Slide 1 ___________________________________ 2.1 DERIVATIVES A DERIVATIVE is a special type of limit that occurs when we want to find ___________________________________ A) The slope of a tangent line B) A velocity ___________________________________ C) Any instantaneous rate of change ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 2 ___________________________________ Example 1: A). Find the slope of the graph of f(x) = x2 + 1 at the point (2,5) B). Find the equation of the tangent line of the graph of y = x2 + 1 at the point (2, 5). f(x) = x2+1 10 ___________________________________ The difficulty is that we have only one point, whereas we need two points to calculate slope. 8 6 P(2, 5) ___________________________________ 4 2 -10 -5 5 10 -2 ___________________________________ -4 -6 ___________________________________ ___________________________________ ___________________________________ Slide 3 7 6 P(2,5) 5 P(2, 5) 5 4 4 3 ___________________________________ 3 2 2 1 Q(x, f(x)) -4 ___________________________________ 7 6 -2 Q approaches P from the left (x → 2 from the left) 2 4 6 8 -4 2 -1 Q(x, f(x)) 1 -2 2 4 2 -1 6 8 ___________________________________ 7 Q(x, f(x)) 7 6 Q(x, f(x)) 6 5 P(2, 5) 5 P(2, 5) 4 4 3 ___________________________________ 3 2 2 1 Q approaches P from the right (x → 2 from the right) -4 -4 -2 2 2 4 1 -2 6 2 8 -1 2 4 6 ___________________________________ ___________________________________ ___________________________________ Slide 4 ___________________________________ PQ, To find the slope of the secant lines, for the function f(x) = x2 + 1, we have: mPQ = 5 - f(x) 2- x = ( ) 5 - x 2 +1 = 2- x 4 - x 2 (2- x)(2+ x) = = =2+x 2-x (2 - x) 5 - x 2 -1 2- x ___________________________________ ___________________________________ A). To find the slope of the tangent line, we let x →2: 5 - f(x) 5 - (x 2 + 1) m = lim = lim x →2 2 - x x→2 2-x = lim x →2 ___________________________________ 5 - x2 − 1 4 - x2 (2-x)(2+x) = lim (2+ x) = 2+ 2= 4 = lim = lim x →2 x →2 2 - x x →2 2-x 2-x ___________________________________ ___________________________________ ___________________________________ Slide 5 ___________________________________ B) To find the equation of the tangent line, use the slope of the tangent line and the point – slope equation: y – y1 = m(x – x1) ___________________________________ y – 5 = 4(x – 2) → y = 4x ‐ 3 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 6 ___________________________________ DEFINITION OF DERIVATIVE y y tangent line to f(x) at P tangent line to f(x) at P Q(x, f(x)) } N Q(a+h, f(a+h) f(x)‐f(a) P(a, f(a)) P(a, f(a)) x‐a a } N ___________________________________ f(a+h)‐f(a) h x x a a+h ___________________________________ x ︵ ︶ ︵ ︶︵ ︶ a f h h + a f 0 m→ ih l = a ' f a f a - x x f a m→ ix l = a ' f The derivative of a function f at a number a is the slope of the tangent line at a and is given by: OR ︵ ︶ ︵ ___________________________________ ︶︵ ︶ ___________________________________ ___________________________________ ___________________________________ Slide 7 ___________________________________ THE VELOCITY PROBLEM Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds. ___________________________________ t n e m e e m c i a t l p s i d = y t i c o l e v e g a r e v a The distance fallen after t seconds is given by the position function s(t) = 4.9t2 = f(a+h)-f(a) h ___________________________________ instantaneous velocity at time t =a v(a) = lim h →0 ___________________________________ f (a + h ) − f (a ) h ___________________________________ ___________________________________ ___________________________________ Slide 8 instantaneous velocity at time t =a f (a + h ) − f (a ) v(a) = lim h →0 h ___________________________________ s=f(t)=4.9t 2 f(a+h) = 4.9(a+h)2 = 4.9(a2 +2ah+h2 )= 4.9a2 + 9.8ah + 4.9h2 ___________________________________ (4.9a2 + 9.8ah + 4.9h2 ) - (4.9a2 ) h h(9.8a + 4.9h) 9.8ah + 4.9h 2 = 9.8a + 4.9(0) = 9.8a = lim = lim h → 0 h →0 h h After 5 seconds, v(5) = 9.8(5) = 49 m/s v(a) = lim h →0 ___________________________________ B). When does the ball hit the ground? the ball hits the ground when s = 450m. 450 = 4.9t 2 → t 2 = 450 → t ≈ 9.6s 4.9 ___________________________________ C). How fast is the ball traveling when it hits the ground? note: a = 9.6s. V(9.6) = 9.8(9.6) = 94m/s ___________________________________ ___________________________________ ___________________________________ Slide 9 ___________________________________ Try these problems: 1 a). Use the definition of derivative to find the slope of the tangent line to the curve f(x) = at the point (4, 2). x 1/4 b). Find the equation of the tangent line to the curve at the given point. y = (1/4)x + 1 ___________________________________ 2 If an arrow is shot upward on the moon with a velocity of 58m/s, its height (in meters) after t seconds is given by H = 58t – 0.83t2 a). Find the velocity of the arrow after one second. 56.34 m/s ___________________________________ b). Find the velocity of the arrow when t = a. (58 – 1.66a) m/s ___________________________________ c). When will the arrow hit the moon? After 69.9 s d). With what velocity will the arrow hit the moon? ‐58 m/s ___________________________________ ___________________________________ ___________________________________
© Copyright 2026 Paperzz