Enzyme activities of monokaryotic and dikaryotic strains of the

Kiel 1991
Enzyme activities of monokaryotic and dikaryotic strains of the
marine Basidiomycete Nia vibrissa
G. Schimpfhauser and H. P. Molitoris
Botanisches Institut an der Universitat Regensburg
Postfach 397, D-8400 Regensburg, Germany
Abstract
M o n o - and d i k a r y o t i c isolates of the marine wood-inhabiting Basidiomycete Nla
vibrissa
from various marine zones were investigated in semiquantitative tests
for 15 enzymes in redox metabolism (laccase, peroxidase, tyrosinase), carbohydrate metabolism (amylase, cellulase, chitinase, B-glucosidase, laminarinase, p e c tate transeliminase, xylanase), fat metabolism (lipase), nitrogen metabolism
(caseinase, gelatinase, n i t r a t e reductase, urease). A l l experiments were c o n ducted at 22 ° C on agar plates or test tubes w i t h media containing synthetic
seawater or deionized water. Most of the strains showed an identical enzyme
pattern. A m y l a s e , caseinase, cellulase, gelatinase, laminarinase, lipase, n i t r a t e
reductase, peroxidase and xylanase were found in a l l strains, tyrosinase in none.
The production of enzymes did not show any significant differences as regards
the nuclear status (mono- or dikaryon) or the biogeographical origin of the
strains.
Introduction
Nla vibrissa M O O R E and M E Y E R S (1959), is the only wood degrading marine
G a s t e r o m y c e t e . Previous investigations of Nla vibrissa dealt p r i m a r i l y w i t h morphology and taxonomy ( D O G U E T 1967, K O H L M E Y E R 1963), the few physiologic a l investigations were c a r r i e d out usually using only one isolate ( D O G U E T 1968,
1969a, 1969b; for further references see also S C H I M P F H A U S E R 1990). In their
search for the enzyme p a t t e r n of the fungus, L E I G H T L E Y and E A T O N (1979)
tested for enzymes involved in both lignin degradation (laccase and tyrosinase)
and carbohydrate metabolism (cellulase, mannanase and xylanase). The presence
of laccase indicated a white rot type of wood degradation.
In this paper several monokaryotic and dikaryotic strains f r o m several marine
biogeographical^ zones ( H U G H E S 1974, K O H L M E Y E R 1983) were compared for
the production of 15 enzymes on synthetical seawater and deionized water
media.
Material and methods
B i o l o g i c a l m a t e r i a l : The origin and suppliers of Nia vibrissa strains are given in
the f i r s t paper in this series ( S C H I M P F H A U S E R and M O L I T O R I S 1991). Three of
the 11 strains were shown by m i c r o f l u o r i m e t r y to be monokaryotic (see
S C H I M P F H A U S E R and M O L I T O R I S 1991).
M e d i a , incubation, growth and evaluation: The strains were transferred to 9 cm
d petri dishes and grown on a glucose (1 g/1) - peptone (0.5 g/1) - yeast e x t r a c t
(0.1 g/1) medium made up w i t h synthetic seawater ( G P Y S ) or deionized water
(GPYI), as described in M O L I T O R I S and S C H A U M A N N (1986). The synthetic seaw a t e r was prepared w i t h R I L A M A R I N E MIX ( R I L A P R O D U C T S , Teaneck, N.J.,
U S A ) . The incubation temperature was 22 °C.
