V2, A2, C2 V1, A1, C1 V4, A4, C4 V3, A3, C3 The impact of the BBB and BCSFB transporters in translational drug distribution models Elizabeth CM de Lange Translational Pharmacology, LACDR, Leiden University, The Netherlands [email protected] 1 Treatment of brain diseases Need for more knowledge and understanding of processes that determine CNS drug effects …. and their interdependencies 2 Processes that govern CNS drug response Homeostatic feedback -brain barrier Plasma exposure Blood Drug Dosing Target tissue exposure Homeostatic feedback TransTarget duction exposure E Transduction RESPONSE Drug Dosing Plasma concentration-time profile BBB transport Target tissue cioncentration-time profile Target binding kinetics Cellular signal transduction & homeotstatic feedback Body response & homeostatic feedback 3 Blood-brain barrier (BBB) Four basic modes of BBB transport Simple diffusion, driven by the concentration-gradient, from high to low concentrations. Facilitated diffusion, by a helper molecule, also from high to low concentrations. Fluid phase transport by vesicles, formed out of the membrane. This transport requires energy and occurs into the direction of the brain. Active transport through a transporter protein for which the molecule should have a specific binding site. Active transport requires energy and conducts movement against the concentration gradient. 4 Blood-brain barrier (BBB) Relationship between brainECF and plasma PK depends on BBB transport Linear transport into and out of the brain Passive transport, unequal CLin and CLout Clin = Clout Varying from 1.0 to 0.01 CLout = 0.5 Varying CLin from 0.5 to 0.01 MODEL Used for simulations Hammarlund-Udenaes, Paalzow, and de Lange. Pharm Res, 14(2) 1997 5 Brain microdialysis Monitoring free drug concentrations in the brain De Lange et al. Intracerebral microdialysis in PK studies on drug transport across the BBB. Brain Res Rev. 1997 6 In vivo monitoring Serial blood sampling Drug Co-drugs Response measure (e.g. EEG) Blood concentration Microdialysate concentration -30 0 Time (min) 360 De Lange. The mastermind approach to CNS drug therapy. FBCNS. 2013 7 Prediction of human brain PK? Consider local differences in brain pharmacokinetics ..... and consider target site locations De Lange. Utility of CSF in translational neuroscience. JPKPD. 2013 8 Prediction of human brain PK? De Lange. Utility of CSF in translational neuroscience. JPKPD. 2013 9 Prediction of human brain PK? Acetaminophen – passive diffusion & flow ST LV CM 15 mg/kg/10min Westerhout et al. PBPK Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPSJ. 2012 10 Prediction of human brain PK ? ST LV Quinidine- passive diffusion and active transport CM Striatum ST, Lateral ventricle LV, Cisterna magna CM Plasma,u and brain,u (20 mg/kg ± TQR) Quinidine concentration (ng/ml) Quinidine concentration (ng/ml) Plasma,u and brain,u (10 mg/kg ± TQR) 10000 1000 100 10 1 0 60 120 180 Time (min) 240 300 360 10000 1000 100 10 1 0 60 120 180 240 300 360 Time (min) Westerhout et al. The impact of P-gp functionality on non-SS relationships between CSF and brainECF. JPKPD. 2013 11 Prediction of human brain PK ? CM Quinidine concentration (ng/ml) Quinidine ST LV 1 Westerhout et al. The impact of P-gp functionality on non-SS relationships between CSF and brainECF. JPKPD. 2013 12 Prediction of human brain PK? ST LV CM Methotrexate - passive diffusion & flow + active transport Striatum ST, Lateral ventricle LV, Cisterna magna CM Brain ECF (40-) Brain ECF (40+) CSF LV (40-) CSF LV (40+) CSF CM (40-) CSF CM (40+) 40 mg/kg - probenecid 40 mg/kg + probenecid Concentration (ng/ml) 1000000 100000 10000 1000 100 10 Methotrexate, 80 mg/kg ± probenecid Brain ECF (80-) Brain ECF (80+) CSF LV (80-) CSF LV (80+) CSF CM (80-) CSF CM (80+) 80 mg/kg - probenecid 80 mg/kg + probenecid 1000000 Concentration (ng/ml) Methotrexate, 40 mg/kg ± probenecid 100000 10000 1000 100 10 1 1 0,1 0,1 0 60 120 180 Time (min) 240 300 0 60 120 