thus,atzeroonthehorizontal axisbothidealpointscoincideandat49thedistancebetweenthemismaximal.Thefigureshowsthe data (lines with spikes) and respective logarithmic trend lines for candidates and nominees combined and for non‐nominees (thick black and gray lines, respectively), and also separate logarithmictrendsforcandidatesandnominees(dashedblacklines)andnon‐nomineeswhodidand did not enter (dashed gray lines). As can be seen, unexpected voting of candidates and nominees doesn’t depend on the own ideal point (Spearman’s 0.037and 0.034 for each role, respectively; differenceisinsignificant, 0.018 for both roles combined and 0.799) and is higher for candidates (but the 0.115,individuallevelone‐tailedWilcoxon‐Mann‐Whitneytest,fifteen andfourparticipantsperrole). 24Thefollowinganalysispoolsalldataandutilizesonlyparticipantswhocastatleastoneunexpectedvoteintheentire session.Usinginsteadallparticipantsinthenonparametrictestsyieldsmanytiesanddecreasesthep‐values,exceptfor twoincreaseswheretheresultsarestatisticallysignificantwhetherornotallindividualsareconsidered. 24 Figure6:Unexpectedvotingperabsolutedistanceinownandmedianidealpoints Note:Thefiguredepictsunexpectedvotingratesperabsolutedistanceinownandmedianidealpointsfornon‐ nomineesandforcandidatesandnomineescombined.Atzero,theownidealpointis50or51,andat49(50 1or100 51)thedistanceismaximal.Thedashedlinesshowtherespectivelogarithmictrends. Bycontrast,weobserveanegativeassociationbetweenunexpectedvotingandtheabsolute distanceintheownandmedianidealpointsfornon‐nominees( 0.352 for entrants and non‐entrants; 0.424overall,and 0.363and 0.012). In Party, note that anomalous voting of non‐ nomineestendstobesmallerwhentheyentered( 0.006,one‐tailedWilcoxonsigned‐rankstest, 25individuals)andespeciallyhighforidealpointswithinabouttenpointsofthemedian.Also,the rates are always greater in the non‐nominee than nominee role ( 0.003, same test, 26 individuals).Overall,ourresultsindicatethatamongthosewhovoteunexpectedly,candidatesand nominees make “plain” errors while for non‐nominees models that incorporate the pecuniary consequencesoferroneousvotingandbeliefsaboutnomineeidealpointsseemmoresuitable.25This also makes sense, since the expected payoff‐maximizing vote is more obvious for candidates and nominees than for non‐nominees,26 which is also supported by learning towards BNE voting of 25Forexample,QRE(McKelveyandPalfrey1995,1998)allowsfordecision‐makingerrorsandthusunexpectedvoting.It alsopredictsthatsuchvotesgetmorefrequenttheneareranidealpointisto50or51,astheexpectedpolicylossifsomeone elseiselecteddecreasestowardsthemedian. 26Table6suggeststwomorepatternsofaverageindividualratesofunexpectedvotingforprimarycomparisons.First,the ratesarealwaysweaklygreaterwithalowerthanlargerentrycostforcandidatesandnominees( 0.035,one‐tailed Wilcoxonsigned‐rankstestforbothrolescombined,eighteenindividuals),butnopatternisseenfornon‐nominees(albeit, 0.074infavorofgreaterrateswithalowercost,sametest,26individuals).Second,theratesarealwaysgreaterin smallerthanlargergroupsforcandidatesandnominees( 0.029,one‐tailedWilcoxon‐Mann‐Whitneytest,twelveand sevenindividualsin4‐and10‐persongroups,respectively),andthereverseisseenfornon‐nominees(butthedifference 25 participantsinthelatterrole:whileunexpectedvotingdoesn’tdependontheperiodforcandidates andnomineescombinedusingall60periodsorthefirstandlast30periodsonly(Spearman’s 0.112, 0.247,and 0.029; 0.188),itdoessonegativelyfornon‐nomineesforall60andlast 30periods( 0.312and 0.378; ( 0.402). 