E n z y m e tests: F o r the determination of laccase w i t h syringaldazine ( H A R K I N
and OBST 1973), cellulase w i t h carboxymethylcellulose ( T E A T H E R and W O O D
1982), cellulase w i t h a v i c e l coupled w i t h R B B R ( R e m a z o l - b r i l l a n t - b l u e - R ) (NG
and Z E I K U S 1980, S M I T H 1977, C O L L E T T 1984) and B-glucosidase w i t h arbutin
( K R E I S E L and S C H A U E R 1987), see R O H R M A N N and M O L I T O R I S (1991). The
presence of laminarinase was determined with soluble laminarin in G P Y - m e d i u m
containing 5 % soluble laminarin (prepared a f t e r T H I E M et a l . 1977) by staining
the non-degraded l a m i n a r i n with congo red ( T E A T H E R and W O O D 1982; as
m o d i f i e d by R O H R M A N N , personal communication). Urease a c t i v i t y (splitting of
urea into C 0
and ammonia) results in a pH increase which is demonstrated by
turning red the pH indicator phenol-red ( C H R I S T E N S E N 1946 in K R E I S E L and
S C H A U E R 1987). Xylanase a c t i v i t y was shown by p r e c i p i t a t i n g the residual xylan
by ethanol ( F L A N N I G A N 1980). F o r the remaining enzyme tests (laccase w i t h a naphthol, laccase w i t h guajacol, laccase with benzidin, peroxidase w i t h benzidin,
tyrosinase w i t h p-cresol and g l y c i n , amylase w i t h soluble starch, chitinase w i t h
c o l l o i d a l c h i t i n , laminarinase w i t h insoluble laminarin, pectate transeliminase
w i t h p e c t i n from apples, lipase with tween 80 and C a C l , caseinase w i t h skim
milk powder, gelatinase w i t h gelatin and n i t r a t e reductase w i t h N a N 0 and Gries
Ilosvaye reagent) see M O L I T O R I S and S C H A U M A N N (1986).
2
2
3
A l l d i r e c t enzyme tests (for explanation see Table 1) and the growth d e t e r m i n a tion were conducted in t r i p l i c a t e ; for the indirect enzyme tests 5 plates were
used for each enzyme/strain combination. G r o w t h determination and enzyme
tests were c a r r i e d out at weekly intervals for at least 7 weeks.
Results and discussion
The results of the enzyme tests for 15 enzymes in redox, fat, nitrogen and c a r bohydrate metabolism, both on synthetic (S) and deionized water (I) media, are
given in arbitrary units for the monokaryotic and d i k a r y o t i c strains of Nia
vibrissa in Table 1. F r o m Table 1 the following results can be summarized:
A m y l a s e , caseinase, cellulase, gelatinase, laminarinase, lipase, n i t r a t e reductase,
peroxidase and xylanase are produced by a l l strains in at least one test on Iand/or S-medium.
C h i t i n a s e , 3-glucosidase, laccase, pectate transeliminase and urease are found
for about 2/3 of the strains in at least one test on I- and/or S-medium.
Tyrosinase is not produced by any of the strains tested.
Regarding the enzyme a c t i v i t y investigated using several tests (cellulase, laccase
and laminarinase), it is evident that for cellulase the results d i f f e r only quantit a t i v e l y , whereas for laccase the results depend on the strain and enzyme tests
used. When tested w i t h soluble l a m i n a r i n , laminarinase was found in 100 % of
the strains, when tested w i t h insoluble laminarin, laminarinase was not found in
any strain.
No general p i c t u r e could be formed of the e f f e c t of synthetic or deionized
water medium on enzyme a c t i v i t y , since some enzymes are produced by a high
percentage of strains on seawater medium (chitinase, g-glucosidase, peroxidase,
urease), laccase was produced p r e f e r e n t i a l l y on deionized water medium (laccase), whereas lipase was found exclusively on deionized water medium. A m y lase, caseinase, cellulase, gelatinase, nitrate reductase and xylanase were produced by a l l strains on both media.
N e i t h e r nuclear status nor the biogeographical origin of the strains appeared to
have a significant influence on enzyme production.
Redox metabolism
Peroxidase (EC 1.11.1.7.), tyrosinase (EC 1.14.18.1.) and laccase (EC 1.10.3.2.)
are involved in wood synthesis and degradation ( M O L I T O R I S 1976 and M O L I T O RIS 1979) laccase being s p e c i f i c of the white rot type of wood degradation and
responsible for the linkage of lignin w i t h cellulose degradation ( M O L I T O R I S
1979). Owing to methodological d i f f i c u l t i e s , laccase was investigated using d i f ferent tests. Taking the results together, a l l strains are able to produce laccase,
p r e f e r e n t i a l l y on I-medium. This agrees w e l l w i t h the f a c t that Nla vibrissa is a
wood-degrading fungus of the white rot type, c o n f i r m i n g also the results of
L E I G H T L E Y and E A T O N (1979). L a c c a s e production was also s p e c i f i c a l l y found
in the peridia of Nla vibrissa fruitbodies in the guajacol test (this paper) pointing
to the often-discussed role of phenoloxidases in fungal morphogenesis and propagation ( M O L I T O R I S 1976).
