MAT 131 Homework Solutions – Chapter 4 Selected Solutions WC 4th edition Section 4.1 Problems Page 304 1-37 every other odd, 53, 57, 59, 63, 69, 73, 77 Problem 1 f (x) = 3x ! f '(x) = 3 f (x) = 3" x ! f '(x) = 0 " x + 3"1 = 3 Problem 5 f (x) = x x + 3 = x 2 + 3x ! f '(x) = 2x + 3 ( ) f (x) = x ( x + 3) ! f '(x) = 1( x + 3) + x (1) = 2x + 3 Problem 9 2 !2 s(x) = = 2x !1 " s'(x) = !2x !2 = 2 x x x 0 ! 2 1 !2 2 f (x) = " f '(x) = = 2 x x2 x ( ) () Problem 13 f (x) = 3x 4x 2 ! 1 " f '(x) = 3x 8x + 3 4x 2 ! 1 = 24x 2 + 12x 2 ! 3 = 36x 2 ! 3 ( ) ( ) ( ) Problem 17 ( ) ( )( ) f '(x) = 2 ( 2x + 3) + ( 2x + 3) ( 2 ) = 4 ( 2x + 3) = 8x + 12 2 f (x) = 2x + 3 = 2x + 3 2x + 3 Problem 21 f (x) = x + 1 x 2 ! 1 ( ( )( ) ( ) )( ) f '(x) = 1 x 2 ! 1 + x + 1 2x = x 2 ! 1 + 2x 2 + 2x = 3x 2 + 2x ! 1 Problem 25 ( ) ( 2 )( ) f (x) = 2x 2 ! 4x + 1 = 2x 2 ! 4x + 1 2x 2 ! 4x + 1 ( )( ) ( )( ) ( )( ) f '(x) = 4x ! 4 2x 2 ! 4x + 1 + 2x 2 ! 4x + 1 4x ! 4 = 8 2x 2 ! 4x + 1 x ! 1 Problem 29 Use the formula on page 300 fgh ' = f ' gh + fg ' h + fgh' ( ) 1 ( )( ) f '(x) = 2x ( 2x + 3) ( 7x + 2 ) + x ( 2 ) ( 7x + 2 ) + x ( 2x + 3) ( 7 ) f (x) = x 2 2x + 3 7x + 2 2 Problem 33 f (x) = f '(x) = ( 2 ( ) )( ) ) 1 1 ! 1$ x + 1 # x + 2 & = x 2 + 1 x 2 + x '2 " x % ( x )( x + x ) + ( x + 1)( x '1 2 1 2 1 2 1 2 '2 ! 1 $! 1$ =# x + + x 2 &% " 2 x &% #" ( 1 2 '1 2 ' 2x '3 ) ! 1 2$ x +1 # ' 3& "2 x x % Problem 37 2x 2 + 4x + 1 y(x) = = 3x ! 1 3x ! 1 4x + 4 ! 2x 2 + 4x + 1 3 y' = 2 3x ! 1 ( = )( ( ) ( )( ) ) 12x + 8x ! 4 ! 6x ! 12x ! 3 2 2 (3x ! 1) 2 = 6x 2 ! 4x ! 7 (3x ! 1) 2 Problem 53 ! x $ y = x + 1+ 2# " x + 1&% ( ) ! 1' x + 1 ( x '1$ 2 & = 1+ y ' = 1+ 0 + 2# 2 2 #" &% x +1 x +1 ( ) ( ) Problem 57 d " 2 2 $ = d " x 4 ! x 2 $ = 4x 3 ! 2x x + x x ! x % % dx # dx # ( )( ) Problem 59 d " 3 x + 2x x 2 ! x $% # x=2 dx " 3x 2 + 2 x 2 ! x + x 3 + 2x 2x ! 1 $ # %x=2 ( ( )( )( ) ) ( )( ) (3(2) + 2)((2) ! (2)) + ((2) + 2(2))(2(2) ! 