Preparation of Pure Fused Lithium Chloride-Potassium Chloride Eutectic Solvent H. A. Laitinen Department of Chemistry and Chemical Engineering, University oJ Illinois, Urbana, Illinois W. S. Ferguson Research Department, The Ohio Oil Company, Littleton, Colorado and R. A. Osteryoung Department o] Chemistry, Rensselaer Polytechnic Institute, Troy, N e w Y o r k ABSTRACT H y d r o l y t i c decomposition occurs d u r i n g the fusion of a eutectic m i x t u r e of l i t h i u m chloride-potassium chloride containing traces of m o i s t u r e if the fusion conditions are not controlled. The r e s u l t a n t c o n t a m i n a t i o n b y h y d r o x y l ion g r e a t l y lowers the u t i l i t y of this m i x t u r e as a fused salt solvent. The effectiveness of various p r o c e d u r e s used for p r e p a r a t i o n of the fused salt solvent was followed b y observation of the characteristic p o l a r o g r a p h i c r e s i d u a l c u r r e n t using a p l a t i n u m microelectrode. A p r e p a r a t i v e m e t h o d is described which involves d r y i n g the m i x t u r e u n d e r m o d e r a t e vacuum, fusion u n d e r a n h y d r o u s h y d r o g e n chloride, and r e m o v a l of the h y d r o g e n chloride from the melt. F o r t h e i n i t i a l w o r k of a l o n g - t e r m g e n e r a l i n v e s t i g a t i o n in f u s e d s a l t e l e c t r o c h e m i s t r y , a e u t e c t i c m i x t u r e of LiC1-KC1 w a s s e l e c t e d as t h e f u s e d s a l t solvent. A d v a n t a g e o u s c h a r a c t e r i s t i c s of this solv e n t a r e g o o d t h e r m a l s t a b i l i t y , w i d e s p a n of e l e c t r o l y t i c d e c o m p o s i t i o n p o t e n t i a l , a b s e n c e of s t r o n g l y a c i d i c or b a s i c p r o p e r t i e s , h i g h c o n d u c t i v i t y a n d fluidity, a n d c o m m e r c i a l a v a i l a b i l i t y of its c o m p o n e n t s as t h e r e a g e n t g r a d e salts. F u r t h e r , t h e m e l t i n g p o i n t is l o w e n o u g h a n d its c h e m i c a l r e a c t i v i t y is s u c h t h a t P y r e x glass c a n be u t i l i z e d as a m a t e r i a l of c o n s t r u c t i o n . T h e p r o p e r t i e s of t h e s o l v e n t t h u s p e r m i t , in t h e o r y , a s t u d y of t h e e l e c t r o c h e m i s t r y of a w i d e v a r i e t y of s o l u t e s w i t h a m i n i m u m of i n t e r f e r e n c e f r o m s o l v e n t effects a n d w i t h o n l y m o d e r a t e e x p e r i m e n t a l difficulty as h i g h t e m p e r a t u r e w o r k goes. I n p r a c t i c e , t h e p o t e n t i a l i t y of t h e s e d e s i r a b l e s o l vent properties, particularly the wide decomposit i o n p o t e n t i a l span, is l i m i t e d b y t h e p u r i t y of t h e f u s e d s o l v e n t w h i c h c a n be p r e p a r e d . T h e m o s t t r o u b l e s o m e a s p e c t of p r e p a r i n g a p u r e LiC1-KC1 eutectic fusion arises from the highly deliquescent p r o p e r t y of t h e LiC1. U n l e s s s p e c i a l p r e c a u t i o n s a r e t a k e n , h y d r o l y t i c d e c o m p o s i t i o n o c c u r s as t h e t e m p e r a t u r e is r a i s e d a n d HC1 is lost f r o m t h e s y s t e m . Concurrently, the melt becomes contaminated with alkaline products. V a r i o u s m e t h o d s h a v e b e e n p r o p o s e d a n d u s e d to prevent hydrolytic decomposition during the prep a r a t i o n of a n h y d r o u s c h l o r i d e s . T h e h e a t i n g of h y d r a t e d r a r e e a r t h c h l o r i d e s w i t h gross a m o u n t s of NH,C1 is o n e classic m e t h o d . F o r t h e p r e p a r a t i o n of f u s e d LiC1-KC1 m i x t u r e s c o n t a i n i n g p o t a s s i u m h e x a c h l o r o m o l y b d a