The absence of tyrosinase in the p-cresol test agrees w i t h previous results by
L E I G H T L E Y and E A T O N (1979) for Nia vibrissa. This enzyme was not found in
the other wood-degrading marine Basidiomycete, Halocyphina
villosa
(ROHRM A N N and M O L I T O R I S 1986) either, whereas peroxidase was found in our tests
in Nia vibrissa and previously for Halocyphina
villosa ( R O H R M A N N and M O L I TORIS 1986).
Carbohydrate metabolism
Since wood is frequently found as a substrate for marine fungi, and since Nia vibrissa is regularity found on wood and was shown to produce laccase, which part i c i p a t e s in wood degradation, it was to be expected that cellulases and other
enzymes p a r t i c i p a t i n g in the use of cellulose and other carbohydrates as energy
source would be found.
F u r t h e r m o r e , a l l strains tested produce amylase (EC 3.2.1.1.), cellulase (mainly
E C 3.2.1.4. and E C 3.2.1.91) and xylanase (EC 3.2.1.8.) on both media. B-Glucosidase (EC 3.2.1.21), laminarinase (EC 3.2.1.6.) and pectate transeliminase (EC
4.2.2.2.) were found in most of the strains and media tested, the l a t t e r enzyme,
however, only in small amounts. Chitinase (EC 3.2.1.14.), the enzyme degrading
c h i t i n , a substrate on which Nia vibrissa is not found, was produced to a much
lesser degree. C e l l u l a s e and xylanase were also found by L E I G H T L E Y and
E A T O N (1979) in Nia vibrissa. A s i m i l a r set of enzymes as described here for
Table 1 (Part 1). E n z y m e a c t i v i t i e s of 3 monokaryotic and 8 d i k a r y o t i c strains
of Nia vibrissa on synthetic seawater and deionized water media.
Enzyme a c t i v i t y 1)
Enzyme
(Substrate)
2
M>
Dikaryons
Monokaryons
M154 M167 M168 M169 M170 M171 M175 M21
3
% of )
M172 M173 M174 s t r a i n
REDOX METABOLISM
4
Laccase/d )
( -Naphthol)
Laccase/d
(Guajacol)
5
Laccase/i ^
(Benzidine)
Laccase/i
(Syringaldazin)
Peroxidase/i
(Benzidin)
Tyrosinase/i
(p-Cresol)
I
+++
+
0
+++
( + ) +++
+
0
S
++
( + )* 0
0
0
0
0
0
0
I
+++
+1
++
+
++
I
++
++
+++1 ++
-
-
++
-
++
s
-
++
-
+1
+++
-
+
-
++
-
s
82%
++
27%
+++
54%
++
45%
+++
54%
+
++
-
-
-
++
+++
I
+++
-
-
(+)e
-
-
( + ) ( + )1 ( + ) ( + )
s
+++
+
+
(+)1 +1
+
++1
I
+++
+++
(+)
-
-
9%
++
54%
-
54%
s
0%
+1
++
++1
+1
100%
I
0%
s
0%
CARBOHYDRATE METABOLISM
Amylase/d
(Soluble
Starch)
Cellulase/i
(CMC )
I
+
++
+
+
+
+
++
+
++
++
+
100%
100%
S
++
++
+++
+++
++
++
+++
++
+++
+++
++
I
++
+++
+++
+++
++
+++
++
++
++
++
++
100%
s
++
++
++
++
++
++
++
++
++
++
++
100%
I
++
++
++
++
++
+1
+++
++
+++
++
++
100%
s
++
++
++
++
+++
++
+++
+
++
+1
++
100%
++1
++1
18%
+++
+++
72%
6)
Cellulase/d
(Avicell
+RBBR)
Chitinase/d
(Colloidal
Chitin)
I
s
-
+++
( + )1 +++
++
+
+1
++
+++
++
Laminarinase
I
/CL
Laminarin)
s
Laminarinase
/ i (Soluble
Laminarin)
I
++
++
s
+
++
(insoiuoie
-
+
B-Glucosidase I
/d (Arbutin)
s
-
+
(+)
++
++
+
-
-
-
++
+1
++
+
+1
-
+++
64%
+++
91%
0%
-
-
-
-
-
-
-
-
-
-
++
++
+
++
+
++
++
++
+
++
++
++
+++
+
+
-
+
++
0%
100%
91%
Table 1 (Part 2).
Enzyme a c t i v i t y 1)
Enzyme
(Substrate)
Dikaryons
2
M^
Monokaryons
M154 M167 M168 M169 M170 M171 M175 M21
3
% of )
• active
M172 M173 M174
strain
CARBOHYDRATE METABOLISM
7
Pectate )
I
transelimin.