1) = 14 & 2 + 12 & 3 = 64 2 2 3 2 Problem 63 Equation of the line tangent to the graph at the point f (x) = x 2 + 1 x 3 + x x = 1 f (1) = 4 ! x0 , y0 = 1,4 ( )( ) f '(x) = ( 2x ) ( x + x ) + ( x + 1) ( 3x + 1) 3 2 ( ) ( ) 2 ( )( ) ( )( ) = m ( x " x ) ! y = 12 ( x " 1) + 4 = 12x " 8 f '(1) = 2 2 + 2 4 = 12 y " y0 0 Problem 69 Rate of change of monthly sales = q'(t) =2000 - 200t. When t = 5: q'(5) = 2000 - 200(5) = 1000 units/month Therefore, sales are increasing at a rate of 1000 units per month. Rate of change of price = p'(t) = -2t When t = 5: p'(5) = -2(5) = -$10/month. Therefore, The price of a sound system is dropping at a rate of $10 per month. Revenue: R(t) = p(t)q(t) = (1000 - t 2 )(2000t - 100t 2 ) Rate of change of revenue: R'(t) = p '(t)q(t) + p(t)q '(t) = (-2t)(2000t - 100t 2 ) + (1000 - t 2 )(2000 - 200t) R'(5) = [-2(5)][2000(5)-100(5)2]+ [1000-(5)2][2000-200(5)]= $900,000/month Therefore, revenue is increasing at a rate of$900,000 per month. Problem 73 Let S(t) be the number of T-shirts sold per day. If t = 0 is now, we are told that S(0) = 20and S'(0) = -3. Let p(t) be the price of T-shirts. We are told that p(0) = 7 and p'(0) = 1. The revenue is then R(t) = S(t)p(t), so R'(0) =S'(0)p(0) + S(0)p'(0) = -3(7) + 20(1) = -1. So, revenue is decreasing at a rate of $1 per day. Problem 77 ( ) !3000 1 ! 3600x !2 3000 , so M'(10) is about0.7670 M (x) = " M '(x) = 2 !1 x + 3600x !1 x + 3600x ( ) mpg/mph. This means that, at a speed of10 mph, the fuel economy is increasing at a rate of 0.7670 miles per gallon per one mph increase in speed. M'(60) = 0 mpg/mph. This means that, at a speed of 60 mph, the fuel economy is neither increasing nor decreasing with increasing speed. M'(70) is about -0.0540. This means that, at 70 mph, the fuel economy is decreasing at a rate of 0.0540miles per gallon per one mph increase in speed. 60 mph is the most fuel-efficient speed for the car 3 Section 4.2 – The Chain Rule Page 316 Problems 1-57 every other odd, 61, 63 Problem 1 2 f (x) = ( 2x + 1) ! u = 2x + 1 y = u 2 dy du dy du = 2u =2! " = 2u " 2 du dx du dx f '(x) = 2 ( 2x + 1) 2 = 8x + 4 Problem 5 !2 f (x) = ( 2 ! x ) " u = 2 ! x y = u !2 dy = !2u !3 du du dy du = !1 " # = !2u !3 # ( !1) dx du dx 2 !3 !3 f '(x) = !2 ( 2 ! x ) ( !1) = 2 ( 2 ! x ) = ( 2 ! x )3 Problem 9 !1 f (x) = ( 4x ! 1) " u = 4x ! 1 y = u !1 dy = !1u !2 du du dy du =4" # = !u !2 # ( 4 ) dx du dx f '(x) = ! ( 4x ! 1) # ( 4 ) = !4 ( 4x ! 