Brit Salbu, UMB, Bergen June 2008 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Risø NKS November 16, 2009 Speciation of radionuclides Brit Salbu Isotope Laboratory Norwegian University of Life Sciences UMB [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Take home message • Radionuclides can be present in different physico-chemical forms influencing transport/mobility and bioavailability • Radionuclide species depend on sources and release conditions and transformation processes occurring in the environment. • Speciation/fractionation techniques are needed to distinguish between radionuclides species. [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP UMB archive Kurday Kadji-say Tabushar Digmai Nuclear weapon tests -filters Semipalatinsk Thule, Greenland Palomares, Spain Novaya Zemlya Kara Sea NW Russia Kuwait Kosovo Chernobyl, Ukraine Windscale/Sellafield, UK Dounray, UK La Hague, France Mayak, Krashnoyarsk, Russia Savannah River Site, USA Oscarshamn, Forsmark, Sweden [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Outline • Definitions • Speciation/fractionation techniques applied • • • In water In soils/sediments In biological materials • Relevance in radioecology [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Definition: radionuclide species Radionuclide species are defined according to their physico-chemical properties; 9 Molecular mass 9 Charge properties 9 Oxidation state – valence 9 Structure 9 Complexing ability 9 etc. e.g. ions, molecules, complexes, colloids, particles Modified after IUPAC (excluded isotopic composition) (Salbu, JER, 2009) [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Definition: Speciation of radionuclides Speciation of radionuclides is defined as the distribution of radionuclide species in a system In accordance with IUPAC 2000 [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Definition: Speciation analysis IUPAC 2000: “The analytical activities of identifying and/or measuring the quantities of one or more individual chemical species in a sample” Revised: Application of analytical techniques to identify and quantify one or more individual radionuclide species in a sample ( i.e. application of in situ, at site, on line, at lab. fractionation techniques prior to measurements). [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Definition: Radioactive particles (IAEA, 2001 and 2009) • Radioactive particles in the environment are defined as localised aggregates of radioactive atoms that give rise to inhomogeneous distribution of radionuclides significantly different from that of the matrix background [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Definition: Particles (IAEA, 2001 and 2009) In water/sediment/soil/biota • Fragments – larger than 2 mm • Particle size range: 0.45 µm – 2mm (includes sand+silt fraction) • Colloidal (nanoparticle) size range: 1 nm - 0.45 µm • Low molecular mass species: less than 1 nm In air: • Particles (submicrons in aerosols to fragments) are classified according to their aerodynamic diameters. • Particles less than 10 μm are considered respiratory. [email protected] Brit Salbu, UMB, Risø,2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Speciation of radionuclides Diameter 1 nm 10 nm 0.1 µm Molecular mass x 102 x 104 x 106 0.45 µm 1 µm 10 µm x 108 Category simple compounds hydrolyzates/colloids polymers / pseudocolloids suspended particles Cases inorganic, organic ions, complexes, molecules etc. nanoparticles polyhydroxo complexes polysilicates fulvic acids fatty acids metal hydroxides clay minerals humic acids proteins inorganic mineral particles organic particles microorganisms Methods, Determination of total activity concentration of radionuclides in acidified samples. Dissolved radionuclides, determination of total in 0.45 µm filtered sampled and acidified LMM species Size fractionation techniques Diffusion rate measurement Ultrafiltration ultracentrifug. dialysis Charge fractionation techniques Ion chromatography – undefined fractions Complexation – undefined fractions [email protected] Filtration Sedimentation Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Fractionation/speciation techniques Size fractionation Charge fractionation Solid state speciation Electronmicroscopy Exchange techniques chromatography Tangential (SEM, (cation, anion, Low activity concentrations – noTEM) flow/hollow-fibre adsorption) X-ray induced ultra filtration direct specie-specific techniques spectroscopy Liquid-liquid Continousare flowavailable (μ-XRD, μ-XAS, μ-XANES, extraction centrifugation EXAFS) Sequential Techniques must be combined to In situ dialysis Laser-induced extractions (small volumes) provide specie characteristics spectroscopy Electrochemical (LIPAS, LITLS, LAMMA) Ultra methods Advanced techniques within other centrifugation Electron energy loss Crown ether increasingly needed spectroscopy Density disciplines