0.159, 0.093and0.003,respectively)butnotthefirst30periods 7.2.Individualentrybehavior Here we present individual level data of entry behavior. Figure 7 depicts cumulative frequency distributions of actual average individual entry rates for and , 20, 10 ,whichhavewith ∗ , 10, 4 0.844and0.152themostextremeBNEentry Figure7:Cumulativedistributionofindividualentryrates(forlowestandhighestBNEentry) probabilities. The distributions of the six other treatments tend to fall within these two distributions.27Clearly,thereismarkedheterogeneityinentryratesamongparticipants.Further,the 50percenthorizontallineintersectsthetwodistributionsintheexpectedorder,butmoretotheleft andrightrelativeto ∗ 0.844and0.152,respectively.ThisisconsistentwithQRE,whichpulls theentryratesawayfromBNEtowards1/2. ThescatterplotinFigure8shows,foreachparticipant,theaverageentryratewith 10 and 20 points on the horizontal and vertical axis, respectively. Each marker represents one is not significant, 0.241,same test, nine and seventeen individuals). Finally, for the two possible within‐subject comparisons,unexpectedvotingisneitherassociatedbetweenbothentrycostsforcandidatesandnomineescombinedand fornon‐nomineesnorbetweenthenomineeandnon‐nomineerolesinParty(Spearman’s 0.026,0.105,and0.058; 0.611).Duetofewunexpectedvotesbyfewindividuals,allthesefindingsarehardtointerpretaswewouldneedto controlfor,say,idealpointsandexpectedpayoffs. 27SeeFigureB3inAppendixB.Thecumulativedistributionsofentryratesof , 10, 4 and , 10, 4 intersectonce. 26 individual,wheredifferentsymbolsindicatedifferentcombinationsofthepartymodeandgroupsize (a few markers are somewhat magnified in proportion to the number of individuals at that same coordinate).Asexpected,independentofpartymodeandgroupsize,mostindividualsentermore often when it costs less (i.e., have markers below the diagonal; one‐tailed Wilcoxon signed ranks tests, 0.001foreachpartymodeandgroupsizecombination).Specifically,only28outofall148 participantsenteredmoreoftenwithalargercost,andmostofthemarefoundclosetothediagonal. Also, fourteen participants have the same entry rates with both costs (i.e., with markers on the diagonal),ofwhomoneneverenteredandsixalwaysentered. Figure8:Entrycosteffect Note:Eachparticipant’saverageentryratewith 10and20pointsisshownonthehorizontalandvertical axis,respectively.Eachmarkerrepresentsoneparticipant,whereafewmarkersaresomewhatmagnifiedin proportiontothenumberofindividualsatthatcoordinate. Next,weexploretheextenttowhichobservedentrydecisionsareconsistentwithcutpoint strategies,whicharegenerallyoptimalbestresponsesinthisgame.Specifically,foreachparticipant and treatment we estimate a cutpoint pair as follows, assuming that individuals use such a decisionrule.Foreachparticipantandtreatment,wehave anidealpointandentrydecision, 101 , , , .Fixingacutpointpair , , ,with1 50and duetosymmetry,observation intreatment ismarkedconsistentwiththiscutpoint pairif 27 30periodsorobservationalpairsof , , , , , ⋁ and , , , 0,or and , 1, andmarkedaserrorotherwise.28And,asanestimatorofparticipant ’scutpointpairwechoosethe onethatminimizesthetotalnumberoferrors,andiftherearemoresuchpairswetaketheaverage ofthem.Usingthisprocedure,wecomputethedistributionofindividualclassificationerrorratesand cumulativefrequencydistributionsofestimatedindividualcutpointpairs. Figure9:Distributionofclassificationerrorrates Note:Individualerrorratesarepooledforbothentrycosts. Figure9depictstheoveralldistributionofindividualerrorrates,whicharepooledforboth entrycosts.Forabout25(50;75)percentoftheparticipantstheerrorrateis 0.1(0.2;0.3),and onlythreepercenthaveerrorratesof0.4orhigherbutnonereachesthe0.5.Figure10showsthe cumulative distributions of estimated individual cutpoint pairs for , 20, , 10, 4 and 10 , which have the most moderate and most extreme BNE cutpoint pairs of 42, 59 and 8, 93 ,respectively.Duetosymmetryweonlyshowtheleftcutpoints,superimposing the data from both directions.29 There is marked heterogeneity among the estimated individual cutpointpairs.Finally,the50percenthorizontallineandtwodistributionsintersectintheexpected order,andclosetotheeightandsomewhatclosertothemedianthanthe42predicted,respectively. 28Acitizen’sdiscreteidealpointmatchesacutpointwithstrictlypositiveprobabilityand,forourparameters,inequilibrium shecanraiseherexpectedpayoffbyentering.Bycontrast,GroßerandPalfrey(2014)usecontinuoustypessoacitizen locatedatacutpoint,whichalmostsurelyneveroccurs,isindifferentbetweenenteringandnotenteringandassumedto enter. 