/ i (Pektin A) S
Xylanase/i
(Xylan)
FAT
(+)1
(+)
n.d.
n.d.
(+) +
(+)
-
(+) (+) (+) (+) (+)
n.d.
n.d.
n.d.
n.d.
n.d.
++
+
+
++
+
++
+
+
+
+
(+)
++
+
+
+1
+1
++
I
(+)e ++
s
(+)
I
+1
n.d.
91%
n.d.
n.d.
n.d.
+
+
+
100%
+
+
+
+
100%
++
++
+++1 ++1
n.d.
METABOLISM
Lipase/d
(Tween 80)
NITROGEN
s
0%
METABOLISM
Caseinase/d
(Skim-milk
-powder)
Gelatinase/i
(Gelatin)
I
+++
++
++
++
+++
+++
+++
+++
+++
+++
100%
s
++
++1
++1
++1
++
++
+
++
(+)1 ++
+++
100%
I
++
+++
++
++
++
++
++
++
++
++
+
100%
s
++
++
+++
+++
++
+++
+++
+++
++
+++
(+)
+
(+)
+
(+)
(+)1
Nitrate
reductase/i
(NaN0 )
I
+
s
(+)
Urease/d
I
+++
{urea/
s
+++
3
100%
(+)
(+)
(+)
(+)1
(+)1
(+)1
(+)1
(+)
(+)
(+)
(+)1
(+)
(+)
(+)1
-
-
-
+++
(+)1
-
+++
100%
(+)1
100%
100%
(+)
(+)
(+)1
++
+++
-
54%
+1
++
+1
82%
1) Enzyme a c t i v i t y given as highest a c t i v i t y w i t h i n the t e s t period, i n a r b i t r a r y u n i t s : -; (+); +; ++; +++; n.d. « not d e t e r m i n e d ; 0 = enzyme a c t i v i t y
l a c k i n g because of no growth; e = e a r l y a c t i v i t y , only i n the f i r s t incubat i o n week; 1 = l a t e a c t i v i t y a f t e r the 3rd incubation week;
2) M = Medium; I = D e i o n i z e d water; S = s y n t h e t i c s e a w a t e r ;
3) Percentage o f s t r a i n s showing t h e r e s p e c t i v e enzyme a c t i v i t y i n a t l e a s t
one o f t h e t e s t s ;
4) d « d i r e c t t e s t ; s u b s t r a t e and d e t e c t i n g r e a g e n t c o n t a i n e d i n t h e medium
before i n o c u l a t i o n ;
5) i - i n d i r e c t t e s t ; s u b s t r a t e and/or d e t e c t i n g r e a g e n t i s added a f t e r the
incubation period;
6) CMC * Carboxymethylcellulose sodium;
7) Pectate t r a n s e l i m . = Pectate t r a n s e l i m i n a s e .
Nla vibrissa could be shown for the carbohydrate metabolism of Halocyphina
losa ( R O H R M A N N and M O L I T O R I S 1986).
vil-
Fat metabolism
Lipase ( E C 3.1.1.3.) enables the fungus to use fat f r o m various substrates as its
energy source. This enzyme was found (at least on I-medium) in a l l strains
tested. This corresponds w i t h the results of N E R U D et a l . (1982) who found
lipase in 15 of the 16 wood-degrading t e r r e s t r i a l Basidiomycetes and also w i t h
G E S S N E R (1979) who found it in 20 higher marine fungi f r o m salt marshes.
R O H R M A N N and M O L I T O R I S (1986) showed the presence of lipase also in the
wood-degrading marine B a s i d i o m y c e t e Halocyphina
villosa.
N i t r o g e n metabolism
Protein-hydrolysing enzymes
found in large amounts in a l l
corresponds w i t h the results
phina villosa and the results
out of 14 marine fungi.