t e , t h e m e t h o d of h e a t i n g t h e s a l t m i x t u r e to f u s i o n in a s t r e a m of d r y , i n e r t gas f o l l o w e d b y an e l e c t r o l y s i s of t h e m e l t f o r r e m o v a l of o x y g e n as m o l y b d e n u m o x i d e s a t t h e c a t h o d e a n d b y v o l a t i l i z a t i o n of m o l y b d e n u m o x y c h l o r i d e s h a s b e e n u s e d (1). A n o t h e r p r o c e d u r e i n v o l v e s d r y i n g t h e LiC1 a n d t h e KC1 s e p a r a t e l y b y first s l o w l y h e a t i n g t h e s a l t s to b e t w e e n 480 ~ a n d 500~ u n d e r h i g h v a c u u m (10 -~ to less t h a n 104 m m H g ) , t h e n mixing the dried salts together under a controlled a t m o s p h e r e in a d r y box, a n d f i n a l l y f u s i n g t h e d r y m i x t u r e u n d e r h i g h v a c u u m (2, 3). T h e m e t h o d to be described here involves drying the eutectic mixture under moderate vacuum, fusing the mixture u n d e r a n h y d r o u s HC1 at a t m o s p h e r i c p r e s s u r e , a n d t h e n r e m o v i n g t h e excess HC1 f r o m t h e f u s e d solvent. Experimental Procedure T h e a p p a r a t u s u s e d in t h i s w o r k i n c l u d e s t h e f o l lowing: F u r n a c e : C e n c o - C o o l e y No. 13627, 115 V, 700 W, C e n t r a l Scientific C o m p a n y , Chicago. A s e p a r a t e h e a t i n g c i r c u i t e q u i v a l e n t to 25% of t h e o r i g i n a l f u r n a c e h e a t i n g c a p a c i t y w a s i n s t a l l e d in t h e b o t t o m of t h e f u r n a c e c a v i t y . O n l y t h i s a u x i l i a r y circuit was operated by the furnace controller. Controller: Wheelco Indicating Controller Model 241-P, B a r b e r - C o l e m a n C o m p a n y , R o c k f o r d , I l linois. Vacuum Pump: Cenco "Pressovac," Central Scientific C o m p a n y , Chicago. C h e m i c a l s : T a n k gases of t h e M a t h e s o n C o m p a n y , 516 Vol. 104, No. 8 PREPARATION O F LiC1-KC1 E U T E C T I C Joliet, Ill., w e r e used. T h e a r g o n w a s passed over hot Cu to r e m o v e traces of o x y g e n . B o t h a r g o n a n d HC1 w e r e d r i e d o v e r Mg (C10,)~. R e a g e n t g r a d e LiC1 a n d KC1 w e r e u s e d to p r e p a r e t h e solvent. Electrodes: A P t foil i n e q u i l i b r i u m w i t h a d i l u t e s o l u t i o n of P t ( I I ) i n the f u s e d salt s o l v e n t w a s used as t h e r e f e r e n c e electrode. This s y s t e m has b e e n s h o w n to d e t e r m i n e a stable, n o n p o l a r i z a b l e r e f e r e n c e p o t e n t i a l a n d has b e e n d e s c r i b e d in v a r i o u s modifications ( 4 - 6 ) . T h e m i c r o e l e c t r o d e s u s e d consisted of 26 g a u g e P t w i r e sealed into C o r n i n g 0120 glass w i t h a b o u t 1 m m of t h e w i r e p r o j e c t i n g ( t o t a l e l e c t r o d e a r e a of 1.4 m m ~) or 18 g a u g e t u n g s t e n w i r e sealed i n t o P y r e x glass w i t h the w i r e g r o u n d flush to t h e glass ( t o t a l e l e c t r o d e a r e a of 0.8 mm~). Polarograph: The polarograms reported were obs e r v e d as a u t o m a t i c a l l y r e c o r d e d c u r v e s b y u s i n g a n " E l e c t r o c h e m o g r a p h , " T y p e E, Leeds a n d Northrup, Philadelphia. F u s e d salt cell: T h e cell u s e d is d e s c r i b e d below. T h e cell i n w h i c h the s o l v e n t p r e p a r a t i o n p r o c e d u r e is c o m p l e t e d has b e e n f o u n d v e r y u s e f u l i n performing both chemical and electrochemical exp e r i m e n t s . As it is a g e n e r a l tool for f u s e d salt r e search (6), it is d e s c r i b e d i n g r e a t e r d e t a i l t h a n is n e c e s s a r y m e r e l y for u s e as t h e s o l v e n t p r e p a r a