29Thedistributionsoftheothersixtreatmentsfallwithinthesetwodistributions.SeeFigure4BinAppendixB. 28 Figure10:Cumulativedistributionsofindividualcutpointpairs(forlowestandhighestBNEentry) Note:Duetosymmetry,weonlypresenttheleftcutpoints,superimposingthedatafrombothdirections. Table 7 gives the fraction of average individual positive differences in the estimated “left cutpointwith 10pointsminusleftcutpointwith 20points.”Thefractionrangesfrom0.58to 0.78,comparedto1inBNE,andaveragedifferencesrangefrom4.27to8.64(inbrackets). Table7:Fraction(average)ofpositiveindividualcutpointdifferences 20 Leftcutpoint 10leftcutpoint NoParty Party 4 0.61(8.64) 0.60(6.66) 10 0.78(8.77) 0.58(4.27) Note:Partywith 10hastwoindividualswithzerodifference,andeachoftheotherthreecombinationsof thepartymodeandgroupsizehasoneindividualwithzerodifference. Overall,participantsdonotfollowsharpcutpointstrategies.Whilethisisinconsistentwith optimizingbehaviorandwithBNE,itisverymuchinlinewiththebehavioraltheorybehindregular QRE. Participants in this experiment do not always optimize, but generally choose better entry actionsmoreoftenthanworseones.Thisisalsoverymuchinlinewithresultsfromcutpointanalysis inbinarychoiceturnoutgames(LevineandPalfrey2007),wherethevote/abstainchoiceissimilar innaturetoenter/notenter. 8.Conclusions Thispaperreportsalaboratorystudyofacitizen‐candidateentrygamewithincompleteinformation about the ideal points of citizens and candidates. Ideal points are privately observed iid random draws from a uniform distribution over the set of feasible common policies. Without ideological politicalparties,citizenshavenoextrainformationabouttheidealpointsofindependentcandidates at the time of voting. By contrast, with parties they learn whether a party nominee’s ideal point belongstotheleftorrighthalfofthecommonpolicyset,butnotherexactidealpoint.Thestudy 29 comparesbothpartymodesin4‐or10‐persongroupsandwithtwodifferententrycosts.Intheentry game, symmetric BNE makes sharp and mostly unique predictions of cutpoint pairs. That is, in equilibriumeachcitizenwithanidealpointatormoreextremethanaleftorrightcutpointrunsfor office,whileeveryonewithanidealpointstrictlyinbetweenthetwocutpointsdoesn’trun.Thus,the modelpredictspoliticalpolarizationinthesensethattheidealpointsofpoliticiansaremoreextreme thanthoseinthegeneralpolity.Finally,thecleardistributionalBNEentrypredictions,fromwhich wealsoderiveimplicationsaboutwelfare,havetheadvantageofbeingstraightforwardtotestinthe laboratory. Themainexperimentalresultscanbesummarizedasfollows.First,allprimarycomparative staticspredictionsofentryratesandeconomicwelfarearesupportedbythedata.Mostimportantly, inefficient political polarization arises in all treatments. Second, participants appear to follow cutpointstrategieswithsomeerror,andthedistributionofestimatedcutpointsindicatesignificant heterogeneity.Consequently,insteadofstepfunctions,actualentryratesareU‐shapedfunctionsof theidealpointsinalltreatments,withover‐entrywhentheBNEentryprobabilityissmallerthan50 percent and (weak) under‐entry when it is greater than 50 percent. Because participants with moderateidealpointssometimesenterandwin,weobservelesspoliticalpolarizationandthuson averageasmallertotalpolicylossandgreatereconomicwelfarethanpredicted(withover‐entry,the greater total expense is exceeded by the smaller policy loss). The primary comparative static predictionsoflogitQREareallsupportedinthedata,astheyarethesameasthoseofBNE,butin addition QRE tracks the levels and patterns of entry and welfare much better. Third, ideological partiesleadtomorepolarization,butatthesametimealleviatesomeoftheinefficienciescausedby extreme policies because knowledge of a nominee’s party affiliation enables implicit vote coordinationinfavorofthemajority,whichismorelikelytowinthanintheabsenceofparties. Overall,thisstudyshowsempiricallythatincompleteinformationinelectionscanindeedlead