Dirichlet Problem for Complex Poisson Equation in a Half Hexagon

Hindawi Publishing Corporation
Journal of Complex Analysis
Volume 2016, Article ID 8097095, 8 pages
http://dx.doi.org/10.1155/2016/8097095
Research Article
Dirichlet Problem for Complex Poisson Equation in
a Half Hexagon Domain
Bibinur Shupeyeva
Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
Correspondence should be addressed to Bibinur Shupeyeva; [email protected]
Received 21 October 2015; Revised 15 December 2015; Accepted 10 January 2016
Academic Editor: Vladislav Kravchenko
Copyright © 2016 Bibinur Shupeyeva. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The parqueting-reflection method is applied to a nonregular domain and the harmonic Green function for the half hexagon is
constructed. The related Dirichlet problem for the Poisson equation is solved explicitly.
1. Introduction
The basic boundary value problems for the second-order
complex partial differential equations are the harmonic
Dirichlet and Neumann problems for the Laplace and Poisson
equations. In order to find the solution in explicit or closed
form diverse methods have been applied. In case a given
domain 𝐷 is simply connected and has a piecewise smooth
boundary πœ•π· the tools of complex analysis such as Schwarz
reflection principle and conformal mapping serve perfectly.
When a given domain 𝐷 is piecewise smooth polygonal and
has corners the Schwarz-Christoffel formula can be used.
Difficulties arise since the elliptic integrals appearing in the
formula imply complicated computations and need to be
solved numerically. As analogue to this formula, another
method can be applied which gives the covering of the entire
complex plane C by reflection of the given domain 𝐷 at
its boundary. The method is fully described in numerous
papers of Begehr and other authors; see, for example [1–12].
Our aim is to find the solution of the Dirichlet boundary
value problem for the Poisson equation through the Poisson
integral formula. It is known that the Poisson kernel function
is an analogue of the Cauchy kernel for the analytic functions
and the Poisson integral formula solves the Dirichlet problem
for the inhomogeneous Laplace equation. One way to obtain
the Poisson kernel leads to the harmonic Green function
which is to be constructed by use of the parqueting-reflection
method.
In this paper we first consider the half hexagon domain
and implement the parqueting-reflection method. The reflection points treated in a proper way help to construct the
certain meromorphic functions needed to find the harmonic
Green function and representation formula. The later one
provides the solution to the harmonic Dirichlet problem
which is shown in the last part.
2. Half Hexagon Domain and Poisson Kernel
We consider a polygonal domain with corner points. The half
hexagon denoted as 𝑃+ with four corner points at 2, 1 + π‘–βˆš3,
βˆ’1 + π‘–βˆš3, and βˆ’2 lies in the upper half plane. A point 𝑧 ∈ 𝑃+
will later serve as a pole of the Green function. Its complex
conjugate 𝑧 does not lie in 𝑃+ . 𝑃+ is reflected at the real
axis so that the entire hexagon 𝑃 (Figure 1) is obtained. The
pole 𝑧 is reflected onto 𝑧 which will later become a zero of a
certain meromorphic function related to the Green function.
The points 𝑧 and 𝑧 from 𝑃 are reflected again through all the
sides of the hexagon, starting with the right upper side and
continuing in a positive direction. The successive reflections
of 𝑧 give the points, which will later become zeros of the
meromorphic function mentioned above. They are
1
βˆ’ (1 + π‘–βˆš3) 𝑧 + 3 + π‘–βˆš3,
2
𝑧 + 2π‘–βˆš3,
2
Journal of Complex Analysis
P2
βˆ’1 + i√3
P3
1 + i√3
P+
Z
P
βˆ’2
P1
2
Z
P4
P6
P5
Figure 1: Hexagons.
1
βˆ’ (1 βˆ’ π‘–βˆš3) 𝑧 βˆ’ 3 + π‘–βˆš3,
2
which are connected by the relations π‘§ΜŒ 2 = 𝑧1 βˆ’ 6 βˆ’ 2π‘–βˆš3 and
π‘§ΜŒ 1 = 𝑧2 βˆ’ 6 βˆ’ 2π‘–βˆš3.