t i o n vessel. Fig. 1 is a n i l l u s t r a t i o n of t h e v a r i o u s cell c o m p o n e n t s . T h e cell as s h o w n is o n l y p a r t i a l l y ass e m b l e d a n d all of t h e v a r i o u s c o m p o n e n t s s h o w n a r e n o t n e c e s s a r i l y to b e in use at one time. A n e x p l a n a t i o n of the f u n c t i o n of these c o m p o n e n t s serves to i n d i c a t e w h i c h c o m b i n a t i o n is n e e d e d for a p a r t i c u l a r p u r p o s e . A l l of t h e glass p a r t s are P y r e x ( C o r n i n g 774) e x c e p t as o t h e r w i s e noted. T h e side a r m t u b e A is the f u s e d salt c o n t a i n e r . It is 33 c m l o n g b y 6 c m OD a n d i n d i c a t e s t h e scale of the i l l u s t r a t i o n . I n use, the t u b e c o n t a i n s f u s e d Fig. 1. Components of the fused salt cell SOLVENT 517 salt to a d e p t h of a b o u t 41/z c m a n d p r o t r u d e s f r o m t h e f u r n a c e a b o v e t h e l e v e l L - L w h i c h is 12 c m f r o m t h e b o t t o m , b u t i n m o r e r e c e n t w o r k has b e e n i n c r e a s e d to 15 cm. The m e l t i n s i d e t u b e A c a n b e d i v i d e d into s e v e r a l p o r t i o n s b y the c o m p a r t m e n t s B w h i c h a r e closed a t t h e b o t t o m b y m e d i u m p o rosity f r i t t e d glass disks. T h e s e p o r t i o n s of m e l t are t h e n i n e l e c t r o l y t i c c o n t a c t w i t h one a n o t h e r b u t c r o s s - c o n t a m i n a t i o n of the c o m p a r t m e n t c o n t e n t s is p r e v e n t e d . A n u m b e r 13 r u b b e r s t o p p e r C serves to close the t u b e A a n d to s u p p o r t w i t h i n t h e t u b e A the i n e r t - g a s d e l i v e r y t u b e D, t h e t h e r m o c o u p l e s h e a t h E, a n d v a r i o u s electrodes. T h o s e holes i n s t o p p e r C w h i c h are n o t i n use are closed b y glass p l u g s F. T h e l a r g e holes i n s t o p p e r C p e r m i t easy m a n i p u l a t i v e access to t h e i n t e r i o r of t u b e A. D u r i n g t h e e x p e r i m e n t , for e x a m p l e , i n d i v i d u a l c o m p a r t m e n t s c a n be r e m o v e d f r o m t h e system, u s i n g h o o k H, or k n o w n a m o u n t s of a s o l u t e c a n b e a d d e d to a n y one of t h e c o m p a r t m e n t s w i t h i n t h e t u b e , u s i n g p l a t i n u m s p o o n G. T h e e n t r y of air i n t o t h e s y s t e m is prevented by an argon atmosphere which blankets the f u s e d salt. T h e s e v e n holes i n the s t o p p e r m u s t h a v e p a r a l l e l axes a n d m u s t fit t h e i r r e s p e c t i v e glass p a r t s (10 m m a n d 16 m m i n this case) v e r y s n u g l y b u t w i t h o u t b i n d i n g . It h a s b e e n f o u n d a d v a n t a g e o u s to bore t h e holes w i t h a d r i l l press, u s i n g a r e g u l a r t w i s t drill. T h e s t o p p e r is first f r o z e n i n a d r y ice"Cellosolve" mixture. A p r i n c i p a l a d v a n t a g e of this cell is t h a t s e v e r a l d i f f e r e n t s o l u t i o n c o m p o s i t i o n s c a n be m a i n t a i n e d at one t i m e i n s e p a r a t e c o m p a r t m e n t s i n t h e t u b e . Thus, a n e w b a t h of f u s e d salt s o l v e n t n e e d n o t b e p r e p a r e d for each c h a n g e of e x p e r i m e n t a l c o n d i tion. T h e precise course of a n e x p e r i m e n t n e e d n o t be p r e d e t e r m i n e d , since it is a s i m p l e m a t t e r to a l t e r the c o m p o s i t i o n of a c o m p a r t m e n t at a n y t i m e w i t h out affecting t h e c o m p o s i t i o n of t h e rest of t h e c o m p a r t m e n t s . This is a n e x t r e m e l y v a l u a b l e a d v a n t a g e i n f u s e d salt r e s e