toinefficientpoliticalpolarizationthroughtheinformationaleffectsonentry.Inordertocheckthe robustnessofourfindings,futureresearchcouldforexampleexaminevariousdifferentdistributions ofidealpoints(e.g.,asymmetricdistributions)anddefaultpolicies.Anotherinterestingdirectionis to compare different voting systems (e.g., Bol, Dellis, and Oak, forthcoming) and to study more explicitlytheformationofpartiesandhowtheyselecttheirnominees,suchasviaprimaries(e.g., Hansen2014).Wehopethatthesefindingsmayinspirefurthertheoreticalandempiricalworkto shed more light on the non‐trivial, realistic political processes such as those explored in citizen‐ candidateentrygames. 30 References Ansolabehere, Stephen, Jonathan Rodden, and James M. Snyder Jr. 2008. “The strength of issues: Usingmultiplemeasurestogaugepreferencestability,ideologicalconstraint,andissuevoting.” AmericanPoliticalScienceReview102(2):215‐32. Bafumi,Joseph,andMichaelC.Herron.2010.“Leapfrogrepresentationandextremism:Astudyof AmericanvotersandtheirMembersofCongress.”AmericanPoliticalScienceReview104(3):519‐ 42. Besley, Timothy, and Stephan Coate. 1997. “An economic model of representative democracy.” QuarterlyJournalofEconomics112(1):85‐114. Bol, Damien, Arnaud Dellis, and Mandar Oak. “Comparison of voting procedures using models of electoralcompetitionwithendogenouscandidacy.”InThepoliticaleconomyofsocialchoice,eds. M.GallegoandN.Schofield.Heidelberg:Springer,forthcoming. Bol,Damien,ArnaudDellis,andMandarOak.2015.“Endogenouscandidacyinelectoralcompetition: Asurveyonthenumberofcandidatesandtheirpolarization.”Workingpaper. Cadigan,John.2005.“Thecitizencandidatemodel:Anexperimentalanalysis.”PublicChoice123(1‐ 2):197‐216. Camerer, Colin, and Dan Lovallo. 1999. “Overconfidence and excess entry: An experimental approach.”AmericanEconomicReview89(1):306‐18. Campbell,Angus,PhilipE.Converse,WarrenE.Miller,andDonaldE.Strokes.1960.TheAmerican voter.NewYork:Wiley. DiMaggio,Paul,John Evans,andBethanyBryson.1996.“HaveAmericans’socialattitudesbecome morepolarized?”AmericanJournalofSociology102(3):690‐735. Downs,Anthony.1957.Aneconomictheoryofdemocracy.NewYork:HarperandRow. Elbittar, Alexander, and Andrei Gomberg. 2009. “An experimental study of the citizen‐candidate model.” In The Political Economy of Democracy, eds. E. Aragonés, C. Beviá, H. Llavador, and N. Schofield.Bilbao,Spain:FundaciónBBVA,31‐46. Feddersen, Timothy J. 1992. “A voting model implying Duverger’s law and positive turnout.” AmericanJournalofPoliticalScience36(4):938‐62. 31 Feddersen,TimothyJ.,ItaiSened,andStephenG.Wright.1990.“Rationalvotingandcandidateentry underpluralityrule.”AmericanJournalofPoliticalScience34(4):1005‐16. Fiorina,MorrisP.,SamuelJ.Abrams,andJeremyC.Pope.2006.Culturewar?TheMythofapolarized America.2nded.NewYork:PearsonLongman. Fischbacher, Urs, and Christian Thöni. 2008. “Excess entry in an experimental winner‐take‐all market.”JournalofEconomicBehavior&Organization67(1):150‐63. Goeree, Jacob K. and Charles A. Holt. 2005. “An explanation of anomalous behavior in models of politicalparticipation.”AmericanPoliticalScienceReview99(2):201‐13. Goeree, Jacob K., Charles A. Holt, and Thomas R. Palfrey. 2005. “Regular quantal response equilibrium.”ExperimentalEconomics8(4):347‐67. Goeree, Jacob K., Charles A. Holt, and Thomas R. Palfrey. 2016. Quantal response equilibrium: A stochastictheoryofgames.PrincetonUniversityPress. Goeree,JacobK.andJensGroßer.2007.“Welfarereducingpolls.”EconomicTheory31(1):51‐68. Greiner, Ben. 2015. “Subject pool recruitment procedures: Organizing experiments with ORSEE.” JournaloftheEconomicScienceAssociation.1(1):114‐25. Großer,Jens,andThomasR.Palfrey.2009.“Acitizencandidatemodelwithprivateinformation.”In ThePoliticalEconomyofDemocracy,ed.E.Aragonés,C.Beviá,H.Llavador,andN.Schofield.Bilbao, Spain:FundaciónBBVA:15‐29. Großer,Jens,andThomasR.Palfrey.2014.“Candidateentryandpoliticalpolarization:Anantimedian votertheorem.”AmericanJournalofPoliticalScience58(1):127‐43. Hamlin,Alan,andMichaelHjortlund.2000.