BC2 Practice 3 Name:___ Show your w rklmethod for all problems. No technology help on this page! 1 3 (1) x ——+—+3 Find3 3x q +y (2) FdS3z+2) dz = (3) I6(sin(3x)+sec2(2x)) 13 +3xC = I V’r:q/t —cos(3x) Cf 7 ± CeJ() 71’ /rr f) K(a i) (4) %43 Find the area bounded by f(x) = x and g(x) x. (x)? _i (5) — ui —. 1 (Ostebee/Zom, edition, P. 331.) The graph of a function 1 created with parts of circls, is sketched to the right. ‘ 2nd 2.0 +--7 -=. Ii .0 Let g(x)=f(t)dt. (a) Find g(4) and ‘(4) _2 iii c(t) T(t) l 0,5 LI ‘ (2 -10 (b) Does g have a tangent line at x = 2? Justify. _r 51c -, (c) Where on [0, 5] is g concave up? 4 3 0i c fr h k1(V1I’ iç (d) Write the equation of the tangent line to g atx=1. cu;)-17q , Gv \// (x-t (e) Findtheaveragevalueofg’over[0,4]. (L — - Calculator use ahead! Be sure to show your method clearly. IMSA Practice3. 1 S 12 5 o (6) Find the average value of f(x) = 2eX +1 over the interval [0, 21. (Xjy j J (3q os) 0 (7) I7152H Find the area of the region bounded by y = 2— x3 and y = x2 — 5x. Ikcc p1. x =2, -‘ / (8) Write the equati&&fe tangent line to F(x) F (9) (3) Find klt2 + 1 dt at x =3. RI) 7T F’x) = 3i2 1 mn (No work required.) dx 6, where k has a local maximum. sin(2u)du find the x values, 0 x (10) if k(x) = Justify. Then find the absolute maximum of k on [0, 6]. , . ktx 2 43(x 3) x!k L€1, ivi(2*)O c io(( 4t1 J ( -j 5 rr/ ‘ t tf1 \\%/ (11) If f’(x)=x21n(x) andf(1)=3,findf(4). (q) - f( c/i’ x) d v I p 101 11 1Lf ctL,’rz3J, IMSA . Practice3.2 S 12
© Copyright 2026 Paperzz