Biol219Lec 8Fall2016 Dr.Scott Figure5.1aBodyFluidCompartments MembraneDynamics ©2016Pears onEducation,Inc. Thebodyismostlywater Figure5.1c BodyFluid Compartments ©2016Pears onEducation,Inc. ©2016Pears onEducation,Inc. 1 Biol219Lec 8Fall2016 Dr.Scott OsmoticEquilibrium ChemicalDisequilibrium ØWatermovesfreelybetweentheECFand theICF • Thedistributionofmajorsolutesamongthe bodyfluidcompartmentsisuneven ØThefluidconcentrationsareequalonthe2 sidesofthecellmembrane ChemicalDisequilibrium ChemicalDisequilibrium • Solutesmightleakacrossthecellmembrane - energyisrequiredtoreturnthem • Na+- K+ - ATPase(pump) • Thus,maintainingthechemicaldisequilibrium requiresacontinualoutputofenergy Figure 5.1dBodyFluid Compartments ©2016Pears onEducation,Inc. 2 Biol219Lec 8Fall2016 Dr.Scott TheICFandtheECFhavedifferent chemicalcomposition. ElectricalDisequilibrium • Thebodyiselectricallyneutral ICF • AfewextraanionsareintheICF,givingitanetnegative charge • MatchingcationsareintheECF,givingitanetpositive charge ElectricalDisequilibrium • Theunevendistributionofionsbetweenthe ICFandECFàelectricaldisequilibrium • Changesinthisdisequilibriumcreate electricalsignals Ø Moreonthislater! ECF Na+ Cl– ECF • Foreverycation,thereisamatchinganion • Ionsarenotdistributedevenlybetweenthe ECFandtheICF ICF K + A– ICF ECF ICF ECF ICF Ø MostsolutesintheICF andECFareions HomeostasisDoesNotMean Equilibrium ØHomeostasisattemptstomaintainthedynamic steadystatesofthebody’scompartments • Osmotic equilibrium • Chemical disequilibrium • Electrical disequilibrium ©2016Pears onEducation,Inc. 3 Biol219Lec 8Fall2016 Dr.Scott HomeostasisDoesNotMean Equilibrium ØTransportmechanismsandselective permeabilityofthecellmebrane areimportant tomaintainingthesedynamicstates • Thedistributionofsolutesdepends on whetherasubstancecancrosscell membranes ©2016Pears onEducation,Inc. Figure 5.1bBodyFluidCompartments OsmoticEquilibrium Inmostcells: • Watermovesfreelyby • crossingwater-filled ionchannels • Moving throughaquaporins, special protein channels • Themovementofwateracrossamembrane isinresponsetoasoluteconcentration gradientandiscalledOsmosis ©2016Pears onEducation,Inc. ©2016Pears onEducation,Inc. 4 Biol219Lec 8Fall2016 Dr.Scott Osmosis Osmosis ØWatermovestodilutethemore concentratedsolution • Osmoticpressure • Molarityversusosmolarity ØOncetheconcentrationsareequal,net movementstops • Molarity expresses concentration • Osmolarity expresses number ofparticles • Osmolarity ismore relevant • Osmolarity versusosmolality • Although different definitions,practically interchangeable inphysiology ©2016Pears onEducation,Inc. OsmoticPressure HowisOsmosismeasured? • Theunitsareatmospheres (atm)or millimetersofmercury(mmHg) • mm Hg= pressure exerted ona1-cm2 area by columnofmercury 1mm high. 5 Biol219Lec 8Fall2016 Dr.Scott Two co mp artme n ts are se p arate d b y a me mb ran e th at is p e rme ab le to wate r b u t n o t glu co se . So lu tio n B is mo re co n ce n trate d th an so lu tio n A. Se le ctive ly p e rme ab le me mb ran e Glu co se mo le cu le s Each compartment startswiththe same volume ofwater A The pistonmoves as thevolume inB increases Vo lu me in cre ase d A • Isosmotic, hyperosmotic, andhyposmotic • Tonicity- Changeinvolumeofacellheldin thatsolution H 2O Vo lu me d e cre ase d C o mp artme n t A is p u re wate r, an d co mp artme n t B is a glu co se so lu tio n . Osmotic pressure is th e p re ssu re th at mu st b e ap p lie d to o p po se o smo sis. Figure 5.2Osmosis andosmotic pressure • Osmolarity – Numberofparticlesinsolution B Wate r mo ve s b y o smo sis in to th e mo re co n ce n trate d so lu tio n . Osmo sis sto p s wh e n co n ce n tratio n s are e q u al. Osmosis– otherterminology B Fo rce is ap p lie d to e xactly o p p o se o smo sis fro m A to B . • Isotonic,hypertonic, and hypotonic H 2O P u re wate r H 2O ©2016Pears onEducation,Inc. A B ©2016Pears onEducation,Inc. MolarityvsOsmolarity • Molarity:#moles/L • Osmolarity:#particlesinsolution • Ionsdissociateinsolution • Glucose vsNaCl • Watermovesbyosmosisinresponseto thetotalconcentration ofallparticlesin thesolution 6 Biol219Lec 8Fall2016 Dr.Scott Osmolarity • #ofosmoticallyactiveparticlesperliterof solution - osmoles/Lormilliosmoles/L • Conversion: Molarityxparticles/molecule=osmolarity (mol/L)x(osmol/mol)=(osmol/L) ©2016Pears onEducation,Inc. Osmolarity vsOsmolality Tonicity Osmolarity =osmol/L • Penetratingversusnonpenetrating solutes Osmolality = osmol/kg H 2O Usedclinically toassesshydrationstatusfor fluidreplacement therapy • Tonicitydependsontheconcentrationof nonpenetrating solutes ©2016Pears onEducation,Inc. 7 Biol219Lec 8Fall2016 Dr.Scott Tonicity • Penetratingversusnonpenetrating solutes • Tonicitydependsontheconcentrationof nonpenetrating solutes • Rulesforosmolarity andtonicity • Clinicalimportanceofosmolarity and tonicity ©2016Pears onEducation,Inc. ©2016Pears onEducation,Inc. Figure5.3Therelationshipbetween osmolarity andtonicity ©2016Pears onEducation,Inc. Figure5.1c BodyFluid Compartments ©2016Pears onEducation,Inc. 8 Biol219Lec 8Fall2016 Dr.Scott Clinicalimportanceofosmolarity and tonicity ©2016Pears onEducation,Inc. TransportProcesses ©2016Pears onEducation,Inc. Figure5.5Transportacross membranes • Bulkflow • Gasesandliquidsarefluids • Pressuregradients • Cell membranes areselectively permeable • Permeableversusimpermeable • Passivetransportversusactivetransport • Concentrationgradients ©2016Pears onEducation,Inc. ©2016Pears onEducation,Inc. 9 Biol219Lec 8Fall2016 Diffusion:Properties Dr.Scott Figure5.6Diffusionexperiment 1. Passiveprocess 2. Highconcentrationtolowconcentration • Chemicalgradient 3. Netmovementuntilconcentrationisequal • Equilibrium 4. Rapidovershortdistances 5. Directlyrelatedtotemperature 6. Inverselyrelatedtomolecularweightandsize 7. Inopensystemoracrossapartition • Ionsmoveaccordingtoanelectrochemicalgradient ©2016Pears onEducation,Inc. RulesforDiffusionofUnchargedMolecules: GeneralProperties 1.DiffusionuseskineticNRGofmolecularmovement 2.Moleculesdiffusefromareaof[higher]to[lower] 3.Diffusioncontinuesuntilconcentrationsareequal; however,molecularmovementcontinuesafter equilibriumisreached 4.Diffusionisfaster: - alonghigher[gradient] - overshorterdistances - athigherT0 - forsmallermolecules 5.Diffusioncantakeplaceinanopensystemoracrossa partitionthatseparates2systems ©2016Pears onEducation,Inc. RulesforDiffusionofUnchargedMolecules: SimpleDiffusionAcrossAMembrane 6.Therate ofdiffusion throughamembraneisfasterif: - themembrane’ssurfaceareaislarger - themembraneisthinner - theconcentrationgradientislarger - themembraneismorepermeabletothemolecule 7. Membranepermeabilitytoamoleculedependson - themolecule’slipidsolubility - themolecule’ssize - thelipidcompositionofthemembrane 10 Biol219Lec 8Fall2016 LipophilicMoleculesMoveby SimpleDiffusionAcrossLipids Dr.Scott Figure5.7Fick’slawofdiffusion • Additional properties tosimple diffusion • Ratedependentonsolubilityinlipids • Proportionaltosurfaceareaofmembrane • Fick’slawofdiffusion ©2016Pears onEducation,Inc. FunctionsofMembraneProteins ©2016Pears onEducation,Inc. Figure5.8Mapofmembraneproteins • Structural proteins • Enzymes • Membrane receptor proteins • Transporters • Channelproteins • Carrierproteins ©2016Pears onEducation,Inc. ©2016Pears onEducation,Inc. 11 Biol219Lec 8Fall2016 Extracellular fluid Dr.Scott Ligand binds to a cellmembrane receptor protein. Receptor-ligand complex triggers intracellular response. Receptor-ligand complex brought into the cell Receptor Events in the cell Channels • Water channels • Ionchannels • Open channels • Gated channels • Chemicallygatedchannels • Voltage-gatedchannels • Mechanicallygatedchannels Cytoplasmic vesicle Intracellular fluid ©2016Pears onEducation,Inc. ©2016Pears onEducation,Inc. Figure 5.11The structure ofchannel proteins Figure5.10a Membrane Transporters Channel through center of membraneprotein ©2016Pears onEducation,Inc. One protein subunit ofchannel Channel throughcenter ofmembraneprotein (viewed from above) ©2016Pears onEducation,Inc. 12
© Copyright 2026 Paperzz