chromatography centrifugation Raman spectroscopy Filtration Dialysis Nuclear magnetic resonance spectroscopy Gel chromatography [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Size and charge distribution pattern Recommended Total activity concentration 1. Fractionation according to size 1i.e. nm particles 10 nm 0.1 µm 1 µm and colloids Diameter 2. Fractionation according to charge i.e. charged LMM species Particles Species Low molecular Colloids mass species To avoid analytical problems Mobile and Inert species bioavailable species LMM positively/ negatively charge or neutral species [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Fractionation of radionuclides in rivers under high flow conditions For identification of radionuclide species in the environment – during events - we need in situ fractionation techniques – avoid storage effects Fractionation in the field [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Size and charged interfaced system Charge fractionation peristaltic pump ultrafiltrate waste Hollow-fibre 10 kDa Hollow fibres exchange resins (Amberlite) cation Filters Size fractionation membrane filter 0.45μm peristaltic pump in situ sampling Cation resins [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Colloids in effluents from reprocessing plants – Transmission Electron microscopy (TEM) reflect the presence of colloids. Effluents contain: ions, colloids, particles S IX E P La Hague SE A TA N K 2 0 0n m Sellafield [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Case: size fractionation of effluent from La Hague La Hague effluent Ultrasentrifugation 100 % 90 % 80 % 70 % 60 % LMW < 1E+3 Da Colloidal 1E+3-1E+4 Da Colloidal 1E+4Da-0,45um Particles >0,45 um 50 % 40 % 30 % 20 % 10 % 0% Mn-54 Co-60 Sb-125 Cs-134 [email protected] Cs-137 Brit Salbu, UMB, Risø, 2009 Lind, OC., Oughton, DH., Salbu, B., Skipperud, L., et. al., (2006) Earth and Planetary Science Letters Pycnocline 24,3 psu 8 68 51 Near 6 21 bottom 32,9 psu 82 70 73 Pycnocline 28 psu 61 61 31 36 36 31 33 33 P articu late (> 0,45 u m ) CISOTOPE o llo id al (8kD a-0,45u m ) LABORATORY DEPARTMENT PLANT AND LM M (<8kD a) ENVIRONMENTAL SCIENCES 19 11 13 9 78 72 Surface 0 psu 52 52 19 29 19 29 Yenise y 41 41 Ob UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Fractionation water+ AMS: Trace of weapon grade Pu in colloidal phase in Jenisey, all the way into Kara Sea Total sample = fallout 4 8 [email protected] 32 32 Surface 23,8 psu 77 19 52 29 Pycnocline 28 psu Surface 0,1 psu 25 45 30 16 Near bottom 36 0 psu 48 Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Speciation of radionuclides Diameter 1 nm 10 nm 0.1 µm Molecular mass x 102 x 104 x 106 0.45 µm 1 µm x 108 Category simple compounds hydrolyzates/colloids polymers / pseudocolloids suspended particles Cases inorganic, organic ions, complexes, molecules etc. nanoparticles polyhydroxo complexes polysilicates fulvic acids fatty acids metal hydroxides clay minerals humic acids proteins inorganic mineral particles organic particles microorganisms Proccesses Molecular mass growth mechanisms: •hydrolysis •complexation •polymerisation •colloid formation •aggregation [email protected] 10 µm Mobilization mechanisms: •desorption •dissolution •dispersion Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Case: Autoradiography using P imaging – soils contaminated with Chernobyl fallout Chernobyl soil (Western trace) [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Sorption mechanisms – important for mobility Physical sorption Consecutive layers reversible Electrochemical sorption Monolayer reversible Chemisorption Monolayer irreversible Inert electrolyte Ionexchange pH red/ox Strategy: sequential extractions Increased dissolution power of agent [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Sequential extraction – processes, models, agents and reagents Processes Model Agents Reagents Physical sorption Consecutive layers, reversible reaction Indifferent (inert) electrolyte H2O Electrostatic sorption Monolayer, Reversible reactions Ion-exchangeble species, increased acidity (pH) pH<soil/sediment Chemisorption Monolayer, Irreversible reaction Red/ox agents, increase in temperature Weak reducing: NH2OH•HCl NH4OAc, soil/ sediment pH NH4OAc, pH5 Weak oxidizing: H2O2, pH 2 Strong oxidizing: 7 M HNO3, 80°C [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Sequential Extraction of Radionuclides and Stable Analogues from Chernobyl contaminated Soil - Caesium Weathering – predict decreased mobility and decreased doses Oughton et al., Analyst 1992 [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Sequential Extraction of Radionuclides and Stable Analogues from Chernobyl contaminated Soil - Strontium Weathering – predict increased mobility and increased doses Oughton et al., Analyst 1992 [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Case: Chernobyl