a r c h . T h e f r i t t e d b a r r i e r s of t h e c o m p a r t m e n t s are v e r y effective for p r e v e n t i n g diffusion of a s o l u t e out of its c o m p a r t m e n t . E l e c t r i c a l l y , t h e b a r r i e r s are effic i e n t i n t h a t t h e r e s i s t a n c e is b u t 20 to 50 o h m s b e t w e e n t w o P t w i r e s i m m e r s e d i n the eutectic solv e n t of two d i f f e r e n t c o m p a r t m e n t s . P r e p a r a t i o n of t h e eutectic s o l v e n t is c a r r i e d out as follows. R e a g e n t g r a d e LiC1 a n d K C I a r e t a k e n i n t h e p r o p o r t i o n 0.59 m o l e to 0.41 m o l e a n d m i x e d together. T h e m i x t u r e is p l a c e d i n a s u i t a b l e vessel a n d exposed to a v a c u u m (0.1 to 0.2 m m Hg) for 6 h r to r e m o v e excessive m o i s t u r e so t h a t t h e m a t e r i a l w i l l n o t cake d u r i n g the n e x t step. A l l t r a n s f e r s of t h e m a t e r i a l f r o m this p o i n t on m u s t be m a d e as r a p i d l y as possible to a v o i d excessive p i c k u p of atmospheric moisture. The vacuum-dried mixture is b a l l - m i l l e d to a fine f r e e - f l o w i n g p o w d e r i n a clean, t i g h t l y closed jar, u s i n g p o r c e l a i n b a l l s w h i c h h a v e p r e v i o u s l y b e e n l e a c h e d w i t h 6N HC1, r i n s e d with pure water, and oven-dried. The ground mixt u r e is stored i n 1-1b s c r e w - c a p j a r s u n t i l n e e d e d . It has b e e n k e p t as long as 1 y e a r w i t h o u t c a k i n g , p r o v i d e d t h a t t h e g r o u n d m i x t u r e is v a c u u m - d r i e d 518 JOURNAL OF T H E E L E C T R O C H E M I C A L at r o o m t e m p e r a t u r e for a few h o u r s i m m e d i a t e l y a f t e r b e i n g t r a n s f e r r e d into the 1-1b c o n t a i n e r s . A l a r g e desiccator h a v i n g a n a p p r o p r i a t e l y d r i l l e d L u c i t e p l a t e serves to sieve t h e b a l l s f r o m t h e m i x t u r e w i t h o u t u n d u e e x p o s u r e to a t m o s p h e r i c m o i s ture. T h e s o l v e n t p r e p a r a t i o n for a n e x p e r i m e n t , w o r k ing f r o m t h e v a c u u m - d r i e d , g r o u n d m i x t u r e , is c o m p l e t e d i n t u b e A, r e f e r r i n g to Fig. 1. T u b e A is fitted w i t h a s t o p p e r C c a r r y i n g a gas d e l i v e r y t u b e D a n d a t h e r m o c o u p l e s h e a t h E. A l l u n u s e d holes i n t h e s t o p p e r are closed b y p l u g s F. The s p h e r i c a l j o i n t of t u b e D is c o n n e c t e d to a stopcock at w h i c h e i t h e r a r g o n or a n h y d r o u s HC1 is a v a i l a b l e at a p r e s s u r e of 4-5 c m Hg i n excess of a t m o s p h e r i c p r e s s u r e . T h e s i d e a r m of t u b e A is fitted w i t h its p r o t e c t i v e d r y i n g t u b e I, w h i c h is i n t u r n c o n n e c t e d to a v a c u u m m a n i f o l d . W i t h the stopcock of t h e gas d e l i v e r y s y s t e m closed, t h e s y s t e m is e v a c u a t e d to check for the p r e s e n c e of leaks. T h e s y s t e m is c o n sidered free of l e a k s if the p r e s s u r e r e a d i n g is 0.2 m m H g or lower. A i r is t h e n a d m i t t e d to a t m o s p h e r i c p r e s s u r e t h r o u g h t h e d r y i n g t u b e I. T h e c h a r g e of g r o u n d eutectic m i x t u r e is t h e n loaded into t h e cell t h r o u g h one of t h e l a r g e holes. It s h o u l d be e m p h a s i z e d t h a t t u b e A does n o t c o n t a i n the c o m p a r t m e n t s B at this p o i n t a n d t h a t the gas d e l i v e r y t u b e D is w i t h i n 1 c m of t h e b o t t o m of t u b e A. A f t e r l o a d i n g t h e c h a r g e of e u t e c t i c m i x t u r