Faculty of Mathematics and Computer Science Formation and Annihilation of Hydrogen-Related Donor States in Proton-Implanted and Subsequently Plasma-Hydrogenated N-Type Float-Zone Silicon Reinhart Job, University of Hagen, Germany Franz-Josef Niedernostheide, Infineon Technologies AG, Germany Hans-Joachim Schulze, Infineon Technologies AG, Germany Holger Schulze, Infineon Technologies Austria AG, Austria High-Purity-Silicon X, PRIME 2008, Joint International Meeting • 214th Meeting of the ECS – The Electrochemical Society • 2008 Fall Meeting of The Electrochemical Society of Japan Honolulu, HI, USA, Oct. 12th – 17th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Outline of the talk • Introduction • Experimental details • Results and discussion • Summary Folie 2 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Outline of the talk • Introduction • Experimental details • Results and discussion • Summary Folie 3 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Introduction • Light ion implantation (H+, He+): → useful tool in semiconductor technology → can modify semiconductor properties → can influence a wide spatial range within the semiconductor • Applications of light ion implantation: → H+-, He+-implantation: charge carrier lifetime control → H+-implantation: formation of hydrogen related donors after post-implantation annealing procedures ⇒ Attractive for high-power device technology: → formation of deep n-type doped layers → penetration depth at a given energy higher than for standard donors (P) → proton induced doping requires moderate thermal annealing regimes Folie 4 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Introduction ⇒ In this presentation: → investigation of two-step processes in FZ Si wafers → successive H+-implantation and H-plasma treatments (temperatures during H-plasma exposures: up to 500 °C) → formation and annihilation of n-type doping profiles Folie 5 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Outline of the talk • Introduction • Experimental details • Results and discussion • Summary Folie 6 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Experimental details • • • • Substrates: - n-type float zone (FZ) silicon wafer, (100)-oriented - ρ = 30 Ωcm, phosphorous doped H+-implantation: - “shallow” implantation: E = 1 MeV, Rp ≈ 16.5 µm* D = 1×1014 cm-2 - “deep” implantation: E = 3 MeV, Rp ≈ 92.8 µm* D = 1×1014 cm-2 H-plasma: - RF generator: ν = 13.56 MHz - plasma power: PPl = 150 W - H2-flux: FH2 = 50 sccm - Ar-flux*: FAr = 50 sccm - chamber pressure: p = 7.4×10-3 mbar - process temperatures: TS = 350, 400, 450, 500 °C Analyses: - two-point-probe spreading resistance measurements * projected ion ranges Rp (SRIM 2008 simulations with full damage cascades) Folie 7 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Outline of the talk • Introduction • Experimental details • Results and discussion • Folie 8 Summary Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C Spreading resistance analyses • H+-implantation: E = 1 MeV D = 1×1014 cm-2 H-plasma treatment at various substrate temperatures: - 350 °C - 400 °C t = 15 min - 450 °C - 500 °C Spreading Resistance (Ohm) • 5 10 450 °C 5 10 400 °C 5 10 350 °C 5 10 0 5 10 15 20 25 Depth (µm) Folie 9 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C 15 10 Spreading resistance analyses + H -Implantation & 15 min H-Plasma 500 °C 5 Spreading Resistance (Ohm) 10 450 °C 5 10 400 °C 5 14 10 -3 Transformation of SR profiles into doping concentration profiles Carrier Concentration (cm ) • 450 °C 15 10 14 10 400 °C 15 10 14 10 350 °C 15 10 10 350 °C 14 5 10 10 0 5 10 15 Depth (µm) Folie 10 Oct. 14th, 2008 20 25 0 5 10 15 20 25 Depth (µm) Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C 15 10 Spreading resistance analyses • • 14 10 -3 Region deeper than Rp: initial