“Proportionalrepresentationwithcitizencandidates.” PublicChoice1033(3‐4):205‐30. Hansen, Emanuel. 2014. “Political competition with endogenous party formation and citizen activists.”UniversityofCologne.Workingpaper. Hotelling,Harold.1929.“Stabilityincompetition.”EconomicJournal39(153):41‐57. Kamm, Aaron. 2016. “Plurality voting versus proportional representation in the citizen‐candidate model:AnExperiment.”UniversityofAmsterdam.Workingpaper. Levine, David K., and Thomas R. Palfrey. 2007. “The paradox of voter participation? A laboratory study.”AmericanPoliticalScienceReview101(1):143‐58. 32 McCarty,Nolan,KeithT.Poole,andHowardRosenthal.2006.PolarizedAmerica:Thedanceofideology andunequalriches.Cambridge,MA:MITPress. McKelvey,RichardD.,andThomasR.Palfrey.1995.“Quantalresponseequilibriumfornormalform games.”GamesandEconomicBehavior10:6‐38. McKelvey,RichardD.,andThomasR.Palfrey.1998.“Quantalresponseequilibriumforextensivefor games.”ExperimentalEconomics1:9‐41. Osborne,MartinJ.,andAlSlivinski.1996.“Amodelofpoliticalcompetitionwithcitizencandidates.” QuarterlyJournalofEconomics111(1):65‐96. Palfrey,ThomasR.1984.“Spatialequilibriumwithentry.”ReviewofEconomicStudies51(1):139‐56. Palfrey,ThomasR.andKeithT.Poole.1987.“Therelationshipbetweeninformation,ideology,and votingbehavior.”AmericanJournalofPoliticalScience31(3):511‐30. Palfrey,ThomasR.“AmathematicalproofofDuverger’slaw.”1989.InModelsofstrategicchoicein politics,ed.P.C.Ordeshook.AnnArbor:UniversityofMichiganPress:69‐91. Snyder, James M. Jr., and Michael M. Ting. 2002. “An informational rationale for political parties.” AmericanJournalofPoliticalScience46(1):90‐110. Wittman, Donald. 1983. “Candidate motivation: A synthesis of alternative theories.” American PoliticalScienceReview77:142‐57. 33 AppendixA:TheoreticalDerivations Bestresponseentrystrategies Considerourcitizen‐candidateentrygamewithoutpartiesandwithadiscrete,uniformcumulative probabilityfunctionofidealpoints citizens /100, ∈ 1,2, … ,100 anddensity 1/100.Ifall areusingcutpointstrategy(cf. 2 inthemaintext) ̌ 0 ∈ 1, … , 1 ∈ 1, … , 1 , … ,100 , ∪ thentheexpectedpayoffofacitizentype forenteringthepoliticalcompetition, ̌ | , ̌ 1 1 1 1 andherexpectedpayofffromnotentering, ̌ | , ̌ 0 1,isgivenby 1 1 1 1 1 1 , | ∉ 1, … , 1 1 2 0,by , | ∈ 1 1, … , | ∉ , , 1, … , 3 1 . Theexpectedpolicylossterms , text,respectively.Relating 2 andrearrangingyieldsthebestresponseentrystrategy 3 1 and and 1 arespecifiedin 4 and 5 inthemain inthemaintext. Withparties,ifallcitizens areusingcutpointstrategy 1 ,thentheexpectedpayoffof a citizen type in the Right Party for entering the political competition, ̌ 1, is given by (and analogousforacitizenintheLeftParty) | , ̌ 1 1 1 1 1 1 2 1 2 1 1 1 , | ∈ 1, … , 34 , 1 2 | ∈ , … ,100 4 1 1 2 , | ∈ 1, … , 1 2 1 0 1 1 1 1 1 2 1 1 2 , 1 1 , | ∈ , | ∈ , , … ,100 1 5 , … ,100 1 2 , … ,100 . 1 2 | ∈ 1, … , Thethreeexpectedpolicylossterms | ∈ , 1, … , | ∈ 1, … , 2 1 0,isgivenby andherexpectedpayofffromnotentering, ̌ | , ̌ 1 2 1 | ∈ , , . withpartiesarespecifiedin 7 to 9 andthewin probabilityoftheRightParty, ,isdescribedonp.10inthemaintext.Then,relatingbothconditions andrearrangingyieldsthebestresponseentrystrategy 6 inthemaintext. Averageexpectedwelfare Without parties, the ex‐ante (i.e., before citizen ideal points are randomly drawn), the average or ∑ expectedindividualpayoff , | isgivenby 1 1 1 , | | 1 1 ∙ 1 2 | 1 | 1 | | | andwithpartiesitisgivenby , 1 ∙ 1 | 1 35 | 7 6 2 1 2 ∙ 1 2 1 | 50 | | | | where 2 | 50 | 50 1 | 1 1 2 1 | 1 | | | 1 | | | 1 | | | | 50 | , istheLeftParty’sprobabilityofwinningand 0 1/2 1 0 0. 0 QREentryconditions Here, we derive the logit QRE conditions of entry probabilities, allowing for erroneous binary decisionsateachidealpoint ∈ 1,2, … 100 .If 0,theneachcitizentype makespurelyrandom decisions(i.e.,enterswithprobabilityone‐half).If ∞,theneveryonefollowstheBNEcutpoint strategy.Sincethereareone‐hundreddifferentcitizentypes ,wemustsimultaneouslysolveone‐ hundredconditions.Withoutparties,theQREconditionforacitizentype isgivenby 1 , 1 TheLHSgivesherentryprobability andonRHS . 