In general, all reflection points are either given by
1
βˆ’ (1 + π‘–βˆš3) 𝑧 βˆ’ 3 βˆ’ π‘–βˆš3,
2
𝑧 + πœ”π‘šπ‘› ,
𝑧 βˆ’ 2π‘–βˆš3,
𝑧1 + πœ”π‘šπ‘› ,
1
βˆ’ (1 βˆ’ π‘–βˆš3) 𝑧 + 3 βˆ’ π‘–βˆš3.
2
𝑧2 + πœ”π‘šπ‘› ,
(1)
𝑧 + πœ”π‘šπ‘› ,
Reflection of the point 𝑧 ∈ 𝑃 defines the poles of the
meromorphic function in the hexagons 𝑃1 , . . . , 𝑃6 . These
points in turn are reflected through the sides of the new
hexagons, except for reflecting to the original hexagon 𝑃.
Hence each hexagon includes now 3 poles and 3 zeros.
Continuation of these operations reveals that all the points
have the same coefficients of rotation: 1, βˆ’(1/2)(1 + π‘–βˆš3),
βˆ’(1/2)(1 βˆ’ π‘–βˆš3), and displacement 3π‘š + π‘–βˆš3𝑛, π‘š + 𝑛 ∈ 2Z.
Note that reflection includes rotation and shifting and the
points from one hexagon can be expressed through the points
of another one. In general the points from the hexagons differ
by displacements 6π‘š in the direction of the real and 2π‘–βˆš3𝑛 in
the direction of the imaginary axes. Thus the main period is
πœ‡π‘šπ‘› = 6π‘š + 2π‘–βˆš3𝑛.
Obviously, the repeated reflections of the point 𝑧 ∈ 𝑃+ are
representable in different ways, using either of the points
𝑧1 + πœ”π‘šπ‘› ,
1
𝑧1 = βˆ’ (1 + π‘–βˆš3) 𝑧 + 3 + π‘–βˆš3,
2
1
𝑧2 = βˆ’ (1 + π‘–βˆš3) 𝑧 + 3 + π‘–βˆš3 or
2
1
π‘§ΜŒ 1 = βˆ’ (1 βˆ’ π‘–βˆš3) 𝑧 βˆ’ 3 + π‘–βˆš3,
2
1
π‘§ΜŒ 2 = βˆ’ (1 βˆ’ π‘–βˆš3) 𝑧 βˆ’ 3 + π‘–βˆš3,
2
(2)
(3)
𝑧2 + πœ”π‘šπ‘›
or by
𝑧 + πœ”π‘šπ‘› ,
π‘§ΜŒ 1 + πœ”π‘šπ‘› ,
π‘§ΜŒ 2 + πœ”π‘šπ‘› ,
𝑧 + πœ”π‘šπ‘› ,
(4)
π‘§ΜŒ 1 + πœ”π‘šπ‘› ,
π‘§ΜŒ 2 + πœ”π‘šπ‘› ,
where πœ”π‘šπ‘› = 3π‘š + π‘–βˆš3𝑛 such that π‘š + 𝑛 ∈ 2Z.
We choose zeros as direct reflection of poles and poles as
direct reflection of zeros. Then having a set of zeros and a set
of poles, one can construct the Schwarz kernel for 𝑃+ and treat
the related Schwarz problem [9] and Riemann-Hilbert-type
boundary value problem.
The half hexagon can be viewed as the complement of the
intersection of four half planes. We define them by 𝐻1βˆ’ being
the right-hand half plane which has the boundary line passing
through the points 2 and 1 + π‘–βˆš3, 𝐻2βˆ’ being the upper half
Journal of Complex Analysis
3
plane with the border line through the points ±1 + π‘–βˆš3, 𝐻3βˆ’
being the left-hand half plane with the border line passing
through the points βˆ’1 + π‘–βˆš3 and βˆ’2, and 𝐻4βˆ’ being the half
plane which is below the real axis.
Let then 𝐻1+ , 𝐻2+ , 𝐻3+ , 𝐻4+ be the complementary half
planes of those listed above. The Green functions of these half
planes are, in fact, the Green functions for the complementary
half planes 𝐻1βˆ’ , . . . , 𝐻4βˆ’ . The outward normal derivatives of
the Green function on the boundary is the Poisson kernel.