1) = !2 Problem 13 ( f (x) = x 2 + 2x dy = 4u 3 du ) 4 !2 ! u = x 2 + 2x !4 ( 4x ! 1)2 y = u4 du dy du = 2x + 2 ! " = 4u 3 " ( 2x + 2 ) dx du dx ( ) f '(x) = 4 x 2 + 2x " ( 2x + 2 ) = 8x 3 ( x + 2 ) ( x + 1) Problem 17 ( 3 ) f (x) = x 2 ! 3x ! 1 3 !5 ( ) " u = x 2 ! 3x ! 1 y = u !5 dy = !5u !6 du du dy du = 2x ! 3 " # = !5u !6 # ( 2x ! 3) dx du dx !6 !5 ( 2x ! 3) f '(x) = !5 x 2 ! 3x ! 1 # ( 2x ! 3) = 6 x 2 ! 3x ! 1 ( ) ( ) Problem 21 4 ( f (x) = 0.1x 2 ! 4.2x + 9.5 dy = 1.5u 0.5 du ) 1.5 ( " u = 0.1x 2 ! 4.2x + 9.5 ) y = u1.5 du dy du = 0.2x ! 4.2 " # = 1.5u 0.5 # ( 0.2x ! 4.2 ) dx du dx ( f '(x) = 1.5 0.1x 2 ! 4.2x + 9.5 Problem 25 ( f (x) = 1 ! x 2 = 1 ! x 2 ) 1 2 ) # ( 0.2x ! 4.2 ) 0.5 " u = 1 ! x2 y=u 1 2 dy 1 ! 1 2 du dy du 1 ! 1 2 = u = !2x " # = u # ( !2x ) du 2 dx du dx 2 !1 !1 1 !x f '(x) = 1 ! x 2 2 # ( !2x ) = !x 1 ! x 2 2 = 2 1 ! x2 ( ) ( ) Problem 29 h(x) = ( 3.1x ! 2 ) ! 2 1 ( 3.1x ! 2 ) = ( 3.1x ! 2 ) ! ( 3.1x ! 2 ) 2 2 !2 d d ( 3.1x ! 2 ) ! ( !2 ) ( 3.1x ! 2 )!3 ( 3.1x ! 2 ) dx dx !3 = 2 ( 3.1x ! 2 ) 3.1 + 2 ( 3.1x ! 2 ) 3.1 h '(x) = 2 ( 3.1x ! 2 ) = 6.2 ( 3.1x ! 2 ) + 6.2 ( 3.1x ! 2 ) = 6.2 ( 3.1x ! 2 ) + !3 Problem 33 6.2 ( 3.1x ! 2 )3 Product Rule and Chain Rule combined ( ) (1 ! x ) d " d " f '(x) = x ! 2x ) $ & (1 ! x ) + ( x ! 2x ) ( (1 ! x ) $% % dx # dx # = !2 ( x ! 2x ) ( 2x ! 2 ) (1 ! x ) + ( x ! 2x ) 0.5 (1 ! x ) ( !2x ) = !2 ( x ! 2x ) ( 2x ! 2 ) (1 ! x ) ! x ( x ! 2x ) (1 ! x ) f (x) = x 2 ! 2x 2 !2 2 0.5 !2 2 0.5 !2 2 2 !3 2 0.5 2 !3 2 0.5 2 0.5 !2 2 2 2 !0.5 !2 2 !0.5 I could “go nuts” simplifying this one. I’ll do it “just for fun” but you really shouldn’t 5 ( ) ( 2x ! 2 )(1 ! x ) ! x ( x ! 2x ) (1 ! x ) = ! # 2x ( x ! 2 ) 2 ( x ! 1) (1 ! x ) + x " x ( x ! 2 ) (1 ! x ) $ = ! # 4x ( x ! 2 ) ( x ! 1) (1 ! x ) + x ( x ! 2 ) (1 ! x ) % $ & = !x ( x ! 2 ) (1 ! x ) #$ 4 ( x ! 1) (1 ! x ) + x ( x ! 2 ) %& 4 ( x ! 1) (1 ! x ) + x ( x ! 2 ) = !x ( x ! 2 ) (1 ! x ) !3 f '(x) = !2 x 2 ! 