fallout. Repeated extractions with water, NH4Ac (soil pH), and NH4Ac (pH 5). Differentiate between reversible and irreversible sorption processes Sr-90 Cs-137 Reversible: 1 extraction gives 50 % [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Pu in the environment – model experiments PuO2 xH2O Reducing Higher pH Lower pH Pu(III) Pu3+ Hydrolysis Complexation Sorption Pu(IV) Pu4+ Oxidizing Lower pH Higher pH Pu(V) PuO2+ Pu(VI) PuO22+ Redoxreactions Precipitation [email protected] Hydrolysis Complexation Sorption Brit Salbu, UMB, Risø, 2009 Soil solution k2 Easily exchangeable (NH4Ac) ”Mobile fraction” Amorphous ”Bound fraction” k3 k4 Irreversibly bound “Fixed fraction” 0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 Mobile (%) 100 H2O NH4AcpHSoil Fractions UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Tracer experiments: Pu-species in soil/sediment – water systems k1 Redox sensitive/ NH4AcpH=5 Bound Fixed Mobile 80 1h 24h 60 168h NH2OHHCl 720h 2160h H2O2 HNO3 40 20 0 0 500 [email protected] 1000 1500 Time (hour) 2000 2500 100000,00 Pu-V,VI Pu-III,IV Pu-III ,IV+ EDTA Pu-III,IV + Citrat 10000,00 KD (mg/ml) Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP -water systems Kd for Pu species as f(t f(t)) in a soil soil-water 1000,00 100,00 o 4C Soil : Water 1: 10 10,00 1,00 0 500 1000 1500 2000 2500 Contact time (hours) Pu-species T1/2 (d) T1/2 (d) Associated Fixation PuIII,IV 0.4 ± 1 % 34 ± 7 % PuV,VI 0.8 ± 10 % 40 ± 5 % PuIII,IV-organic 0.8 ± 1 % 39 ± 6 % Skipperud, L., Oughton, D. H. and Salbu, B., (2000) "The impact of Pu speciation on the distribution coefficients in Mayak soil" Science of the Total Environment [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Modelling Doses to humans Dose from 1 GBq release Skipperud, L., Oughton, D. H., and Salbu, B., (2000) Health Physics [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Radioactive particles are present in most contaminated areas. Identifying single U particles: autoradiography – SEM/BEI mode P-imaging BE I [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP SEM - XRMA Localization, Isolation and Characterization of U containing particles (UMB) SEM and XRMA SEI SEI-mode •characterization of particle surface structure. BEI-mode •localization of particles containing heavy elements X-ray mapping •localization of particles containing radionuclides. XRMA •element analysis Counts U 200 U 150 100 U 50 U U U U U U 0 0 5 10 15 20 Energy (keV) [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP X-ray Absorption Spectroscopy - ESRF •µ-XRF- element •µ-XANES-ox state •µ-XRD-structure •EXAFS – fine structure [email protected] • Photons -> • exitation -> • deexitation K, L, M electrons • Emittance • X-ray fluorescence (XRF) • Auger electrons • Transmission of the beam – absorption UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Particle characterization methods 1. Digital autoradiography to identify heterogeneities and sample splitting/gamma measurements 2. ESEM/TEM with XRMA Surface structure and elemental composition 3. SR-based 2D and 3 D µ-XRF (micro X-ray fluorescens) Subsurface/volume elemental composition 4. SR-based 2D µ-XANES (micro X-ray absorption near edge structure spectrometry) Oxidation state determination, and confirmed by 5. SR-based µ-XRD (micro X-ray diffraction) Crystallographic forms 6. µ-XAS tomography Spatial distribution 7. Source identification of isotope ratios by MS techniques 8. Leaching experiments to identify mobilisation potential [email protected] UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Complex 3D aggregates of different phases • Absorption X-ray microtomography: 3D density distribution excellent tool for overall 3D sample exploration > 0.5 μm resolution • Confocal μ-XRF: 3D elemental distribution elemental tomograms in selected planes within the sample ROI imaging possible major elements to trace constituents combination with confocal μ-XANES > ~ 5-10 μm resolution (secondary polycapillary optics) • Tomographic μ-XRD: 3D structure distribution phase-tomograms in selected planes within the sample minimization of self-absorption > ~ 10 μm resolution better resolution possible via KB, CRL, optics [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Synchrotron radiation 2D μ-XRF mapping at HASYLAB, Germany Ar K Ca Ti Cr Mn Fe Zn Sr Zr Mo Ru Sn Ba Pb U Chernobyl particles contain while inclusion Ru+Mo Corresponding distribution: U, Zr, Sr [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Synchrotron radiation μ-XANES for determination of oxidation states of U in a Chernobyl U particle (ESRF) – should be combined with μ-XRD. oxidation state +4 ±0.5 N oxidation state +5±0.5 W [email protected] 100 % Residual FP 90 2 80 •Two different release scenarios •Different particle characteristics North •Different ecosystem behaviour 70 60 50 40 30 20 10 2050 2046 2042 2038 2034 2030 2026 2022 2018 2014 2010 