Dr. P. Wipf Page 1 of 8 Heterocyclic Chemistry Most Common Aromatic Scaffolds Present in Bioactive Molecules H N N H N N S S N N N N O N N N H N O N H N O H N HN O N H N S H N HN O N O H N N O N N O H N N H O O N H N O N H N N O N N O N S O O O O NH N H N Ertl, P.; Jelfs, S.; Muehlbacher, J.; Schuffenhauer, A.; Selzer, P., "Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds." J. Med. Chem. 2006, 49, 4568-4573. Properties, Reactivity and Reactions of Heterocycles • Heterocycles can be classified into: π-excessive π-deficient π-excessive: the -NH- bonds not involved, N yes, in the π-system excess electron density on carbons N H π-deficient: decreased electron density in carbons N N N Electron-density surface encoded with the electrostatic potential N 0.16 N -0.54 0.05 0.14 Electrophilic substitution is most difficult at C-2 or C-4 electrophilic substitution is difficult also at C-3 cf. NO2 Electron-density surface encoded with the ionization potential N 10/24/2009 Dr. P. Wipf Page 2 of 8 O pKa CH3 CH3 N H2 N H2 N H 11 8 5 CH2 CH2 ~42 CH CH ~35 ~25 + 1 pK unit/alkyl R N decreases with number of alkyls, thus penta-Me ~ 8.5 NH2 H+ pKa ~ 6 N NH3 H+ NH2 pKa ~ 0-1 N H N H NO2 NO2 N NH2 pKa ~ 2-3 pKa ~ 5 H+ NH R pKa ~ 6 NH2 N N H NH2 N H NH2 pKa ~ 10 NH2 Pyridine: Electrophilic Substitution H E E+ N N e.g. Friedel-Crafts on pyridine has not been achieved δ N N LA H H E Br Br2 N H2SO4•SO3, Δx N Br Br N Direct C-nitration of pyridine is very difficult to effect. Pyridine can be C-nitrated with nitric acid in sulfuric acid at 25 °C 108 times more slowly as compared with benzene. Thus, the C-nitration of pyridine has been effected only under extremely drastic conditions; i.e. treatment of pyridine with an alkali metal nitrate in fuming sulfuric acid at 300 °C is reported to afford 3-nitropyridine in 14% yield. 10/24/2009 Dr. P. Wipf Pyridine: Nucleophilic Substitution Nu H Nu N N Page 3 of 8 Two modes possible: 1) addition - elimination 2) elimination - addition (via heteroarynes) Addition/elimination preferably on C-2/C-4 H Nu N H4 H3 N B- H2 N Most acidic hydrogen (H3) is removed N N ?? - Kinetic Selectivity?? Pyridine: Reactions Br OMe MeO N N CN CuCN N NH2 NH2 - NH2 N N Note! Br - NH2 N is NOT formed in the reaction N N How would you make this? N Me NH2 N N MeIQx Me N Me an aminoimidazoquinoxaline (IQx) one of the most potent mutagens known; 100 000 rev/µg/plate in the Ames test (aflatoxin 10 000!) 10/24/2009 Dr. P. Wipf Page 4 of 8 - Bierer, D. E.; O'Connell, J. F.; Parquette, J. R.; Thompson, C. M.; Rapoport, H., "Regiospecific synthesis of the aminoimidazoquinoxaline (IQx) mutagens from cooked foods." J. Org. Chem. 1992, 57, 1390-1405. • The regioselective synthesis of 6 MeIQx was accomplished with this general strategy • The key step involves the dehydrobrominative photocyclization (in 25-90% yield) of imidazolylpyrazinylethylenes - a previously