Exercise 10.2 (Solutions) MathCity.org Textbook of Algebra and and Trigonometry for Class XI Merging man and maths Available online @ http://www.mathcity.org, Version: 2.0.2 Question # 1 (i) L.H.S = sin(180 + θ ) = sin180 cosθ + cos180 sin θ = sin ( 0 ) cosθ + (−1)sin θ = 0 − sin θ = − sin θ = R.H.S (ii) Do youself (iii) tan 270 − tan θ L.H.S = tan ( 270 − θ ) = 1 + tan 270 tan θ tan θ tan θ tan 270 1 − 1 − tan 270 ∞ = = 1 1 tan 270 + tan θ + tan θ tan 270 ∞ (1 − 0 ) = 1 = cotθ = R.H.S = ( 0 + tanθ ) tan θ Remaining do yourself. Question # 2 (i) Since 15 = 45 – 30 So sin15 = sin(45 − 30) = sin 45 cos30 − cos 45 sin 30 3 1 3 −1 1 3 1 1 = − = 2 − 2 = 2 2 2 2 2 2 2 2 (ii) Since 15 = 45 – 30 So cos15 = cos(45 − 30) = cos 45 cos30 + sin 45 sin 30 3 1 3 +1 1 3 1 1 = + = + = 2 2 2 2 2 2 2 2 2 2 (iii) Since 15 = 45 – 30 tan 45 − tan 30 So tan15 = tan(45 − 30) = 1 + tan 45 tan 30 1 1 1− 1− 3 3 = = 1 1 1+ 1 + (1) 3 3 = 3 −1 3 3 +1 3 = 3 −1 3 +1 FSc-I / 10.2 - 2 1 1 = cos15 cos(45 − 30) Now do yourself (v), (vi) and (vii) Hint: Use 105 = 60 + 45 in these questions (iv) sec15 = Question # 3 (i) L.H.S = sin(45 + α ) 1 1 = sin 45 cosα + cos 45 sin α = cosα + sin α ) 2 2 1 1 = ( cosα + sin α ) = ( sin α + cosα ) = R.H.S 2 2 (ii) Do youself as above Question # 4 (i) L.H.S = tan(45 + A) tan(45 − A) tan 45 + tan A tan 45 − tan A = 1 − tan 45 tan A 1 + tan 45 tan A 1 + tan A 1 − tan A 1 + tan A 1 − tan A = = 1 − tan A 1 + tan A = 1 = R.H.S 1 − (1) tan A 1 + (1) tan A Question 4 (ii) π 3π L.H.S = tan − θ + tan +θ 4 4 π 3π tan − tan θ tan + tan θ 4 4 = + π 3π 1 + tan tan θ 1 − tan tan θ 4 4 1 − tan θ −1 + tan θ = + 1 + (1) tan θ 1 − (−1) tan θ 1 − tan θ −1 + tan θ = + 1 + tan θ 1 + tan θ 1 − tan θ − 1 + tan θ 0 = = = 0 = R.H.S 1 + tan θ 1 + tan θ Question # 4 (iii) π π L.H.S = sin θ + + cos θ + 6 3 FSc-I / 10.2 - 3 π π π π = sin θ cos + cosθ sin + cosθ cos − sin θ sin 6 6 3 3 3 1 1 3 = sin θ + cosθ + cosθ − sin θ 2 2 2 2 3 1 1 3 sin θ + cosθ + cosθ − sin θ = cosθ = R.H.S 2 2 2 2 = Question # 4 (iv) sin θ − cosθ tan L.H.S = cosθ + sin θ tan θ 2 θ sin sin θ − cosθ cos = sin cosθ + sin θ cos 2 θ sin θ cos 2 θ 2 θ 2 θ 2 − cosθ sin cos = cosθ cos θ θ 2 2 + sin θ sin cos 2 θ θ θ 2 θ 2 2 θ θ θ sin θ − sin θ cos − cosθ sin sin θ 2 2 2 2 = = = θ θ θ cos θ cosθ cos + sin θ sin cos θ − 2 2 2 2 ( ) ( ) = tan θ 2 = R.H.S Question # 4 (v) 1 − tan θ tan ϕ L.H.S = 1 + tan θ tan ϕ sin θ sin ϕ cosθ cos ϕ − sin θ sin ϕ 1− cosθ cos ϕ cosθ cos ϕ = = sin θ sin ϕ cosθ cos ϕ + sin θ sin ϕ 1+ cosθ cos ϕ cosθ cos ϕ cos (θ + ϕ ) cosθ cos ϕ − sin θ sin ϕ = = = R.H.S cosθ cos ϕ + sin θ sin ϕ cos (θ − ϕ ) Question # 5 L.H.S = cos(α + β ) cos(α − β ) = ( cosα cos β − sin α sin β )( cosα cos β + sin α sin β ) ( 2 = ( cosα cos β ) − ( sin α sin β ) 2 ) = cos α cos β − sin α sin 2 = cos 2 α (1 − sin 2 β ) − (1 − cos 2 α ) sin 2 β 2 2 2 β FSc-I / 10.2 - 4 = cos 2 α − cos 2 α sin 2 β − sin 2 β + cos 2 α sin 2 β = cos 2 α − sin 2 β …………….. (i) = (1 − sin 2 α ) − (1 − cos 2 β ) = 1 − sin 2 α − 1 + cos 2 β = cos 2 β − sin 2 α …………….. (ii) Question # 6 Hint: Just open the formulas Question # 7 (i) L.H.S = cot(α + β ) = 1 tan(α + β ) = 1 tan α + tan β 1 − tan α tan β 1 tan α tan β − 1 1 − tan α tan β tan α tan β = = tan α + tan β 1 1 + tan α tan β tan β tan α cot α cot β − 1 cot α cot β − 1 = = = R.H.S cot β + cot α cot α + cot β Question # 7 (ii) Do yourself as above Question # 7 (iii) sin α sin β sin α cos β + cosα sin β + tan α + tan β cosα cos β cosα cos β L.H.S = = = sin α sin β sin α cos β − cosα sin β tan α − tan β − cosα cos β cosα cos β sin α cos β + cosα sin β sin(α + β ) = = = R.H.S sin α cos β − cosα sin β sin(α − β ) Question # 8 4 π Since sin α = ; 0 <α < 2 5 40 π cosα = ; 0< β < 41 2 Now cos 2 α = 1 − sin 2 α ⇒ cosα = ± 1 − sin 2 α Since terminal ray of α is in the first quadrant so value of cos is +ive FSc-I / 10.2 - 5 cosα = 1 − sin 2 α 4 ⇒ cosα = 1 − 5 2 = 1− 16 9 = 25 25 ⇒ cosα = 3 5 Also sin 2 β = 1 − cos 2 β ⇒ sin β = ± 1 − cos 2 β Since terminal ray of β is in the first quadrant so value of sin is +ive sin β = 1 − cos 2 β 2 1600 81 40 ⇒ sin β = 1 − = 1 − = 1681 1681 41 ⇒ sin β = 9 41 Now sin(α − β ) = sin α cos β − cosα sin β 160 27 133 4 40 3 9 = − = − = 205 205 205 5 41 5 41 133 i.e. sin(α − β ) = Proved 205 Question # 9 4 Since sin α = ; 5 12 sin β = ; 13 π 2 π 2 <α <π < β <π Since cos 2 α = 1 − sin 2 α ⇒ cosα = ± 1 − sin 2 α As terminal ray of α lies in the IInd quadrant so value of cos is –ive cosα = − 1 − sin 2 α 2 16 9 4 ⇒ cosα = − 1 − = − 1 − =− 25 25 5 ⇒ cosα = − 3 5 Now cos 2 β = 1 − sin 2 β ⇒ cos β = ± 1 − sin 2 β As terminal ray of β lies in the IInd quadrant so value of cos is –ive cos β = − 1 − sin 2 β 2 (i) 144 25 5 12 ⇒ cos β = − 1 − = − 1 − =− ⇒ cos β = − 169 169 13 13 sin(α + β ) = sin α cos β + cosα sin β 20 36 56 4 5 3 12 = − + − = − − =− 65 65 65 5 13 5 13 FSc-I / 10.2 - 6 cos(α + β ) = cosα cos β − sin α sin β 33 3 5 4 12 15 48 = − − − = − =− 65 5 13 5 13 65 65 56 sin(α + β ) − 65 56 (iii) tan(α + β ) = = = cos(α + β ) − 33 33 65 (iv), (v) & (vi) Do yourself as above Since sin(α + β ) is –ive so terminal are of α + β is in IIIrd or IVth quadrant and cos(α + β ) is –ive so terminal are of α + β is in IInd or IIIrd quadrant therefore terminal ray of α + β lies in the IIIrd quadrant. Similarly after solving (iv), (v) & (vi) find quadrant for α − β yourself. (ii) Question # 10 (i) 3 Since tan α = 4 tanα is +ive and terminal arm of α in not in the Ist quad. Therefore it lies in IIIrd quad. Now sec2 α = 1 + tan 2 α ⇒ secα = ± 1 + tan 2 α Since terminal arm of α is in the IIIrd quad. therefore value of sec is –ive secα = − 1 + tan 2 α 2 9 25 5 3 ⇒ secα = − 1 + = − 1 + =− ⇒ sec x = − 4 16 16 4 1 1 4 Now cosα = = ⇒ cosα = − secα − 5 5 4 sin α Now = tan α ⇒ sin α = tan α cosα cosα 3 3 4 ⇒ sin α = − ⇒ sin α = − 5 4 5 5 Since cos β = 13 cos β is +ive and terminal arm of β is not in the Ist quad. Therefore it lies in IVth quad. sin 2 β = 1 − cos 2 β Now ⇒ sin β = ± 1 − cos 2 β Since terminal ray of β is in the fourth quadrant so value of sin is –ive sin β = − 1 − cos 2 β FSc-I / 10.2 - 7 2 25 144 5 ⇒ sin β = − 1 − = − 1 − =− 169 169 13 ⇒ sin β = − 12 13 Now sin(α + β ) = sin α cos β + cosα sin β 3 48 3 5 4 12 = − + − − = − + 13 65 5 13 5 13 ⇒ sin(α + β ) = 33 65 And cos(α + β ) = cosα cos β − sin α sin β 4 36 4 5 3 12 = − − − − = − − 13 65 5 13 5 13 ⇒ cos(α + β ) = − Question # 10 (ii) Do yourself as above Question # 11 R.H.S = tan 37 = tan(45 − 8) ∵ 37 = 45 − 8 tan 45 − tan8 1 − tan8 = 1 + (1) tan8 1 + tan 45 tan8 sin8 cos8 − sin8 1− cos8 − sin8 cos8 cos8 = = = L.H.S = sin8 cos8 + sin8 cos8 + sin8 1+ cos8 cos8 = Question # 12 Since α , β and γ are angles of triangle therefore α + β + γ = 180 ⇒ α + β = 180 − γ α + β 180 − γ α β γ ⇒ = ⇒ + = 90 − 2 2 2 2 2 γ α β tan + = tan 90 − Now 2 2 2 ⇒ ⇒ tan α + tan β 2 = cot γ α β 2 1 − tan tan 2 2 α β 1 1 tan tan + 2 2 tan β2 tan α2 tan 2 α 2 tan β 1 2 tan α2 tan β2 = cot γ 2 − 1 γ γ ∵ tan 90 − = cot 2 2 ⇒ cot β + cot α 2 = cot γ α β 2 cot cot − 1 2 2 2 56 65 FSc-I / 10.2 - 8 ⇒ cot β ⇒ cot β ⇒ cot β 2 2 2 + cot + cot + cot γ α β = cot cot cot − 1 2 2 2 2 α α 2 α 2 = cot + cot α 2 γ 2 cot β 2 = cot cot α 2 γ 2 cot − cot β 2 cot γ 2 γ 2 Question # 13 Since α , β and γ are angles of triangle therefore α + β + γ = 180 ⇒ α + β = 180 − γ Now tan (α + β ) = tan (180 − γ ) tan α + tan β ⇒ = tan ( 2(90) − γ ) 1 − tan α tan β tan α + tan β ⇒ = − tan γ 1 − tan α tan β ⇒ tan α + tan β = − tan γ (1 − tan α tan β ) ⇒ tan α + tan β = − tan γ + tan α tan β tan γ ⇒ tan α + tan β + tan γ = tan α tan β tan γ Dividing through out by tan α tan β tan γ tan α tan β tan γ tan α tan β tan γ + + = tan α tan β tan γ tan α tan β tan γ tan α tan β tan γ tan α tan β tan γ ⇒ cot β cot γ + cot α cot γ + cot α cot β = 1 ⇒ cot α cot β + cot β cot γ + cot γ cot α = 1 Question # 14 (i) 12sin θ + 5cosθ Let 12 = r cos ϕ and 5 = r sin ϕ Squaring and adding (12) 2 + (5) 2 = r 2 cos 2 ϕ + r 2 sin 2 ϕ ⇒ 144 + 25 = r 2 ( cos 2 ϕ + sin 2 ϕ ) ⇒ 169 = r 2 (1) ⇒ r = 169 = 13 Now 5 r sin ϕ = 12 r cos ϕ 5 = tan ϕ 12 5 ⇒ ϕ = tan −1 12 12sin θ + 5cosθ = r cos ϕ sin θ + r sin ϕ cosθ = r ( cos ϕ sin θ + sin ϕ cosθ ) = r sin (θ + ϕ ) where r = 13 and ϕ = tan −1 5 12 FSc-I / 10.2 - 9 Question # 14 (ii) 3sin θ − 4cosθ Let 3 = r cos ϕ and −4 = r sin ϕ Squaring and adding (3) 2 + (−4) 2 = r 2 cos 2 ϕ + r 2 sin 2 ϕ − 4 r sin ϕ = 3 r cos ϕ 4 − = tan ϕ 3 4 ⇒ ϕ = tan −1 − 3 ⇒ 9 + 16 = r 2 ( cos 2 ϕ + sin 2 ϕ ) ⇒ 25 = r 2 (1) ⇒ r = 25 = 5 Now 3sin θ − 4cosθ = r cos ϕ sin θ + r sin ϕ cosθ = r ( cos ϕ sin θ + sin ϕ cosθ ) = r sin (θ + ϕ ) 4 where r = 5 and ϕ = tan −1 − 3 Made by: Atiq ur Rehman ([email protected]) http://www.mathcity.org Question # 14 (iii) sin θ − cosθ Let 1 = r cos ϕ and −1 = r sin ϕ Squaring and adding (1) 2 + (−1)2 = r 2 cos 2 ϕ + r 2 sin 2 ϕ −1 r sin ϕ = 1 r cos ϕ −1 = tan ϕ ⇒ ϕ = tan −1 ( −1) ⇒ 1 + 1 = r 2 ( cos 2 ϕ + sin 2 ϕ ) ⇒ 2 = r 2 (1) ⇒ r= 2 Now sin θ − cosθ = r cos ϕ sin θ + r sin ϕ cosθ = r ( cos ϕ sin θ + sin ϕ cosθ ) = r sin (θ + ϕ ) Question # 14 (iv) 5sin θ − 4cosθ Let 5 = r cos ϕ and −4 = r sin ϕ Squaring and adding (5) 2 + (−4) 2 = r 2 cos 2 ϕ + r 2 sin 2 ϕ ⇒ 25 + 16 = r 2 ( cos 2 ϕ + sin 2 ϕ ) ⇒ 41 = r 2 (1) ⇒ r = 41 where r = 2 and ϕ = tan −1 ( −1) − 4 r sin ϕ = 5 r cos ϕ 4 − = tan ϕ 5 4 ⇒ ϕ = tan −1 − 5 FSc-I / 10.2 - 10 Now 5sin θ − 4cosθ = r cos ϕ sin θ + r sin ϕ cosθ = r ( cos ϕ sin θ + sin ϕ cosθ ) = r sin (θ + ϕ ) 4 where r = 41 and ϕ = tan −1 − 5 Question # 14 (v) sin θ + cosθ and 1 = r sin ϕ Let 1 = r cos ϕ Squaring and adding (1) 2 + (1) 2 = r 2 cos 2 ϕ + r 2 sin 2 ϕ 1 r sin ϕ = 1 r cos ϕ 1 = tan ϕ ⇒ ϕ = tan −1 (1) ⇒ 1 + 1 = r 2 ( cos 2 ϕ + sin 2 ϕ ) ⇒ 2 = r 2 (1) ⇒ r= 2 Now sin θ + cosθ = r cos ϕ sin θ + r sin ϕ cosθ = r ( cos ϕ sin θ + sin ϕ cosθ ) = r sin (θ + ϕ ) where r = 2 and ϕ = tan −1 (1) Question # 14 (vi) Do yourself as above ☺ Book: Exercise 10.2 Text Book of Algebra and Trigonometry Class XI Punjab Textbook Board, Lahore. Made by: Atiq ur Rehman ([email protected]) Available online at http://www.MathCity.org in PDF Format (Picture format to view online). Page setup: A4 (8.27 in × 11.02 in). Updated: 29-12-2014.
© Copyright 2026 Paperzz