8 denotesthevectorofentryprobabilitiesofall feasibletypes ∈ 1,2, … ,100 thateveryothercitizen maypossess.Sinceidealpointsareiid random draws from a uniform distribution, each occurs with probability 1/100 so the average entryprobabilityofeachothercitizen isgivenby 1 100 36 . 9 Further,RHScontainscitizen ’sexpectednetpayofffromentering(cf. 3 inthemaintext), whichisgivenby , 1 1 | ∈ 1, … ,100 , 1 1 1 1 | ∈ 1, … ,100 , 10 , with , 1 | ∈ 1, … ,100 | 1 1 | 11 , 12 100 and , wheretheexpectedpolicylosses | ∈ 1, … ,100 11 and | 1 | 100 12 accountforallfeasibleidealpointsofothers(i.e., notjustthoseofthemoreextremeentrantsasdictatedbytheBNEcutpointpair). Then, for a given the one‐hundred equilibrium conditions of the form simultaneouslysolvedfor 8 are 1, … ,100todeterminetheQREvectorofentryprobabilities, . Next, with parties we need to distinguish between entrants from the Left and Right Party, respectively, so we replace the average entry probability of each other citizen 9 by the probabilitiesthat entersfromtheleftorrightdirection,respectively: 1 50 13 , 14 . 15 and 1 50 wheretheaverageindividualentryprobabilityis TheRHSof 8 containscitizen ’sexpectednetpayofffromentering(cf. 6 inthemain text),whichforarighttype ∈ 51, … ,100 isgivenby(andsimilarforalefttype ∈ 1, … ,50 ) , 1 1 1 1 | ∈ 1, … ,100 , 1 ∙ 1 , 37 | ∈ 51, … ,100 16 1 | ∈ 1, … ,50 , 1 1 1 2 1 1 1 2 1 | ∈ 51, … ,100 , , with , 1 | ∈ 1, … ,100 1 | ∈ 51, … ,100 , | 1 1 | , 17 , 18 19 100 | | 50 and , whereheexpectedpolicylosses | ∈ 1, … ,50 17 to 1 50 18 accountforallfeasibleidealpointsofothers,and 0 1/2 1 givesthewinprobabilityoftheRightPartywith for a given the one‐hundred equilibrium conditions of the form for 1, … ,100todeterminetheQREvectorofentryprobabilities, 0 0.Then, 0 8 are simultaneously solved . FigureA1:QREdistributionsofentryprobabilities‐Example 38 AppendixB:SupplementaryTablesandFigures TableB1:Entryrates‐Predictionsanddata n 4 4 4 4 10 10 10 10 c Party 10 10 20 20 10 10 20 20 No Yes No Yes No Yes No Yes ∗ ( .687 .673 .560 .496 .519 .445 .426 .321 ∗ ) .840(.844) .680(.671) .400(.417) .340(.364) .420(.426) .280(.256) .200(.181) .160(.152) ( ) .603(.602) .569(.570) .457(.459) .434(.436) .465(.465) .424(.423) .331(.330) .303(.302) Note:Standarderrorsof areallintherange .013, .016 .BNEisindicatedbyanasteriskandQREby ,the maximumlikelihoodestimateofthedegreeoferror. TableB2:Averagepayoffs–Predictionsanddata n 4 4 4 4 10 10 10 10 c 10 10 20 20 10 10 20 20 Party No Yes No Yes No Yes No Yes ∗ ( ∗ ) 66.98 (67.00) 69.09(69.06) 64.59 (64.00) 66.69(66.56) 59.71 (60.28) 61.24(63.98) 57.59 (59.25) 59.90 (61.89) 69.26 70.42 64.22 68.03 64.44 68.31 62.61 64.35 Note:Standarderrorsfor ( ) 69.91(70.67) 71.96(72.14) 66.65 (66.95) 68.41(68.73) 65.45(65.01) 68.36 (68.31) 63.20(63.24) 65.94 (65.91) areintherange .71, .82 . TableB3:Averagepayoffs,policylosses,andentryexpenses–Predictionsanddata Treatment n 4 4 4 4 10 10 10 10 c 10 10 20 20 10 10 20 20 Party No Yes No Yes No Yes No Yes Payoffs 69.26 70.42 64.22 68.03 64.44 68.31 62.61 64.35 Note:Standarderrorsfor and .13, .34 ,respectively. ∗ 67.00 69.06 64.00 66.56 60.28 63.98 59.25 61.89 Policylosses 70.67 72.14 66.95 68.73 65.01 68.31 63.24 65.91 ̅ 25.12 24.10 25.83 23.30 30.87 27.74 29.38 29.74 ̅ 25.81 25.48 28.91 27.42 35.96 33.96 37.63 35.58 areintherange .71, .82 ,andfor ̅ 39 ∗ Entryexpenses ̅ 24.55 6.87 23.41 6.73 25.12 11.20 23.81 9.92 30.84 5.19 27.96 4.45 30.66 8.52 28.56 6.42 and ∗ 8.44 6.71 8.33 7.27 4.26 2.56 3.62 3.03 Bonus 6.02 5.70 9.18 8.71 4.65 4.23 6.60 6.04 / 1.25 1.25 1.25 1.25 0.50 0.50 0.50 0.50 theyareintherange .69, .80 TableB4:Observedaveragepayoffs,policylosses,andentryexpensesofleadersandnon‐leaders Leader No Yes n 4 4 4 4 10 10 10 10 4 4 4 4 10 10 10 10 c 10 10 20 20 10 10 20 20 10 10 20 20 10 10 20 20 Party No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes 60.65 62.23 57.19 61.88 61.04 65.34 60.12 62.00 95.11 95.00 85.30 86.50 95.00 95.08 85.00 85.50 Note: For non‐leaders, standard errors of , ̅ , and .15, .36 ,respectively.Forleaders,standarderrorsof and ̅ 33.49 32.13 34.44 31.07 34.30 30.82 32.64 33.04 0 0 0 0 0 0 0 0 5.86 5.64 8.37 7.06 4.66 3.84 7.24 4.96 9.89 10.00 19.70 18.50 10.00 9.92 20.00 19.50 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 5 5 5 5 5 5 5 5 are in the range . 