2006 2002 1998 1994 1990 0 1986 Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Explosion: inert U fuel particle, low weathering rate, low soil-plant transfer. Fire: Oxidized U fuel, high weathering rate, high soil-plant transfer. North: West: Initial Weathering of Subsequent release particles at pH6 release (fire) (explosion) West – UO •Same source Year Oxidation state +4 ± 0.5 – UO2 Oxidation state +2.5 ± 0.5 Oxidation state +5 ± 0.5 U3O8 U-O-Zr, [email protected] Brit Salbu, UMB, Bergen June 2008 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Radioactive particles released during ”all” types of severe nuclear events. The source determines the composition, the release scenarios dictate particle properties Nuclear test Semipalatinsk Thule Dounrey Sellafield Particle deposition? •HotKuwait spots – problems with representative Aggregate from the Chernobyl explosion sampling •Partial leaching – analytical errors - transuranics •May underestimate the inventories XRMA Adds significantly to the overall uncertainties Corrosion product Waste in Kara Sea [email protected] Krasnoyarsk U particle Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Biological relevance of particles • Transfer of nano-particles through skin of earthworms. Accumulation of Co-60 labelled nanoparticles in spermatogonetic cells and cocoons (Oughton et al) Male reproductive organs Smeer of spermatogenic cells Clitellum Cocoons • Retention of micrometer particles in GI tract (Salbu et al) Effects from particle exposure – IAEA 2008 [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Case: DU particles from Kosovo and Kuwait Source U-Ti alloy Release scenario Weathering conditions Solid state speciation Dissolution behaviour Fire High temp. Desert Arid XANES: +6 XRD: UO3·x H2O 83% in 2 hrs, 96% in 1 week Impact Initially very high, subsequently moderate temp. Mountainous Humid XANES: +4 - +5.3 XRD: UO2, UO2.34, UC, metallic U 25% in 2 hrs, 87% in 1 week Corrosion Low temp. Desert Arid XANES:+4.6 - +6 XRD: n.a. 24% in 2 hrs, 73% in 1 week Linking source and release scenarios to particle characteristics and remobilization potential (0.1 M HCl extractions) [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Radionuclide species in biological material •Extraction with agents – poor analytical control •Separations – size exclusion techniques –proteins etc •Low level detection •On line systems – corresponding signals from radionuclides and proteins Juice from human stomach Milk from Norwegian goat Heat treatment pH adjusted to 2,5 Juice from duodenum human Digestion STEP 1 Digestion STEP 2 37 °C min. 37 °C min. 30 30 Digested Milk pH adjusted to 7,5 pH is measured every minute during this step Milk from Norwegian cow Human gastric juice (HGJ) and Human duodenal juice (HDJ) [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP In vitro extraction with Human gastric juice (HGJ) and Human duodenal juice (HDJ) Mimicking the degradation of food samples in GI tract One MBq particle: 2 % released in HGJ, 5 % in HDJ 2 D electrophoresis of milk from different animals Challenges – sufficient activity to be registered by autoradiography. Still restricted to tracer experiments. G. E. Vegarud, UMB [email protected] Brit Salbu, UMB, Risø, 2009 Extraction of proteins from a biological sample Intensity, counts (77Se) SEC purification of biomolecule fraction Challenges 4 6 x10 Need relative high activity concentrations to obtain signals above detection limits 4 A 2 0 16 18 20 C B 22 24 26 tryptic digestion 28 Time, min 80 Se 3.0 2.5 SeMet SEC purification (2D gel electrophoresis) of biomolecules Intensity, counts UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Fractionation/speciation of biomolecules in the future x103 Identification 2.0 Low level detection 1.5 1.0 0.5 10 80 1 15 2 3 4 20 5 25 Se 6 Time, min 30 35 [email protected] After Szpunar et al Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Challenges in radioecology: Linking radionuclide species in sources to impact and risk assessment Sources Sources Sources Transport in different ecosystems Climate Pathogens/virus conditions Processes in soil / water / sediments Bioavailability Biological membrane Uptake/effect Exposure [email protected] Impact/risks Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Conclusions: Take home message • Radionuclides can be present in different physico-chemical forms influencing transport/mobility and bioavailability • Radionuclide species depend on sources and release conditions and transformation processes occurring in the environment. • Speciation/fractionation techniques are needed to distinguish between radionuclides species. [email protected] Brit Salbu, UMB, Risø, 2009 UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP Thank you Acknowledgement to a series of collaborators [email protected] Foto: UMBs fotoarkiv [email protected]
© Copyright 2026 Paperzz