(caseinase (EC 3.4.) and gelatinase ( E C 3.4.)) were
Nia vibrissa strains and on a l l media tested, which
of R O H R M A N N and M O L I T O R I S (1986) for H a i o c y of P I S A N O et a l . (1964), who found gelatinase in 13
N i t r a t e reductase was found ( B R E S I N S K Y and S C H N E I D E R 1975) to be an e n z y me of systematic s i g n i f i c a n c e in t e r r e s t r i a l Basidiomycetes. F o r marine fungi it
was shown by M O L I T O R I S and S C H A U M A N N (1986) that this enzyme was p r e sent in a l l marine fungi tested so far and might therefore be a t y p i c a l c h a r a c t e r i s t i c for the marine group of fungi. Since nitrogen often constitutes a l i m i t i n g
f a c t o r in fungal growth, the production of n i t r a t e reductase was discussed ( M O L I T O R I S and S C H A U M A N N 1986) as a positive s e l e c t i v e advantage to f u l f i l l the
nitrogen requirement by using the nitrogen of the n i t r a t e present in seawater.
This view is c o n f i r m e d by the results of R A U and M O L I T O R I S (1991). The p r e sence of n i t r a t e reductase in a l l strains of Nia vibrissa and in both media in the
present investigation f i t s w e l l into this p i c t u r e .
Summing up the results, it may be stated that generally the enzymes found in
Nia vibrissa agree well w i t h expectations c o r r e l a t e d w i t h the natural substrates
and living conditions of this marine Basidiomycete.
Acknowledgements
The authors are g r a t e f u l to E.B.G. Jones, J . K o h l m e y e r , A. N a k a g i r i and K.
Schaumann, for kindly providing fungal cultures, to S. Rohrmann, for helpful discussions in enzyme methodology and to R. Owen, for c r i t i c a l l y reading the E n g lish text.
References
B R E S I N S K Y , A. and G. S C H N E I D E R , 1975. N i t r a t r e d u k t i o n durch P i l z e und die
V e r w e r t b a r k e i t des M e r k m a l s fur die Systematik. B i o c h e m . Syst. E c o l . 3,
129-135.
C H R I S T E N S E N , W.B., 1946. U r e a decomposition as a means of d i f f e r e n t i a t i n g
Proteus and Paracolon
from each other and f r o m Salmonella and Shigella
types. J . B a c t e r i d . 52, 461-466.
C O L L E T T , O., 1984. V a r i a t i o n in c e l l u l o l y t i c among isolates of the wood-rotting
fungus Gloeophyllum
trabeum (Pers. ex Fr.) Murr. M a t . Org. 19, 119-131.
D O G U E T , G., 1967. Nia vibrissa Moore et Meyers, remarquable
marin. C.R. A c a d . Sc., P a r i s , 256, ser. D, 1780-1783.
Basidiomycete
D O G U E T , G., 1968. Nia vibrissa Moore et Meyers, G a s t e r o m y c e t e m a r i n . I. Conditions generates de f o r m a t i o n des carpophores en c u l t u r e . B u l l . Soc.
M y c o l . F r . 84, 343-351.
D O G U E T , G., 1969a. Nia vibrissa Moore et Meyers, G a s t e r o m y c e t e marin. II. Developpement des carpophores et des basides. B u l l . Soc. M y c o l . F r . 85,
93-104.
D O G U E T , G., 1969b. Nia vibrissa Moore et Meyers, G a s t e r o m y c e t e marin. Influence de la temperature et de la salinite sur la croissance. B u l l . Soc. L i n neenne de Normandie, lOe ser., lOe Vol., 52-59.
F L A N N I G A N , B. and J . E . M . G I L M O U R , 1980. A simple plate test for x y l a n o l y t i c
a c t i v i t y in wood-rotting basidiomycetes. M y c o l o g i a 72, 1219-1221.
G E S S N E R , R.V., 1979. Degradative enzyme production by salt-marsh fungi. Bot.
Mar. 23, 133-139.
H A N K I N , L. and S.L. A N A G N O S T A K I S , 1975. The use of solide media for d e t e c tion of enzyme production by fungi. M y c o l o g i a 67, 597-607.
H A R K I N , J . M . and J.R. OBST, 1973. Syringaldazine, an e f f e c t i v e reagent for
detecting laccase and peroxidase in fungi. E x p e r i e n t i a 39, 381-387.
H U G H E S , G.C., 1974. Geographical distribution of the higher marine fungi. V e r bff. Inst. Meeresforsch. Bremerh. Suppl. 5, 419-441.
K O H L M E Y E R , J . , 1963. Fungi
329.
marini novi vel c r i t i c i . Nova Hedwigia 6, 297-
K O H L M E Y E R , J . , 1983. Geography of marine fungi. Aust. J . Bot. Suppl. Ser. No.
10, 67-76.