The kernel provides the boundary condition 𝑀 = 𝛾 in the
Dirichlet problem.
The Poisson kernels can be found from the respective
Green functions 𝐺1 (𝑧, 𝜁), 𝑧 = π‘₯ + 𝑖𝑦, 𝜁 = πœ‰ + π‘–πœ‚ as described
below.
For the half plane 𝐻1+ with the boundary described by the
relation 𝜁 βˆ’ 2 = βˆ’(1/2)(1 + π‘–βˆš3)(𝜁 βˆ’ 2) we have
󡄨2
󡄨󡄨
󡄨󡄨 (1/2) (1 + π‘–βˆš3) (𝜁 βˆ’ 2) + 𝑧 βˆ’ 2 󡄨󡄨󡄨
󡄨󡄨 ,
󡄨
󡄨
𝐺1 (𝑧, 𝜁) = log 󡄨󡄨
󡄨󡄨
πœβˆ’π‘§
󡄨󡄨
󡄨󡄨
󡄨
󡄨
Finally, for the half plane 𝐻4+ with the boundary described
by 𝜁 = 𝜁, we have
󡄨2
󡄨󡄨
󡄨󡄨 𝜁 βˆ’ 𝑧 󡄨󡄨󡄨
󡄨󡄨 ,
𝐺1 (𝑧, 𝜁) = log 󡄨󡄨󡄨
󡄨󡄨 𝜁 βˆ’ 𝑧 󡄨󡄨󡄨
󡄨
󡄨
𝑧, 𝜁 ∈ 𝐻4+ ,
1
1 π‘§βˆ’π‘§
, 𝜁 ∈ πœ•π»4+ , 𝑧 ∈ 𝐻4+ .
βˆ’ πœ•]𝜁 𝐺1 (𝑧, 𝜁) = 󡄨
2
𝑖 σ΅„¨σ΅„¨πœ βˆ’ 𝑧󡄨󡄨󡄨2
󡄨
󡄨
(8)
3. Green Representation Formula
The method of reflections helps to find the harmonic Green
function; see [3–5]. The reflection points given in (3) or (4)
are used to construct a meromorphic function:
𝐡1 (𝑧, 𝜁)
(𝜁 βˆ’ 𝑧 βˆ’ πœ”π‘šπ‘› ) (𝜁 βˆ’ 𝑧1 βˆ’ πœ”π‘šπ‘› ) (𝜁 βˆ’ 𝑧2 βˆ’ πœ”π‘šπ‘› )
π‘š+π‘›βˆˆ2Z (𝜁 βˆ’ 𝑧 βˆ’ πœ”π‘šπ‘› ) (𝜁 βˆ’ 𝑧1 βˆ’ πœ”π‘šπ‘› ) (𝜁 βˆ’ 𝑧2 βˆ’ πœ”π‘šπ‘› ) (9)
= ∏
𝑧, 𝜁 ∈ 𝐻1+ ,
(√3 βˆ’ 𝑖) 𝑧 βˆ’ 𝑧1
1
βˆ’ πœ•]𝜁 𝐺1 (𝑧, 𝜁) = βˆ’
󡄨2 ,
󡄨󡄨
2
4
σ΅„¨σ΅„¨πœ βˆ’ 𝑧󡄨󡄨󡄨
3
(5)
where 𝑧1 = βˆ’(1/2)(1 + π‘–βˆš3)𝑧 + 3 + π‘–βˆš3, 𝑧1 ∈
For the half plane 𝐻2+ the relation on the boundary is
given as 𝜁 = 𝜁 + 2π‘–βˆš3; then
(6)
here 𝑧2 = 𝑧 + 2π‘–βˆš3, 𝑧 ∈ 𝐻2+ .
The boundary of the half plane 𝐻3+ is described by 𝜁 + 2 =
βˆ’(1/2)(1 βˆ’ π‘–βˆš3)(𝜁 + 2) and
󡄨2
󡄨󡄨
󡄨󡄨 (1/2) (1 βˆ’ π‘–βˆš3) (𝜁 + 2) + 𝑧 + 2 󡄨󡄨󡄨
󡄨󡄨 ,
󡄨
𝐺1 (𝑧, 𝜁) = log 󡄨󡄨󡄨
󡄨󡄨
πœβˆ’π‘§
󡄨󡄨
󡄨󡄨
󡄨
󡄨
√3 + 𝑖 𝑧 βˆ’ 𝑧1̌
1
βˆ’ πœ•]𝜁 𝐺1 (𝑧, 𝜁) = βˆ’
,
2
4 σ΅„¨σ΅„¨σ΅„¨πœ βˆ’ 𝑧󡄨󡄨󡄨2
󡄨
󡄨
π‘š+π‘›βˆˆ2Z (𝜁
3
βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3
,
3
𝐻1+ .