74, .98 , . 70, .89 , and arebothintherange .00, .34 . FigureB1:Entryratesperidealpointsfornormalizeddistancestomedianidealpoint– Predictionsanddata 40 41 FigureB2:Frequencyofparticipantswithidealpoints 51, … ,100 FigureB3:Cumulativefrequencydistributionsofaverageindividualentryrates 42 FigureB4:Cumulativefrequencydistributionsofestimatedindividualcutpointpairs 43 Onlinesupportingmaterial SampleInstructions(Party, 4, 10) Instructions Thank you foragreeing toparticipateinthisdecision‐makingexperiment.Youwillreceive$7for participating,plusadditionalearningsduringtheexperimentthatdependonyourowndecisions,the decisionsofothers,andchance.Yourearningsintheexperimentareexpressedinpoints.250points are worth $1. At the end of the experiment, your total earnings in points will be exchanged into dollarsandpaidtoyouincash.Nootherparticipantwillbeinformedaboutyourpayment! Pleaseswitchoffyourcellphone,remainquiet,anddonotcommunicatewithotherparticipantsduring theentireexperiment!Raiseyourhandifyouhaveanyquestions,andoneofuswillcometoyouto answerthem. PartsandDecisionRounds Theexperimentconsistsoftwoparts,labeledPart1andPart2.Eachparthas30decisionrounds.We willreadyoutheinstructionsforPart1now.AftercompletingPart1wewillreadinstructionsfor Part2. InstructionsPart1 YourGroup Atthebeginningofeachround,allparticipantswillberandomlydividedintogroupsof4.Thus,in additiontoyourself,therewillbethreeothermembersinyourgroup.Notethatyouwillnotknow whotheseothermembersare.Also,pleasenotethatthegroupsarecompletelyindependentofeach other.Inanyparticularroundyouwillhavenointeractionatallwithparticipantsintheothergroups. GroupDecisionProblem Ineachround,yourgroupwilldecideonagroupoutcome,whichcanbeanyintegerbetween1and 100.Thisisdonebyelectingagroupleader,whosebestoutcomewillbeimplementedasthegroup outcome.Eachofyouwillbetoldwhatyourownbestoutcomeisinthatround,anddifferentgroup memberswillgenerallyhavedifferentbestoutcomes.Youreceivethehighestbenefitsifthegroup outcomeequalsyourownbestoutcome,andreceivelowerbenefitsthefurtherthegroupoutcomeis fromyourownbestoutcome.Wewillexplaintheexactpayoffdetailsshortly. RandomAssignmentofBestOutcomes Howisyourownbestoutcomeassignedinaround?Thisisdonebythecomputer.Itwillrandomly assigneachmemberinyourgroupabestoutcomebychoosingoneoftheintegersfrom1to100,with eachintegerbeingequallylikely.Thecomputerdoesthiscompletelyindependentlyforeachgroup member,sotypicallydifferentmemberswilleachhaveadifferentbestoutcome.Youareonlytold yourownbestoutcome.Youarenottoldthebestoutcomeofanyothergroupmember.Therefore, knowing your own best outcome gives you no information whatsoever about anybody else’s best outcome.Allyouknowaboutanothergroupmember’sbestoutcomeisthatitissomeintegerfrom1 to 100, with an equal chance of being any of those integers. Importantly, best outcomes are reassignedindependentlyineachround,soyourownbestoutcomewilltypicallyvaryfromroundto round, and your past assigned best outcomes have nothing to do with your future assigned best outcomes. 