Solutions to the Quiz 4 (2016) I601 Logic and Discrete Mathematics A1. Prove the validity of the formula ∀xP (x) ∨ ∀xQ(x) → ∀x∀y[P (x) ∨ Q(y)]. S o l u t i o n. ∀xP (x), P (z) ` P (z), Q(t) ∀xQ(x), Q(t) ` P (z), Q(t) (∀L) (∀L) ∀xP (x) ` P (z), Q(t) ∀xQ(x) ` P (z), Q(t) (∨R) (∨R) ∀xP (x) ` P (z)∨Q(t) ∀xQ(x) ` P (z)∨Q(t) (∀R) (∀R) ∀xP (x) ` ∀y[P (z) ∨ Q(y)] ∀xQ(x) ` ∀y[P (z) ∨ Q(y)] (∀R) (∀R) ∀xP (x) ` ∀x∀y[P (x) ∨ Q(y)] ∀xQ(x) ` ∀x∀y[P (x) ∨ Q(y)] (∨L) ∀xP (x)∨∀xQ(x) ` ∀x∀y[P (x) ∨ Q(y)] (→R) ` ∀xP (x) ∨ ∀xQ(x)→∀x∀y[P (x) ∨ Q(y)] The formula is provable i.e. tautology. B1. Prove the validity of the formula ∀x∀y[P (x) ∨ Q(y)] → ∀xP (x) ∨ ∀xQ(x). S o l u t i o n. A, B(z), P (z) ` P (z), Q(t) A, B(z), Q(t) ` P (z), Q(t) A, B(z), P (z)∨Q(t) ` P (z), Q(t) (∀L) A, ∀y[P (z) ∨ Q(y)] ` P (z), Q(t) (∀L) ∀x∀y[P (x) ∨ Q(y)] ` P (z), Q(t) (∀R) ∀x∀y[P (x) ∨ Q(y)] ` P (z), ∀xQ(x) (∀R) ∀x∀y[P (x) ∨ Q(y)] ` ∀xP (x), ∀xQ(x) (∨R) ∀x∀y[P (x) ∨ Q(y)] ` ∀xP (x)∨∀xQ(x) (→R) ` ∀x∀y[P (x) ∨ Q(y)]→∀xP (x) ∨ ∀xQ(x) (∨L) Here A and B(z) denote a proposition ∀x∀y[P (x) ∨ Q(y)] a predicate ∀y[P (z) ∨ Q(y)], respectively. The formula is provable i.e. tautology. A2. Prove the identity 1 + 3 + 9 + 27 + · · · + 3n−1 = 3n − 1 . 2 S o l u t i o n. Base Case: For n = 1, we have 31 − 1 2 = = 1. 2 2 Inductive Step: Assume, that 1 + 3 + 9 + 27 + · · · + 3k−1 = k+1 k first multiples of three equals to 3 2 −1 : 1 + 3 + 9 + 27 + · · · + 3k−1 + 3k = B2. 3k −1 2 , and prove that the sum of 3k − 1 + 3k = 2 = 3k − 1 + 2 · 3k = 2 = 3 · 3k − 1 = 2 = 3k+1 − 1 2 Prove that the sum of the first n squares (1 + 4 + 9 + · · · + n2 ) is n(n + 1)(2n + 1)/6. S o l u t i o n. Base Case: For n = 1, we have 1 · (1 + 1) · (2 · 1 + 1) 1·2·3 6 = = =1 6 6 6 Inductive Step: Assume, that 1 + 4 + 9 + · · · + k 2 = k(k + 1)(2k + 1)/6, we have and prove that the sum of k + 1 first perfect squares equals to (k + 1)(k + 2)(2k + 3) = 6: 1 + 4 + 9 + · · · + k 2 + (k + 1)2 = k(k + 1)(2k + 1) + (k + 1)2 = 6 = (k + 1)[k(2k + 1) + 6(k + 1)] = 6 = (k + 1)(2k 2 + 7k + 6) = 6 = (k + 1)(2k 2 + 3k + 4k + 6) = 6 = (k + 1)[k(2k + 3) + 2(2k + 3)] = 6 = (k + 1)(k + 2)(2k + 3) 6
© Copyright 2026 Paperzz