e into t u b e A, the s y s t e m is m a i n t a i n e d e v a c u ated at r o o m t e m p e r a t u r e for a p e r i o d of 3 days. The s y s t e m is n e x t g r a d u a l l y b r o u g h t to a t e m p e r a t u r e of 300~ d u r i n g a n 8 - h r p e r i o d b y a p p r o p r i a t e a d j u s t m e n t of the f u r n a c e controls, v a c u u m b e i n g m a i n t a i n e d all the while. F u s i o n of the c h a r g e is effected u n d e r t h e f o l l o w i n g conditions. A n h y d r o u s HC1 is s l o w l y a d m i t t e d to t h e e v a c u a t e d cell t h r o u g h gas d e l i v e r y t u b e D u n t i l , w h e n the p r e s s u r e exceeds a t m o s p h e r i c , HC1 c a n be d i s c h a r g e d f r o m t h e cell t h r o u g h t h e s i d e a r m d r y i n g t u b e I into a disposal s u m p . A c o n v e n i e n t disposal s u m p for the HC1 is the i n t e r i o r of a filter flask w h i c h is c o n n e c t e d to a r u n n i n g w a t e r aspirator, the filter flask b e i n g also v e n t e d to t h e a t m o s p h e r e . A slow flow of HC1 is m a i n t a i n e d t h r o u g h t h e salt m i x t u r e w h i l e t h e t e m p e r a t u r e is raised to 500~ f u s i o n o c c u r r i n g at 352~ A f t e r fusion, the m e l t is s a t u r a t e d w i t h HC1 w h i c h m u s t be r e m o v e d . Most of the HC1 c a n be r e m o v e d b y e v a c u a t i n g t h e s y s t e m for a few m i n utes w i t h t h e w a t e r a s p i r a t o r a n d t h e n u s i n g a r g o n to b r i n g t h e s y s t e m b a c k to a t m o s p h e r i c p r e s s u r e . E v a c u a t i o n of the s y s t e m w i t h t h e w a t e r a s p i r a t o r a n d t h e refilling w i t h a r g o n is r e p e a t e d once m o r e . A t this p o i n t it is c o n v e n i e n t to add the c o m p a r t m e n t s B to the system, if t h e y a r e to be u s e d i n a n e x p e r i m e n t . T h e i r p r e v i o u s t r e a t m e n t consists of h a v i n g b e e n t h o r o u g h l y cleaned, r i n s e d , a n d v a c u u m - d r i e d at 400~ T h e y are a d d e d to the s y s t e m one b y one, w h i l e hot, t h r o u g h t h e l a r g e holes i n s t o p p e r C, u s i n g t h e h o o k H to m a k e the t r a n s f e r . The c o m p a r t m e n t s fill b y g r a v i t y d u r i n g t h e final step of the m e l t p r e p a r a t i o n . As a final step, the s y s t e m is e v a c u a t e d on the v a c u u m m a n i f o l d for 3 hr. T h e p u m p is p r o t e c t e d August 1957 SOCIETY IOO I A g75 E I I / D/ .o 5 0 ' ~ 25" 0 o I l a t/ i 0:5 ! l.b U ! ?_0 2.5 50 - E in Volts vs. 0.I M Pffl]) Pt Reference Fig. 2. PoJarograms for the eutectic solvent at 450~ A, solvent still saturated with HCI after fusion; B, after evacuation for 2 hr, most of HCI removed; C, after evacuation for 3 hr, HCI virtually absent; D, typical curve for solvent fused without precaution to prevent hydrolysis. f r o m HC1 v a p o r s b y a 24-in. c o l u m n filled w i t h a n A s c a r i t e - M g ( C 1 0 , ) ~ m i x t u r e . T h e s y s t e m is b r o u g h t b a c k to a t m o s p h e r i c p r e s s u r e w i t h a r g o n at t h e c o m p l e t i o n of t h e e v a c u a t i o n p e r i o d a n d a n i n e r t a t m o s p h e r e is m a i n t a i n e d o v e r the m e l t for t h e b a l a n c e of a n e x p e r i m e n t b y a c o n t i n u o u s slow flow of argon. A r g o n is d e l i v e r e d b y t u b e D to a l e v e l j u s t a b o v e the s u r f a c e of t h e melt. Results and Discussion T h e p o l a r o g r a p h i c m e t h o d , u s i n g solid m i c r o cathodes, was f o u n d to be a n e x c e l l e n t w a y of d e t e c t i n g the p r e s e n c e of e l e e t r o a c t i v e i m p u r i t i e s i n t h e s o l v e n