𝑧, 𝜁 ∈ 𝐻3+ ,
(𝜁 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3
where 𝑧1 = βˆ’(1/2)(1+π‘–βˆš3)𝑧+3+π‘–βˆš3, 𝑧2 = βˆ’(1/2)(1+π‘–βˆš3)𝑧+
3 + π‘–βˆš3, or a function
𝜁 ∈ πœ•π»1+ , 𝑧 ∈ 𝐻1+ ,
󡄨󡄨
󡄨2
󡄨󡄨 𝜁 βˆ’ 𝑧 + 2π‘–βˆš3 󡄨󡄨󡄨
󡄨󡄨 , 𝑧, 𝜁 ∈ 𝐻+ ,
𝐺1 (𝑧, 𝜁) = log 󡄨󡄨󡄨
2
󡄨󡄨
󡄨󡄨
𝜁
βˆ’
𝑧
󡄨󡄨
󡄨
1 𝑧 βˆ’ 𝑧2
1
, 𝜁 ∈ πœ•π»2+ , 𝑧 ∈ 𝐻2+ ;
βˆ’ πœ•]𝜁 𝐺1 (𝑧, 𝜁) = βˆ’ 󡄨
2
𝑖 σ΅„¨σ΅„¨πœ βˆ’ 𝑧󡄨󡄨󡄨2
󡄨
󡄨
= ∏
(7)
𝐡2 (𝑧, 𝜁) = ∏
(𝜁 βˆ’ πœ”π‘šπ‘› + 2) βˆ’ (𝑧 + 2)3
π‘š+π‘›βˆˆ2Z (𝜁
3
βˆ’ πœ”π‘šπ‘› + 2) βˆ’ (𝑧 + 2)3
,
(10)
where 𝑧1̌ = βˆ’(1/2)(1βˆ’π‘–βˆš3)π‘§βˆ’3+π‘–βˆš3, 𝑧2̌ = βˆ’(1/2)(1βˆ’π‘–βˆš3)π‘§βˆ’
3 + π‘–βˆš3. Here 𝑧 is considered as a parameter and 𝜁 ∈ C is the
variable.
For the boundary part πœ•2 𝑃, the line from 1 + π‘–βˆš3 to
βˆ’1 + π‘–βˆš3, a meromorphic function 𝐡3 (𝑧, 𝜁), is deduced from
𝐡1 (𝑧, 𝜁) by rotating the variable 𝜁 and the parameter 𝑧 about
the angle πœ‹/3:
1
1
𝐡1 (βˆ’ (1 + π‘–βˆš3) 𝑧, βˆ’ (1 + π‘–βˆš3) 𝜁)
2
2
= ∏
3
3
3
3
(𝜁 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3) βˆ’ (𝑧 + 1 + π‘–βˆš3)
π‘š+π‘›βˆˆ2Z (𝜁
βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3) βˆ’ (𝑧 + 1 βˆ’ π‘–βˆš3)
(11)
,
which becomes 1 on the boundary πœ•2 𝑃, where 𝜁 βˆ’ π‘–βˆš3 = 𝜁 +
π‘–βˆš3.
The following lemmas will be needed to prove the Green
representation formula below. The complete proofs of these
lemmas are given in [9].
Lemma 1. The infinite product
3
𝜁∈
πœ•π»3+ ,
π‘§βˆˆ
where 𝑧1̌ = βˆ’(1/2)(1 βˆ’ π‘–βˆš3)𝑧 βˆ’ 3 + π‘–βˆš3, 𝑧 ∈ 𝐻3+ .