180 240 300 Time (min) Westerhout et al. Prediction of methotrexate CNS distribution in different species. EJPS 2014 13 Prediction of human brain PK? Methotrexate - passive diffusion & flow + active transport ST LV CM Striatum ST, Lateral ventricle LV, Cisterna magna CM Visual predictive check Westerhout et al. Prediction of methotrexate CNS distribution in different species. EJPS 2014 14 Prediction of human brain PK? Species physiological parameter values Replacement of rat by human values for brain physiological parameters: Parameter Rat value Human value CSF volume 250 µl 150 ml CSF production 2.2 µl/min 0.35 ml/min CSF turnover 11 times/day 4 times/day Brain weight 1.8 g 1400 g BrainECF volume 290 µl 240 ml BrainECF production (bulk flow) 0.2-0.5 µl/min 0.15-0.20 ml/min Cerebral blood flow 1.1 ml/min 700 ml/min De Lange. Utility of CSF in translational neuroscience. JPKPD. 2013 (including references on the parameters displayed in the table above) De Lange. Utility of CSF in translational neuroscience. JPKPD. 2013 15 Prediction of human brain PK? Acetaminophen Prediction of human data Predicted Human Acetaminophen Concentration (ng/ml) 100000 Plasma observed CSF (SAS) observed Plasma predicted SAS (CSF) predicted Brain ECF predicted LV CM 10000 1000 100 0 120 240 360 480 600 720 Time (min) Observed (Bannwarth et al. Br J Clin Pharmacol. 1992) and predicted human acetaminophen concentrations in plasma (, ….) and CSF (о, - -- -) Westerhout et al. PBPK Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPSJ. 2012 16 Prediction of human brain PK? Acetaminophen Prediction of human data Predicted Human Acetaminophen Concentration (ng/ml) 100000 Plasma observed CSF (SAS) observed Plasma predicted SAS (CSF) predicted Brain ECF predicted LV CM 10000 1000 100 0 120 240 360 480 600 720 Time (min) Observed (Bannwarth et al. Br J Clin Pharmacol. 1992) and predicted human acetaminophen concentrations in plasma (, ….) and CSF (о, - -- -) Westerhout et al. PBPK Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPSJ. 2012 17 Prediction of human brain PK? Acetaminophen Prediction of human data Predicted Human Acetaminophen Concentration (ng/ml) 100000 Plasma observed CSF (SAS) observed Plasma predicted SAS (CSF) predicted Brain ECF predicted LV CM 10000 1000 100 0 120 240 360 480 600 720 Time (min) Observed (Bannwarth et al. Br J Clin Pharmacol. 1992) and predicted human acetaminophen concentrations in plasma (, ….) and CSF (о, - -- -) Westerhout et al. PBPK Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPSJ. 2012 18 Methotrexate conc (ug/ml) Westerhout et al. Prediction of methotrexate CNS distribution in different species. EJPS 2014 Discussion & Conclusions • The BBBs may have an important impact on the relationship between plasma and brain PK • Preclinical microdialysis brain data are extremely useful in unraveling factors in drug brain distribution • The BBBs (especially transporters) may have also an important impact on the relationships between PK in different brain compartments • An advanced generic brain distribution model has been developed, using preclinical data on brain distribution of compounds with different physicochemical and transporter interaction properties • This model can be “humanized” to reasonably predict human brain distribution of drugs in healthy conditions • Deviations from the healthy prediction may inform us on what changes in human disease conditions 20 Dirk-Jan van den Berg Els van Beelen Francesco Bellanti Willem vd Brink Sinziana Cristea Meindert Danhof Nathalie Doorenweerd Tony Figaji Janna Geuer Piet Hein van der Graaf Margareta Hammarlund-Udenaes Robin Hartman Sandra den Hoedt Laura Kervezee Naomi Ketharanathan Maaike Labots Victor Mangas Ron Mathôt Nick van Oijen Ursula Rohlwink Shinji Shimizu Jasper Stevens Stina Syvanen Dick Tibboel Yumi Yamamoto Joost Westerhout Enno Wildschut Wilbert de Witte Eric Wong Acknowledgements Contact: [email protected] 21
© Copyright 2026 Paperzz