t p r e p a r a t i o n s . C u r v e D of Fig. 2 is a t y p i c a l p o l a r o g r a m of those o b s e r v e d for t h e s o l v e n t s w h i c h w e r e p r e p a r e d by f u s i o n w i t h o u t p r e c a u t i o n to p r e v e n t h y d r o l y t i c d e c o m p o s i t i o n or w h i c h w e r e prepared by fusion under moderate vacuum. Evid e n c e of s o I v e n t c o n t a m i n a t i o n is s h o w n b y t h e r a p i d l y i n c r e a s i n g c u r r e n t at --0.9 v. T h e c a t h o d e process g i v i n g rise to this c u r r e n t is a c c o m p a n i e d b y the f o r m a t i o n of v i s i b l e gas b u b b l e s at t h e m i c r o c a t h o d e surface, i n d i c a t i n g t h e process n o t to be s o l v e n t decomposition. A n o t h e r e x p e r i m e n t a l fact suggesting e o n t a m i n a t i o n is t h a t t h e P y r e x c o n t a i n e r of a s o l v e n t so p r e p a r e d is d e e p l y etched w i t h i n 1 or 2 h r e x p o s u r e to t h e solvent. The p r o c e d u r e of s o l v e n t p r e p a r a t i o n g i v e n h e r e is designed, b y p r o v i s i o n of a n excess of HC1, to shift t h e h y d r o l y t i c e q u i l i b r i u m H ~ O -k CI- ~ OH- -6 HCI f (I) to the left. Under these conditions the moisture volatilizes from the system without the formation of hydroxyl ion. Alkaline contamination is undesirable because its corrosive attack on the Pyrex cell leads to further contamination of the solvent and because the electrode reaction OH- -k e - ~ I/z H~ -k O: (II) i n t e r f e r e s w i t h a s t u d y of o t h e r electrode processes w h i c h occur b e t w e e n a p p r o x i m a t e l y - - 1 a n d --2.5 v vs. the P t - P t ( I I ) r e f e r e n c e system. The effectiveness of t h e p r e p a r a t i v e p r o c e d u r e g i v e n c a n be j u d g e d f r o m c u r v e C of Fig. 2, w h i c h Vol. 104, No. 8 PREPARATION OF LiC1-KC1 EUTECTIC is a p o l a r o g r a m t y p i c a l of t h e e u t e c t i c s o l v e n t p r e p a r e d as specified. F o r c u r v e C t h e r e s i d u a l c u r r e n t p r e c e d i n g t h e t e r m i n a l p r o c e s s of l i t h i u m m e t a l d e p o s i t i o n is less t h a n 3 tLa a t a m i c r o c a t h o d e of 0.8 m m '~ a r e a . T h e i n h e r e n t l y w i d e d e c o m p o s i t i o n p o t e n t i a l s p a n of t h e LiC1-KC1 e u t e c t i c m i x t u r e is t h u s a c c e s s i b l e f o r t h e e l e c t r o c h e m i c a l s t u d y of s u c h s o l u t e s as CrCI~, FeC12, CuC1, ZnCI~, a n d MgCI~. N o n e of t h e s e s o l u t e s c a n b e s t u d i e d a t l o w s o l u t e c o n c e n t r a t i o n s in t h e c o n t a m i n a t e d s o l v e n t b e c a u s e r e a c t i o n ( I I ) is c o m p e t i t i v e w i t h m o s t of t h e e l e c t r o d e r e a c t i o n s of i n t e r e s t . F u r t h e r m o r e , t h e a l k a l i n e e n v i r o n m e n t of a c o n t a m i n a t e d s o l v e n t r e s u l t s in p r e c i p i t a t i o n of s o m e of t h e s o l u t e s as i n s o l u b l e species. T h e f r e e d o m f r o m a l k a l i n i t y of t h e s o l v e n t w h e n p r e p a r e d as d e s c r i b e d is a t t e s t e d b y t h e f a c t t h a t t h e a b o v e s o l u t e s r e m a i n in s o l u t i o n a n d t h e f a c t t h a t t h e P y r e x g l a s s w a r e is o n l y s l i g h t l y e t c h e d a f t e r d a y s of c o n t a c t w i t h t h e f u s e d s a l t solvent. A l t h o u g h r e a c t i o n ( I ) is w r i t t e n as a n e q u i l i b r i u m , t h e r e a c t i o n is n o t s h i f t e d r e a d i l y to t h e l e f t once it h a s p r o c e e d e d e x t e n s i v e l y to t h e r i g h t . F u sion of t h e e u t e c t i c m i x t u r e w i t h o u t p r e c