n-type doping concentration of untreated FZ Si material Region close to Rp: → surplus n-type doping → n-type doping concentration enhanced by one order of magnitude Region towards Rp (up to 15 µm depth): → surplus n-type doping profile follows implantation damage profile → vacancy concentration profile Carrier Concentration (cm ) • 450 °C 15 10 14 10 400 °C 15 10 14 10 350 °C 15 10 14 10 0 5 10 15 20 25 Depth (µm) Folie 11 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C 15 10 Spreading resistance analyses • • 14 10 -3 Region deeper than Rp: initial n-type doping concentration of untreated FZ Si material Region close to Rp: → surplus n-type doping → n-type doping concentration enhanced by one order of magnitude Region towards Rp (up to 15 µm depth): → surplus n-type doping profile follows implantation damage profile → vacancy concentration profile Carrier Concentration (cm ) • 450 °C 15 10 14 10 400 °C 15 10 14 10 350 °C 15 10 14 10 0 5 10 15 20 25 Depth (µm) Folie 12 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C 15 10 Spreading resistance analyses • • 14 10 -3 Region deeper than Rp: initial n-type doping concentration of untreated FZ Si material Region close to Rp: → surplus n-type doping → n-type doping concentration enhanced by one order of magnitude Region towards Rp (up to 15 µm depth): → surplus n-type doping profile follows implantation damage profile → vacancy concentration profile Carrier Concentration (cm ) • 450 °C 15 10 14 10 400 °C 15 10 14 10 350 °C 15 10 14 10 0 5 10 15 20 25 Depth (µm) Folie 13 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C 15 10 Spreading resistance analyses 14 10 -3 Region close to the surface: → n-type doping is a bit enhanced (factor of 2) for H-plasma treatment at 350 °C and 400 °C Region towards the surface: → n-type doping towards the surface more stronger enhanced at 450 °C and 500 °C Region close to the surface: → doping concentration reduced (H-plasma at 450 °C) → doping concentration below initial doping n-type level (H-plasma at 500 °C) Carrier Concentration (cm ) • • • 450 °C 15 10 14 10 400 °C 15 10 14 10 350 °C 15 10 14 10 0 5 10 15 20 25 Depth (µm) Folie 14 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C 15 10 Spreading resistance analyses 14 10 -3 Region close to the surface: → n-type doping is a bit enhanced (factor of 2) for H-plasma treatment at 350 °C and 400 °C Region towards the surface: → n-type doping towards the surface more stronger enhanced at 450 °C and 500 °C Region close to the surface: → doping concentration reduced (H-plasma at 450 °C) → doping concentration below initial doping n-type level (H-plasma at 500 °C) Carrier Concentration (cm ) • • • 450 °C 15 10 14 10 400 °C 15 10 14 10 350 °C 15 10 14 10 0 5 10 15 20 25 Depth (µm) Folie 15 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C 15 10 Spreading resistance analyses 14 10 -3 Region close to the surface: → n-type doping is a bit enhanced (factor of 2) for H-plasma treatment at 350 °C and 400 °C Region towards the surface: → n-type doping towards the surface more stronger enhanced at 450 °C and 500 °C Region close to the surface: → doping concentration reduced (H-plasma at 450 °C) → doping concentration below initial doping n-type level (H-plasma at 500 °C) Carrier Concentration (cm ) • • • 450 °C 15 10 14 10 400 °C 15 10 14 10 350 °C 15 10 14 10 0 5 10 15 20 25 Depth (µm) Folie 16 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C 15 10 Spreading resistance analyses 14 10 -3 Conclusions (I): → Region near Rp: ) hydrogen-related shallow donor formation occurs ) vacancies play a significant role ⇒ excessive donor concentration ⇓ vacancy-hydrogen-complexes Carrier Concentration (cm ) • 450 °C 15 10 14 10 400 °C 15 10 14 10 350 °C 15 10 14 10 0 5 10 15 20 Depth (µm) Folie 17 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors 25 Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C 15 10 Spreading resistance analyses 14 10 -3 Conclusions (II): → Region towards the surface: ) vacancies diffuse towards the surface during plasma exposure at elevated temperatures ⇒ enhanced vacancy concentration toward the surface ⇓ vacancy-hydrogen-complexes ⇓ excessive donor concentration Carrier Concentration (cm ) • 450 °C 15 10 14 10 400 °C 15 10 14 10 350 °C 15 10 14 10 0 5 10 15 20 Depth (µm) Folie 18 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors 25 Faculty of Mathematics and Computer Science + H -Implantation & 15 min H-Plasma 500 °C 15 10 Spreading resistance analyses 14 10 -3 Conclusions (III): → Region close to the surface (I): ) formation of acceptor-like defect complexes ) acceptor-like defect complexes are passivated by hydrogen at lower temperatures ) at higher temperatures acceptorlike defect complexes become electrically active again ⇒ compensation of n-type doping Carrier Concentration (cm ) • 450 °C 15 10 14 10 400 °C 15 10 14 10 350 °C 15 10 14 10 0 5 10 15 20 Depth (µm) Folie 19 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors 25 Faculty of Mathematics and Computer Science + H -Implantation & 60 min H-Plasma 500 °C Spreading resistance analyses • 13 10 450 °C -3 H+-implantation: E = 1 MeV D = 1×1014 cm-2 H-plasma treatment at various substrate temperatures: - 350 °C - 400 °C t = 60 min - 450 °C - 500 °C Carrier Concentration (cm ) • 14 10 14 10 13 10 400 °C 14 10 13 10 350 °C 14 10 13 10 0 5 10 15 20 25 Depth (µm) Folie 20 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 60 min H-Plasma 500 °C Spreading resistance analyses • However, close to the surface n-type doping compensated for by acceptor-like defects 13 10 450 °C -3 Donor states in the subsurface region down to Rp disappeared ) initial homogeneous doping concentration is re-established Carrier Concentration (cm ) • 14 10 14 10 13 10 400 °C 14 10 13 10 350 °C 14 10 13 10 0 5 10 15 20 25 Depth (µm) Folie 21 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 60 min H-Plasma 500 °C Spreading resistance analyses • However, close to the surface n-type doping compensated for by acceptor-like defects 13 10 450 °C -3 Donor states in the subsurface region down to Rp disappeared ) initial homogeneous doping concentration is re-established Carrier Concentration (cm ) • 14 10 14 10 13 10 400 °C 14 10 13 10 350 °C 14 10 13 10 0 5 10 15 20 25 Depth (µm) Folie 22 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Spreading resistance analyses • • 60 min H-Plasma (400 °C) (no implantation) 15 10 -3 Doping Concentration (cm ) No H+-implantation Only 60 min H-plasma treatment at 400 °C substrate temperature ) No formation of doping profiles! • Similar results for H-plasma exposure at other substrate temperatures up to 500 °C 14 10 13 10 0 5 10 15 20 25 Depth (µm) Folie 23 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Spreading resistance analyses • • 15 10 60 min H-Plasma (400 °C) (no implantation) -3 Doping Concentration (cm ) No H+-implantation Only 60 min H-plasma treatment at 400 °C substrate temperature ) No formation of doping profiles! • Similar results for H-plasma exposure at other substrate temperatures up to 500 °C 14 10 13 10 ⇒ Acceptor-like defects can 0 not be attributed to plasma damage alone! ⇒ vacancies must be involved !!! Folie 24 Oct. 14th, 2008 5 10 15 20 25 Depth (µm) Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + H -Implantation & 60 min H-Plasma 500 °C Spreading resistance analyses 13 10 450 °C -3 Conclusion: → strong injection of hydrogen during long-term plasma treatment → transformation of vacancyand hydrogen-related donor states into electrically inactive defects, e. g. V-H4 → acceptor-like defects near the surface ) hydrogenated vacancy or multi-vacancy