𝐻3+ ,
∏
(𝜁 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3
π‘š+π‘›βˆˆ2Z (𝜁
3
βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3
converges, where πœ”π‘šπ‘› = 3π‘š + π‘–βˆš3𝑛, π‘š + 𝑛 ∈ 2Z.
(12)
4
Journal of Complex Analysis
Lemma 2. The equalities 𝐡1 (𝑧, 𝜁) = 𝐡2 (𝑧, 𝜁) = 𝐡3 (𝑧, 𝜁) hold
for (𝑧, 𝜁) ∈ 𝑃+ × πœ•π‘ƒ+ .
The proof of this equality is based on the fact that the
functions 𝐡1 (𝑧, β‹…), 𝐡2 (𝑧, β‹…), since 𝐡3 (𝑧, β‹…) can be obtained from
𝐡1 (𝑧, β‹…), have the same poles and zeros; see [9].
The Green function must satisfy the following conditions;
see [13]:
(10 ) 𝐺1 (𝑧, 𝜁) is harmonic in 𝑃+ \ {𝑧};
(20 ) 𝐺1 (𝑧, 𝜁) + log |𝜁 βˆ’ 𝑧|2 is harmonic in 𝜁 ∈ 𝑃+ for any
𝑧 ∈ 𝑃+ ;
0
(3 ) lim πœβ†’πœ•π‘ƒ+ 𝐺(𝑧, 𝜁) = 0 for any 𝑧 ∈ 𝑃+ ;
and the additional properties:
(40 ) 𝐺1 (𝑧, 𝜁) = 𝐺1 (𝜁, 𝑧), 𝑧 and 𝜁 in 𝑃+ , 𝑧 =ΜΈ 𝜁;
(50 ) 𝐺1 (𝑧, 𝜁) > 0, 𝑧 and 𝜁 in 𝑃+ , 𝑧 =ΜΈ 𝜁.
We consider now the different forms of the Green function and take the derivatives πœ•πœ 𝐺1 (𝑧, 𝜁), πœ•πœ 𝐺1 (𝑧, 𝜁).
For the right-hand side, a boundary πœ•1 𝑃+ , we choose the
form (14) for 𝜁 ∈ πœ•π‘ƒ+ , 𝑧 ∈ 𝑃+ . Here the outward normal
derivative is πœ•]𝜁 = (√3/2 + 𝑖/2)πœ•πœ + (√3/2 βˆ’ 𝑖/2)πœ•πœ ; then
πœ•]𝜁 𝐺1 (𝑧, 𝜁) = βˆ’3 (√3 + 𝑖) (𝜁 βˆ’ 2)2
󡄨󡄨
3 󡄨2
3
󡄨󡄨
(𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝜁 βˆ’ 2) 󡄨󡄨󡄨󡄨
󡄨󡄨
󡄨󡄨 ,
𝐺1 (𝑧, 𝜁) = log 󡄨󡄨 ∏
σ΅„¨σ΅„¨π‘š+π‘›βˆˆ2Z (𝑧 βˆ’ πœ” βˆ’ 2)3 βˆ’ (𝜁 βˆ’ 2)3 󡄨󡄨󡄨
󡄨󡄨
󡄨󡄨
π‘šπ‘›
(14)
󡄨󡄨
3 󡄨2
3
󡄨󡄨
(𝑧 βˆ’ πœ”π‘šπ‘› + 2) βˆ’ (𝜁 + 2) 󡄨󡄨󡄨󡄨
󡄨󡄨
󡄨󡄨 ,
𝐺1 (𝑧, 𝜁) = log 󡄨󡄨 ∏
σ΅„¨σ΅„¨π‘š+π‘›βˆˆ2Z (𝑧 βˆ’ πœ” + 2)3 βˆ’ (𝜁 + 2)3 󡄨󡄨󡄨
󡄨󡄨
󡄨󡄨
π‘šπ‘›
(15)
since 𝜁 βˆ’ 2 = βˆ’(1/2)(1 + π‘–βˆš3)(𝜁 βˆ’ 2), (𝜁 βˆ’ 2)3 = (𝜁 βˆ’ 2)3 .
For the boundary part πœ•4 𝑃+ , a line between (βˆ’2, 0), (2, 0)
on a real axis, the outward normal derivative is πœ•]𝜁 = βˆ’π‘–(πœ•πœ βˆ’
πœ•]𝜁 𝐺1 (𝑧, 𝜁) = 6𝑖 (𝜁 βˆ’ 2)2
3
3
(20)
(𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2)
β‹… βˆ‘
.