a u t i o n to prevent hydrolytic decomposition yields a solvent t h e c o n d i t i o n of w h i c h c a n n o t b e m a d e s a t i s f a c t o r y b y t h e p a s s a g e of HC1. T h e c o r r e c t i v e t r e a t m e n t does n o t s e r v e in p l a c e of t h e p r e v e n t i v e t r e a t m e n t . D a t a w h i c h i l l u s t r a t e t h e s l o w r e l e a s e of m o i s t u r e b y t h e g r o u n d e u t e c t i c m i x t u r e a r e s h o w n in T a b l e I. T h e s e d a t a w e r e o b t a i n e d b y d e t e r m i n i n g t h e v o l a t i l e m a t e r i a l c o l l e c t e d in a t r a p , c o o l e d w i t h a d r y i c e - " C e l l o s o l v e " m i x t u r e , w h i c h e s c a p e d a 195.4 g s a m p l e of t h e g r o u n d e u t e c t i c m i x t u r e u n d e r t h e c o n d i t i o n s i n d i c a t e d . I t w a s c o n c l u d e d t h a t at r o o m t e m p e r a t u r e a n d 0.1-0.2 m m H g p r e s s u r e t h e m a j o r p o r t i o n of t h e m o i s t u r e is r e m o v e d f r o m t h e g r o u n d e u t e c t i c m i x t u r e in 3 d a y s . T h e n u m e r i c a l v a l u e s of G a r d n e r , B r o w n , a n d J a n z (2, 3), r e p o r t e d on a n e x t e n d e d s t u d y of w e i g h t c h a n g e s as a f u n c t i o n of t i m e a n d t e m p e r a t u r e of a l k a l i c h l o r i d e s m a i n t a i n e d at 10-' to 10 -~ m m Hg, c a n n o t b e c o m p a r e d to t h e d a t a of T a b l e I b e c a u s e of t h e d i f f e r e n c e s in t e m p e r a t u r e a n d p r e s s u r e c o n d i t i o n s . B o t h sets of d a t a y i e l d t h e s a m e g e n e r a l conclusion, n a m e l y , t h a t m o i s t u r e is t e n a c i o u s l y h e l d b y LiC1, e v e n a t l o w pressures. A s u m m a r y of o b s e r v a t i o n s , b a s e d on t h e r e s u l t s of a l t e r i n g t h e e x p e r i m e n t a l c o n d i t i o n s g i v e n a b o v e for t h e p r e p a r a t i o n of t h e f u s e d s a l t solvent, i n d i c a t e s t h e c o n d i t i o n s p r e s c r i b e d to b e o p t i m a l for t h e p r o d u c t i o n of a h i g h q u a l i t y s o l v e n t w i t h a Table I. Moisture collected from 195.4 g of eutectic mixture Evacuation* period, hr 0-24 24-60 60-74 74-84 84-94 Temperature condition Room t e m p Room t e m p Room t e m p Room t e m p S l o w l y incr. to 245~ Moisture collected in trap, g 0.65 1.00 0.10 0.00___0.05 0.15 * P r e s s u r e m a i n t a i n e d a t 0.1-0.2 m m Hg. Cumulative moisture collection, g 0.65 1.65 1.75 1.75 1.90 SOLVENT 519 m i n i m u m of p r e p a r a t i v e effort for t h e a m o u n t s of s o l v e n t r e q u i r e d in e l e c t r o c h e m i c a l studies. T h e q u a l i t y of t h e s o l v e n t p r e p a r a t i o n , as m e a s u r e d b y t h e p o l a r o g r a p h i c c u r v e , is l o w e r e d if t h e t i m e of t h e " r o o m t e m p e r a t u r e " e v a c u a t i o n of t h e g r o u n d e u t e c t i c m i x t u r e is less t h a n 2 d a y s . D u r i n g t h i s p e r i o d t h e p r e p a r a t i v e o p e r a t i o n r e q u i r e s no o p e r a t o r a t t e n t i o n a n d l i t t l e in t h e m a n n e r of e q u i p m e n t . S h o r t e n i n g t h e p e r i o d is t h e r e f o r e n o t p a r t i c u l a r l y to b e d e s i r e d . S h o r t e n i n g t h e p e r i o d d u r i n g w h i c h t h e m i x t u r e is h e a t e d , u n d e r v a c u u m , f r o m r o o m t e m p e r a t u r e to 300~ is d e l e t e r i o u s to t h e solv e n t q u a l i t y . S u b s t i t u t i o n of t h e v a c u u m c o n d i t i o n d u r i n g t h i s s t e p b y 1 a r m of HC1 p r e s s u r e is also d e l e t e r i o u s . E x p e r i e n c e s h o w s t h a t t h e f u s i o n s t