complexes, e. g. V2-H2 (?) Carrier Concentration (cm ) • 14 10 14 10 13 10 400 °C 14 10 13 10 350 °C 14 10 13 10 0 5 10 15 20 25 Depth (µm) Folie 25 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + 3 MeV H -Implantation & H-Plasma (400 °C) 16 15 min H-Plasma 10 Spreading resistance analyses • 14 10 -3 Deep H+-implantation: E = 3 MeV D = 1×1014 cm-2 H-plasma treatment at 400 °C substrate temperature for various duration: - t = 15 min (above) - t = 60 min (below) Carrier Concentration (cm ) • 15 10 13 10 12 10 16 10 60 min H-Plasma 15 10 14 10 13 10 12 10 0 20 40 60 80 100 Depth (µm) Folie 26 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + 3 MeV H -Implantation & H-Plasma (400 °C) 16 15 min H-Plasma 10 Spreading resistance analyses • 14 10 -3 Region close to Rp: → surplus n-type doping caused by vacancy-hydrogen-complexes (15 min H-plasma exposure) Region at 30 µm – 85 µm depth: → strong reduction of n-type carrier concentration ) implantation damage (15 min H-plasma exposure) Carrier Concentration (cm ) • 15 10 13 10 12 10 16 10 60 min H-Plasma 15 10 14 10 13 10 12 10 0 20 40 60 80 100 Depth (µm) Folie 27 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + 3 MeV H -Implantation & H-Plasma (400 °C) 16 15 min H-Plasma 10 Spreading resistance analyses • 14 10 -3 Region close to Rp: → surplus n-type doping caused by vacancy-hydrogen-complexes (15 min H-plasma exposure) Region at 30 µm – 85 µm depth: → strong reduction of n-type carrier concentration ) implantation damage (15 min H-plasma exposure) Carrier Concentration (cm ) • 15 10 13 10 12 10 16 10 60 min H-Plasma 15 10 14 10 13 10 12 10 0 20 40 60 80 100 Depth (µm) Folie 28 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + 3 MeV H -Implantation & H-Plasma (400 °C) 16 15 min H-Plasma 10 Spreading resistance analyses Folie 29 Oct. 14th, 2008 14 10 -3 Region down to ∼30 µm depth: → indiffusing hydrogen passivates implantation damage ) toward the surface: initial doping level recovered (15 min H-plasma exposure) → surplus n-type doping profile follows the vacancy concentration profile ) vacancy-hydrogen-defects (15 min H-plasma exposure) → at the surface weak reduction of the n-type doping ) acceptor-like defect states (15 min H-plasma exposure) Carrier Concentration (cm ) • 15 10 13 10 12 10 16 10 60 min H-Plasma 15 10 14 10 13 10 12 10 0 20 40 60 80 100 Depth (µm) Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + 3 MeV H -Implantation & H-Plasma (400 °C) 16 15 min H-Plasma 10 Spreading resistance analyses Folie 30 Oct. 14th, 2008 14 10 -3 Region down to ∼30 µm depth: → indiffusing hydrogen passivates implantation damage ) toward the surface: initial doping level recovered (15 min H-plasma exposure) → surplus n-type doping profile follows the vacancy concentration profile ) vacancy-hydrogen-defects (15 min H-plasma exposure) → at the surface weak reduction of the n-type doping ) acceptor-like defect states (15 min H-plasma exposure) Carrier Concentration (cm ) • 15 10 13 10 12 10 16 10 60 min H-Plasma 15 10 14 10 13 10 12 10 0 20 40 60 80 100 Depth (µm) Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + 3 MeV H -Implantation & H-Plasma (400 °C) 16 15 min H-Plasma 10 Spreading resistance analyses Folie 31 Oct. 14th, 2008 14 10 -3 Region down to ∼30 µm depth: → indiffusing hydrogen passivates implantation damage ) toward the surface: initial doping level recovered (15 min H-plasma exposure) → surplus n-type doping profile follows the vacancy concentration profile ) vacancy-hydrogen-defects (15 min H-plasma exposure) → at the surface weak reduction of the n-type doping ) acceptor-like defect states (15 min H-plasma exposure) Carrier Concentration (cm ) • 15 10 13 10 12 10 16 10 60 min H-Plasma 15 10 14 10 13 10 12 10 0 20 40 60 80 100 Depth (µm) Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + 3 MeV H -Implantation & H-Plasma (400 °C) 16 15 min H-Plasma 10 Spreading resistance analyses • • Folie 32 Oct. 14th, 2008 14 10 -3 Region close to Rp: → surplus n-type doping caused by vacancy-hydrogen-complexes (60 min H-plasma exposure) Subsurface region down to Rp: → indiffusing hydrogen passivates implantation damage (V-H4) ) initial n-type doping level (60 min H-plasma exposure) → surplus n-type doping follows vacancy concentration profile Close to the surface: → acceptor-like defect states compensate for n-type doping (60 min H-plasma exposure) Carrier Concentration (cm ) • 15 10 13 10 12 10 16 10 60 min H-Plasma 15 10 14 10 13 10 12 10 0 20 40 60 80 100 Depth (µm) Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + 3 MeV H -Implantation & H-Plasma (400 °C) 16 15 min H-Plasma 10 Spreading resistance analyses • Folie 33 Oct. 14th, 2008 14 10 -3 Region close to Rp: → surplus n-type doping caused by vacancy-hydrogen-complexes (60 min H-plasma exposure) Subsurface region down to Rp: → indiffusing hydrogen passivates implantation damage (V-H4) ) initial n-type doping level → surplus n-type doping follows vacancy concentration profile (60 min H-plasma exposure) • Close to the surface: → acceptor-like defect states compensate for n-type doping (60 min H-plasma exposure) Carrier Concentration (cm ) • 15 10 13 10 12 10 16 10 60 min H-Plasma 15 10 14 10 13 10 12 10 0 20 40 60 80 100 Depth (µm) Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science + 3 MeV H -Implantation & H-Plasma (400 °C) 16 15 min H-Plasma 10 Spreading resistance analyses • • Folie 34 Oct. 14th, 2008 14 10 -3 Region close to Rp: → surplus n-type doping caused by vacancy-hydrogen-complexes (60 min H-plasma exposure) Subsurface region down to Rp: → indiffusing hydrogen passivates implantation damage (V-H4) ) initial n-type doping level (60 min H-plasma exposure) → surplus n-type doping follows vacancy concentration profile Close to the surface: → acceptor-like defect states compensate for n-type doping (60 min H-plasma exposure) Carrier Concentration (cm ) • 15 10 13 10 12 10 16 10 60 min H-Plasma 15 10 14 10 13 10 12 10 0 20 40 60 80 100 Depth (µm) Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Outline of the talk • • • • Folie 35 Introduction → Light ion implantation into silicon → Plasma hydrogenation of silicon → Hydrogen related donor states in silicon Experimental details → Sample preparation → Experimental analyses Results and discussion → Formation of doping profiles by H+-implantation and subsequent plasma hydrogenation at elevated temperatures → Mechanisms of donor states formation Summary Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Summary • • • Folie 36 Influence of plasma hydrogenation on H+-implanted FZ Si was studied Analysis as done be means of spreading resistance measurements It was observed that ) surplus n-type doping occurs near Rp (one order of magnitude above the initial doping level) ) surplus n-type doping occurs also towards the wafer surface for 15 min H-plasma exposure (less strong) → surface acts as a getter center for vacancies ) hydrogenated vacancy defect complexes are responsible for surplus n-type doping in the subsurface layer down to Rp ) near the surface (down to a depth of ∼2 µm) acceptor-like states were created, which compensate for the n-type doping ) acceptor-like defect states can be attributed to (multi-) vacancyhydrogen complexes Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors Faculty of Mathematics and Computer Science Acknowledgements The technical support of Mrs. Renate Bommersbach (Infineon Technologies AG, Munich) & Mr. Josef Niedermeyr (Infineon Technologies AG, Munich) is gratefully acknowledged. Folie 37 Oct. 14th, 2008 Prof. Dr. rer. nat. Reinhart Job, Power Devices & Sensors
© Copyright 2026 Paperzz