󡄨󡄨
󡄨2
󡄨󡄨(𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2)3 βˆ’ (𝜁 βˆ’ 2)3 󡄨󡄨󡄨
π‘š+π‘›βˆˆ2Z
󡄨
󡄨
For the boundary part πœ•3 𝑃+ on the left-hand side of 𝑃+ ,
we take form (15). The outward normal derivative is πœ•]𝜁 =
(√3/2 βˆ’ 𝑖/2)πœ• + (√3/2 + 𝑖/2)πœ• also here 𝜁 = 𝜁 ̌ = βˆ’(1/2)(1 βˆ’
𝜁
𝜁
π‘–βˆš3)𝜁 βˆ’ 3 + π‘–βˆš3 and (𝜁 + 2)3 = (𝜁 + 2)3 ; then
πœ•]𝜁 𝐺1 (𝑧, 𝜁) = βˆ’3 (√3 βˆ’ 𝑖) (𝜁 + 2)2
3
3
(21)
(𝑧 βˆ’ πœ”π‘šπ‘› + 2) βˆ’ (𝑧 βˆ’ πœ”π‘šπ‘› + 2)
β‹… βˆ‘
.
󡄨󡄨
󡄨2
󡄨󡄨(𝑧 βˆ’ πœ”π‘šπ‘› + 2)3 βˆ’ (𝜁 + 2)3 󡄨󡄨󡄨
π‘š+π‘›βˆˆ2Z
󡄨
󡄨
+
For the upper boundary part πœ•2 𝑃 , a line joining the points
±1+π‘–βˆš3, form (16) is valid. Here πœ•]𝜁 = 𝑖(πœ•πœ βˆ’πœ•πœ ) and πœβˆ’π‘–βˆš3 =
𝜁 + π‘–βˆš3; then πœ•] 𝐺1 (𝑧, 𝜁) is
βˆ’ 6𝑖 (𝜁 + 1 βˆ’ π‘–βˆš3)
󡄨󡄨
3 󡄨2
3
(16)
󡄨󡄨
(𝑧 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3) βˆ’ (𝜁 + 1 + π‘–βˆš3) 󡄨󡄨󡄨󡄨
󡄨󡄨
󡄨󡄨 .
= log 󡄨󡄨 ∏
󡄨
3
3
σ΅„¨σ΅„¨π‘š+π‘›βˆˆ2Z (𝑧 βˆ’ πœ” + 1 βˆ’ π‘–βˆš3) βˆ’ (𝜁 + 1 βˆ’ π‘–βˆš3) 󡄨󡄨
󡄨󡄨
󡄨󡄨
π‘šπ‘›
Lemma 3. The function 𝐺1 (𝑧, 𝜁) has vanishing boundary
values on πœ•π‘ƒ+ ; that is,
(17)
Theorem 4 (see [13]). Any 𝑀 ∈ 𝐢2 (𝑃+ ; C) ∩ 𝐢1 (𝑃+ ; C) can be
represented as
𝑀 (𝑧) = βˆ’
1
∫ 𝑀 (𝜁) πœ•]𝜁 𝐺1 (𝑧, 𝜁) π‘‘π‘ πœ
4πœ‹ πœ•π‘ƒ+
βˆ’
1
∫ 𝑀 (𝜁) 𝐺1 (𝑧, 𝜁) π‘‘πœ‰ π‘‘πœ‚,
πœ‹ 𝑃+ 𝜁𝜁
1
𝜁
𝐺1 (𝑧, 𝜁)
lim 𝐺1 (𝑧, 𝜁) = 0.