e p m u s t b e p e r f o r m e d u n d e r HC1 i n o r d e r to p r e vent excessive hydrolysis because the vacuum cond i t i o n s p r e s c r i b e d a r e insufficient for c o m p l e t e r e m o v a l of t h e m o i s t u r e p r i o r to fusion. F u s i o n of t h e m i x t u r e at l o w p r e s s u r e of HC1 is w i t h o u t b e n e ficial effect on t h e s o l v e n t q u a l i t y . T h e t i m e r e q u i r e d f o r r e m o v a l of t h e HC1 f r o m t h e m e l t is n o t appreciably shortened by interrupting the evacuat i o n w i t h f r e q u e n t flushes of t h e s y s t e m w i t h a r g o n . S e v e r a l a t t e m p t s u s i n g o t h e r m e a n s to r e m o v e m o i s t u r e a n d h y d r o x y l i o n f r o m t h e m e l t p r o v e d to b e u n s u c c e s s f u l . T h e c h e m i c a l r e a c t i o n of e i t h e r SOCI~ or SiCI~, i n t r o d u c e d as t h e v a p o r c a r r i e d b y a s t r e a m of d r y N, c o n s t i t u t e d t h e m o s t n e a r l y s u c cessful e l i m i n a t i o n of m o i s t u r e a n d h y d r o x y l ion. The hydrolytic reactions were slow and incomplete u n d e r t h e c o n d i t i o n s of t h e e x p e r i m e n t s . Use of acidic metal chlorides in the same capacity was r u l e d o u t b e c a u s e of t h e c a t i o n c o n t a m i n a t i o n t h e r e b y i n t r o d u c e d into t h e solvent. P r o l o n g e d e l e c t r o l y s i s of t h e m e l t b e t w e e n g r a p h i t e e l e c t r o d e s f a i l e d to p r o d u c e a p u r e s o l v e n t , as j u d g e d b y t h e polarographic criterion, probably because this m e t h o d does n o t e l i m i n a t e o x i d e c o n t a m i n a t i o n . No n o t i c e a b l e i m p r o v e m e n t in t h e r e s i d u a l c u r r e n t characteristic was produced by the scavenging effect of c a t h o d i c a l l y d e p o s i t e d Li. M e l t s p r e p a r e d in contact with Vycor and Alundum containers had t h e s a m e r e s i d u a l c u r r e n t c h a r a c t e r i s t i c as t h o s e p r e p a r e d in P y r e x , i n d i c a t i n g t h e c o n t a i n e r m a t e r i a l to b e of l i t t l e a p p a r e n t significance. Acknowledgment T h e a u t h o r s t a k e t h i s o p p o r t u n i t y to e x p r e s s t h e i r a p p r e c i a t i o n to t h e D i a m o n d O r d n a n c e F u z e L a b o r a t o r y , D e p a r t m e n t of D e f e n s e , f o r f i n a n c i a l s p o n s o r s h i p of a s s i s t a n t s h i p s h e l d b y t w o of t h e m (R.A.O. a n d W . S . F . ) d u r i n g e x e c u t i o n of t h e r e search. M a n u s c r i p t r e c e i v e d Sept. 28, 1956. This p a p e r was p r e p a r e d for d e l i v e r y before the Cincinnati Meeting, May 1-5, 1955. A n y discussion of this p a p e r w i l l a p p e a r in a Discussion Section to be p u b l i s h e d in the J u n e 1958 JOURNAL. REFERENCES 1. S. Senderoff and A. Brenner, This Journal, 101, 16 (1954). 2. H. J. G a r d n e r , C. J. Brown, and G. J. Janz, "The P r e p a r a t i o n of D r y A l k a l i Chlorides f o r Conduc- 520 JOURNAL OF THE ELECTROCHEMICAL tance Studies in Aqueous Media and Molten Salts," Technical Status Report on Contract No. Nonr591(06), supported by the U. S. Office of Naval Research. 3. C. J. Brown, J. J. Gardner, and G. J. Janz, "Electrochemistry of Molten Alkali and Alkaline E a r t h Halides C o n t a i n i n g Halides of T i t a n i u m , " A n n u a l SOCIETY August 1957 Report, March, 1956, on Contract No. Nonr-591 (06). 4. R. A. Osteryoung, Ph.D. thesis, U n i v e r s i t y of Illinois, 1954. 5. W. S. Ferguson, Ph.D. thesis, U n i v e r s i t y of Illinois, 1956. 6. H. A. L a i t i n e n and W. S. Ferguson, Anal. Chem., 29, 4 (1957).
© Copyright 2026 Paperzz