K R E I S E L , H. and F. S C H A U E R , 1987. Methoden des mycologischen L a b o r a t o r i ums, G. Fischer, Stuttgart.
L E I G H T L E Y , L.E. and R.A. E A T O N , 1979. Nia vibrissa
fungus. Trans. Br. M y c o l . Soc. 73(1), 35-40.
- a marine white rot
M O L I T O R I S , H.P., 1976. Die L a c c a s e n des A s c o m y c e t e n Podospora anserina. In:
" B i b l i o t h e k a M y c o l o g i c a " (ed.) C R A M E R , J . , Ganter Verlag K o m m a n d i t g e sellschaft, Vaduz.
M O L I T O R I S , H.P., 1979. Wood degradation, phenoloxidases and chemotaxonomy
of higher fungi. Mushroom Science X (Part 1); Proceedings of the Tenth
International Congress on the Science and C u l t i v a t i o n of Edible Fungi,
F r a n c e , 243-263.
M O L I T O R I S , H.P. and K. S C H A U M A N N , 1986. Physiology of marine fungi: A
screening programme for growth and enzyme production. The biology of
marine fungi, (ed.) MOSS, S.T. Cambridge. Cambridge Univ. Press., 35-47.
M O O R E , R.T. and S.P. M E Y E R S , 1959. Thalassiomycetes I. P r i n c i p l e s of d e l i m i tation of the marine m y c o t a with the description of a new aquatically
adapted D e u t e r o m y c e t e genus. M y c o l o g i a 51, 871-876.
N E R U D , F., Z. Z O U C H O V A and V. M U S I L E K , 1982. L i p o l y t i c a c t i v i t y in submerged cultures of some wood-destroying Basidiomycetes. C e s k a M y c o l o g i e
36 (1), 45-46.
N G , T. and J . G . ZELIKUS, 1980. A continous s p e c t r o p h o t o m e t r y assay for the
determination of cellulose solubilizing a c t i v i t y . A n a l . B i o c h e m . 103, 42-50.
P I S A N O , M.A., L.A. M I H A L I K and G.R. C A T A L A N O , 1964. Gelatinase a c t i v i t y
by marine fungi. A p p l . M i c r o b i o l . 12 (6), 470-474.
R A U , R. and H.P. M O L I T O R I S , 1991. D e t e r m i n a t i o n and s i g n i f i c a n c e of n i t r a t e
reductase in marine fungi. In: P r o c . 4 t h Europ. M a r . M i c r o b i o l . Symp., K i e ler Meeresforsch., Sonderh. 8, 369-375.
R O H R M A N N , S. and H.P. M O L I T O R I S , 1986. Morphological and physiological
adaptations of the cyphellaceous fungus Halocyphina
villosa (Aphyllophorales) to its marine habitat. Bot. M a r . 29, 539-547.
R O H R M A N N , S. and H.P. M O L I T O R I S , 1991. Screening for wood-degrading
zymes in marine fungi. C a n . J . Bot. (in press).
en-
S C H I M P F H A U S E R , G., 1990. Untersuchungen zu Wachstum, Morphogenese und
Enzymausstattung des marinen Basidiomyceten Nla vibrissa. D i p l o m a Thesis, U n i v e r s i t y Regensburg.
S C H I M P F H A U S E R , G . and H.P. M O L I T O R I S , 1991. Colony growth and fruitbody
production of monokaryotic and d i k a r y o t i c strains of the marine B a s i d i o m y cete Nia vibrissa. In: P r o c . 4 t h Europ. Mar. M i c r o b i o l . Symp., K i e l e r M e e resforsch., Sonderh. 8, 350-360.
S M I T H , R.E., 1977. R a p i d tube test for d e t e c t i n g fungal cellulase production.
A p p l . Environ. M i c r o b i o l . 33, 980-981.
T E A T H E R , R.M. and P . J . W O O D , 1982. Use of congo-red-polysaccharide i n t e r a c tions in enumeration and c h a r a c t e r i z a t i o n o f - c e l l u l o l y t i c b a c t e r i a f r o m the
bovine rumen. A p p l . E n v i r o n . M i c r o b i o l . 43 (4), 777-780.
T H I E M , J . , A. S I E V E R S and H. K A R L , 1977. P r a p a r a t i v e Zugange zu Mannobiose
und L a m i n a r i b i o s e . J . Chromogr. 130, 305-313.