44 LowNumberandHighNumberMembers If your best outcome is 50 or less, then we refer to you as a “Low number” member. If your best outcomeis51orgreater,thenwerefertoyouasa“Highnumber”member.Thesameholdsforthe othermembersinyourgroup. Decision‐MakingStages Eachroundconsistsoftwodecision‐makingstages,labeledStage1andStage2. Stage1 Eachgroupmemberwilldecideonwhetherornottoenterasacandidateintheupcomingelection forgroupleaderofthecurrentround.Whoeverwillbecomethegroupleaderreceivesabonusof5 points.However,ifyouchoosetoenterasacandidateforleadership,thenyoumustpayanentryfee of10points.Ifyouchoosenottoenter,thenyoudonotpayanyfee(0points).Thewinnerofthe electionwillbethegroupleader,andthegroupoutcomecoincideswithherorhisbestoutcome. Stage2 In this stage, if more than one low number member entered in Stage 1, then the computer will randomlyselectoneofthemfortheelectionwithanequalchanceforeach.Thisselectedmemberis called“LowNumberCandidate.”Similarly,ifmorethanonehighnumbermemberenteredinStage 1,thenthecomputerwillrandomlyselectoneofthemfortheelectionwithanequalchanceforeach. Thisselectedmemberiscalled“HighNumberCandidate.”Eachgroupmembercastsasinglevotefor exactlyonecandidate.Thecandidatesareindicatedonthecomputerscreen,representedbydecision buttons labeled with their member ID label letter and whether they are from Low or High. For example,ifmemberXandmemberQaretherespectivelowandhighnumbercandidates,thenthere willbetwodecisionbuttonswithlabels“LowNumberCandidateX”and“HighNumberCandidateQ”, respectively.Ifnolow(high)numbermemberenteredinStage1,thenthereisnolow(high)number candidate. Eachgroupmember,whetheracandidateornot,thenvotesforoneofthecandidatesbyclickingon therespectivedecisionbutton,possiblyforher‐orhimself.Ifyouareacandidateyourself,thenthe labelonyourdecisionbuttonishighlightedinred.Thecandidatewiththemostvotesinyourgroupis theelectedgroupleader.Ifthecandidateshavethesamenumberofvotes,thenoneofthemwillbe randomlyselectedasthegroupleader,withanequalchanceforeach. Specialcase:IfnogroupmemberenteredasacandidateinStage1,thenthereisnovoting.Instead, oneofthefourgroupmemberswillberandomlyselectedasthegroupleader,withanequalchance foreach.Pleasenotethatthisrandomlyselectedgroupleaderdoesnotpaytheentryfee(because sheorheactuallydidnotenter)butnonethelessstillreceivestheleaderbonusof5pointsandthe groupoutcomeequalsherorhisbestoutcome. Itisimportanttorememberthatthegroupoutcomeisalwaysexactlyequaltothebestoutcomeof the group leader, regardless of whether she or he entered and won the election or was selected randomlyafternobodyentered. YourRoundEarnings 45 Yourroundearningswilldependonthreefactors:thedistancebetweenyourownbestoutcomeand thegroupoutcome,whetheryouchosetoentertheelectionasacandidate,andwhetheryouarethe groupleader.Thereareonlyfourpossibilities: (i)Youwereacandidatebutnotelectedtobegroupleader Inthiscase,yourroundearningsequal“100pointsminustheabsolutedistancebetweenyourown bestoutcomeandthegroupoutcome,minusthe10pointsentryfee”or: , | 100 | 10. Example:Yourownbestoutcomeis60,andthegroupoutcomeis91,thenyourroundearningsare 100 |60 91| 10 59points. (ii)Youwereacandidateandelectedtobegroupleader Inthiscase,yourroundearningsareequaltoexactly95points,or: | 0 100 100 5 | 10 5 10 95. (iii)Youwerenotacandidateandwerenotthegroupleader Inthiscase,yourroundearningsequal“100pointsminustheabsolutedistancebetweenyourown bestoutcomeandthegroupoutcome”or: | 100 |. Example:Yourownbestoutcomeis60,andthegroupoutcomeis15,thenyourroundearningsare 100 |60 15| 55points. (iv)Nobodyenteredasacandidateandyouwererandomlyselectedtobegroupleader Inthiscase,yourroundearningsareequaltoexactly105points,or: 100 100 | 0 , 5 105. | 5 Observethatifyouareacandidate,yourexpectedroundpayoffishighestifyouvoteforyourself. Thisisbecauseincaseyouwillbeelectedgroupleader,youreceivetheleaderbonusof5pointsand avoidanylossesinpointsfromtheabsolutedifferencebetweenyourbestoutcomeandthegroup outcome,asyourbestoutcomewillbethegroupoutcome. NotethatyourtotalearningsinPart1areequaltothesumofallyourroundearningsinthatpart. Eachofthe30decisionroundsinPart1willfollowtherulesjustdescribed.Rememberthatyouare randomlyre‐matchedintonew4‐persongroupsandrandomlyreassignedyourownbestoutcomes between each round. At the bottom of your computer screen there will be a full summary of the historyofyourexperienceandpayoffsinallpriorrounds. 46 Decisionscreens(Party, 4, 10points) Entrydecision Votingdecision 47 Electionresults 48 Decisionscreens(NoParty, 10, 10points) Entrydecision Votingdecision 49 Electionresults 50
© Copyright 2026 Paperzz