unexplored transformation 10/24/2009 Dr. P. Wipf Page 5 of 8 Pyrrole: Electrophilic Aromatic Substitution E E E N H N H H I I I I2 (4 eq) NO2 N H N H NO2 H N H 83% NMe2 N H 4 : 1 aq. Na2CO3 H rt + CH2O, Et2NH N H N H N H H AcOH, -10 °C 64% N H DMF, POCl3 N H vs AcONO2, EtOH, 0 °C 80% I N H N H H H H E E O NBS, THF N H AcOH, rt; 62% N Boc NEt2 Br -78 to rt Br N Boc Pyrrole: Electrophilic Aromatic Substitution Cl3CCOCl, N H CCl3 N H Et2O, rt; 79% O O2N 90% HNO3 CCl3 -50 °C; 77% N H O NaOMe, MeOH rt; 89% O2N OMe N H O Pyrrole: Alkylation/Regiocontrol R N Si(iPr)3 BuLi RX R F- N Si(iPr)3 N H TIPS shields from deprotonation at C-2's Muchowski Tetrahedron Lett. 1983, 24, 3455. Kozikowski J. Org. Chem. 1984 49, 3239. Eschenmoser Helv. Chim. Acta 1987 70, 1115. Stefan Chem. Ber. 1989 122, 169. Muchowski J. Org. Chem. 1990 55, 6317. Br Br N TIPS NBS (2 eq) THF, -78 °C 78% Cu(NO3)2 N TIPS Ac2O, rt; 77% NO2 N TIPS NO2 TBAF, THF rt; 100% N H 10/24/2009 Dr. P. WipfReactions of Quinolines & Isoquinolines Page 6 of 8 • Structural and electronic properties: • Quinoline is a π-deficient heterocycle, related to pyridine but with a slightly lower pKa = 4.9 (pyridine has a pKa = 5.2). The pKa of isoquinoline is 5.1. • The following electrostatic charges and bond distances were calculated at the DFT/BLY3P/ 6-31G* level: 1.38 1.37 -0.15 -0.18 -0.11 0 -0.36 -0.36 0.66 -0.01 -0.41 1.42 0.5 -0.55 0.36 -0.05 -0.12 0.34 -0.11 N -0.17 -0.63 1.36 N -0.54 0.24 1.36 1.37 1.32 1.42 • Structural and electronic properties (cont): Electron-density surface encoded with the electrostatic potential • Structural and electronic properties (cont): Electron-density surface encoded with the ionization potential 10/24/2009 Dr. P. Wipf Page 7 of 8 • Chemical properties of quinolines and isoquinolines • 2-Cyanoquinoline is obtained from quinoline N-oxide by treatment with cyanide/benzoyl chloride with deoxygenation and alpha-substitution. O-Acylation is the first step; this is followed by addition of cyanide to the 1-benzyloxy quinolinium ion to give the 1,2dihydroquinoline, which eliminates benzoic acid MCPBA N KCN N Ph3P PhCOCl N CN O via CN N O Ph O Syntheses of Methoxatin * * Zhang, Z.; Tillekeratne, L. M. V.; Hudson, R. A., “Synthesis of isomeric analogs of coenzyme pyrroloquinoline quinone (PQQ).” Synthesis 1996, 377-382. MacKenzie, A. R.; Moody, C. J.; Rees, C. W., “Synthesis of the bacterial coenzyme methoxatin.” Tetrahedron 1986, 42, 3259-3268. Buchi, G.; Botkin, J. H.; Lee, G. C. M.; Yakushijin, K., “A synthesis of methoxatin.” J. Am. Chem. Soc. 1985, 107, 5555-5556. Gainor, J. A.; Weinreb, S. M., “Synthesis of the bacterial coenzyme methoxatin.” J. Org. Chem. 1982, 47, 2833-2837. Hendrickson, J. B.; DeVries, J. G., “A convergent total synthesis of methoxatin.” J. Org. Chem. 1982, 47, 1148-1150. HO2C NH O CO2H N O CO2H 10/24/2009 Dr. P. Wipf Page 8 of 8 10/24/2009
© Copyright 2025 Paperzz