2x 2 0.5 !3 !3 !3 !3 2 0.5 2 0.5 2 % & 2 !0.5 !2 2 2 !0.5 2 2 2 0.5 3 3 2 !0.5 !2 !2 !1 2 !0.5 !3 !3 !2 2 I could go even further, but I think you’ve got the point KISS (Keep it simple, student!) Problem 37 chain rule and quotient rule 3 ! z $ g(z) = # " 1 + z 2 &% d d 2 [ z ] ' 1 + z 2 ( ( z ) dz )*1 + z 2 +, ! z $ dz g '(z) = 3 # 2 " 1 + z 2 &% 1 + z2 ( ( ) ) ( ) ( ) 2 2 2 2 2 ! z $ 1' 1 + z ( ( z ) ( 2z ) ! z $ 1 + z ( 2z = 3# = 3# 2 2 " 1 + z 2 &% " 1 + z 2 &% 1 + z2 1 + z2 ( ) ( 2 2 3z 1 ( z ! z $ 1( z = 3# = 2 4 2& " 1 + z % 1 + z2 1 + z2 2 ( Problem 41 ) ( 2 ) ) ( ) Chain Rule in a chain rule t(x) = "# 2 + ( x + 1) !0.1 4.3 $ % d " 2 + ( x + 1)!0.1 $ % dx # !0.1 3.3 !1.1 d = 4.3 "# 2 + ( x + 1) $% ( !0.1) ( x + 1) [ x + 1] dx !0.1 t '(x) = 4.3 "# 2 + ( x + 1) $% = !0.43( x + 1) Problem 45 !1.1 3.3 ( 2 + ( x + 1) ) !0.1 3.3 This one is completely ridiculous! A chain of 3 powers! 6 ( )) d ! f '(x) = 3(1 + (1 + (1 + 2x ) ) ) 1 + (1 + (1 + 2x ) ) $ %& dx "# d !1 + (1 + 2x ) $ = 3(1 + (1 + (1 + 2x ) ) ) 3(1 + (1 + 2x ) ) % dx " d = 3(1 + (1 + (1 + 2x ) ) ) 3(1 + (1 + 2x ) ) 3(1 + 2x ) !(1 + 2x ) $% dx " = 3(1 + (1 + (1 + 2x ) ) ) 3(1 + (1 + 2x ) ) 3(1 + 2x ) 2 = 54 (1 + 2x ) (1 + (1 + 2x ) ) (1 + (1 + (1 + 2x ) ) ) ( f (x) = 1 + 1 + (1 + 2x ) 3 3 3 2 3 3 3 3 2 3 3 3 2 2 3 3 3 2 2 2 3 3 3 2 2 3 2 2 3 2 3 3 And I just sat here like an idiot typing all those powers…painful formatting. Problem 49 ds ds dr = ! s = r "3 + r 0.5 dt dr dt ds = "3r "4 + 0.5r "0.5 dr ds dr = "3r "4 + 0.5r "0.5 dt dt ( ) Problem 53 y = x3 + 1 x (t, x ) = (1, 2 ) ! dx $ #" dt &% = '1 t =1 ! dy $ #" dt &% t =1 dy dy dx = ( dt dx dt dy = 3x 2 ' x '2 dx dy dx = 3x 2 ' x '2 ( dt dt '47 ! dy $ 2 '2 #" dt &% = 3 ( 2 ' 2 ( ( '1) = '11.75 = 4 t =1 ( ( ) ) Problem 57 7 x = 2 + 3t y = !5t dy dy !5 = dx dt = dx 3 dt Problem 61 y = 35x !0.25 6.5 " x " 17.5 x = 7 + 0.2t y = 35 ( 7 + 0.2t ) # y' = !8.75 ( 7 + 0.2t ) percentage points per month November 1st is 10 months since January 1st !1.25 y' = !1.75 ( 7 + 0.2 (10 )) = !0.11226 !0.25 !1.25 ( 0.2 ) = !1.75 ( 7 + 0.2t )!1.25 declining at 0.11 percentage points per month Problem 63 P ( q ) = !100000 + 5000q ! 0.25q 2 q ( n ) = 30n + 0.01n 2 ( ) ( P ( n ) = !100000 + 5000 30n + 0.01n 2 ! 0.25 30n + 0.01n 2 ( ) 2 ) dP = 5000 ( 30 + .02n ) ! 0.50 30n + 0.01n 2 ( 30 + .02n ) dn dP n = 10 " = 5000 ( 30 + .2 ) ! 0.50 ( 300 + 1) ( 30 + 0.2 ) = 146454.9 dn 8
© Copyright 2025 Paperzz