(19)
πœ•πœ ), 𝜁 = 𝜁; then
By the properties (10 )–(30 ) the Green function 𝐺1 (𝑧, 𝜁) is
uniquely defined. Obviously, 𝐺1 (𝑧, 𝜁) as defined above is
harmonic in 𝜁 ∈ 𝑃+ \ {𝑧} as 𝐡1 (𝑧, 𝜁) is analytic in 𝑃+ up to a
single pole at 𝑧. Adding log |𝜁 βˆ’ 𝑧|2 gives a harmonic function
of 𝜁 ∈ 𝑃+ . The symmetry property (40 ) is a consequence from
the properties (10 )–(30 ). The harmonic Green function for
the half hexagon 𝑃+ is
󡄨
󡄨2
󡄨2
󡄨
𝐺1 (𝑧, 𝜁) = log 󡄨󡄨󡄨𝐡1 (𝑧, 𝜁)󡄨󡄨󡄨 = log 󡄨󡄨󡄨𝐡2 (𝑧, 𝜁)󡄨󡄨󡄨
(13)
󡄨2
󡄨
= log 󡄨󡄨󡄨𝐡3 (𝑧, 𝜁)󡄨󡄨󡄨
or, by the symmetry property,
πœβ†’πœ0 βˆˆπœ•π‘ƒ+
3
3
(𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2)
β‹… βˆ‘
,
󡄨󡄨󡄨(𝑧 βˆ’ πœ” βˆ’ 2)3 βˆ’ (𝜁 βˆ’ 2)3 󡄨󡄨󡄨2
π‘š+π‘›βˆˆ2Z
󡄨󡄨
󡄨󡄨
π‘šπ‘›
3
3
(𝑧 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3) βˆ’ (𝑧 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3) (22)
β‹… βˆ‘
.
3
3 󡄨󡄨2
󡄨󡄨󡄨
π‘š+π‘›βˆˆ2Z
󡄨󡄨(𝑧 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3) βˆ’ (𝜁 + 1 βˆ’ π‘–βˆš3) 󡄨󡄨󡄨
󡄨
󡄨
4. Harmonic Dirichlet Problem
The representation formula in Theorem 4 provides the solution to the Dirichlet problem for the Poisson equation.
At first the boundary behavior of the integral is to be
studied. Let for 𝛾 ∈ 𝐢(πœ•π‘ƒ+ ; R)
πœ‘ (𝑧) = βˆ’
(18)
where π‘ πœ is the arc length parameter on πœ•π‘ƒ+ with respect to the
variable 𝜁 = πœ‰ + π‘–πœ‚ and 𝐺1 (𝑧, 𝜁) = 2𝐺(𝑧, 𝜁) is the harmonic
Green function for 𝑃+ .
2
1
∫ 𝛾 (𝜁) πœ•]𝜁 𝐺 (𝑧, 𝜁) π‘‘π‘ πœ , 𝑧 ∈ 𝑃+ .
4πœ‹ πœ•π‘ƒ+
(23)
Lemma 5. For 𝛾 ∈ 𝐢(πœ•π‘ƒ+ ; R) the function presented in (23)
satisfies the relation
lim πœ‘ (𝑧) = 𝛾 (𝜁0 ) ,
π‘§β†’πœ0
where 𝜁0 is any fixed point on πœ•π‘ƒ+ \ {±2, ±1 + π‘–βˆš3}.
(24)
Journal of Complex Analysis
5
Proof. Let 𝜁0 be defined on different boundary parts and
consider the boundary behavior when 𝑧 β†’ 𝜁0 .
+
Case 1. If 𝜁0 is taken on πœ•1 𝑃 so that 𝜁0 = βˆ’(1/2)(1 + π‘–βˆš3)𝜁0 +
3 + π‘–βˆš3 then
1
2
(𝜁0 βˆ’ 2) = βˆ’ (1 βˆ’ π‘–βˆš3) (𝜁0 βˆ’ 2) ,
2
For π‘š = 𝑛 = 0 formula (19) gives
(𝑧 βˆ’ 2)3 βˆ’ (𝑧 βˆ’ 2)3
βˆ’ 3 (√3 + 𝑖) (𝜁 βˆ’ 2)2 󡄨
󡄨󡄨(𝑧 βˆ’ 2)3 βˆ’ (𝜁 βˆ’ 2)3 󡄨󡄨󡄨2
󡄨󡄨
󡄨󡄨
= βˆ’3 (√3 + 𝑖) (𝜁 βˆ’ 2)2
2
3
3
(26)
2
(25)
β‹…
(𝜁0 βˆ’ 2) = (𝜁0 βˆ’ 2) .
On πœ•1 𝑃 where 𝜁 = 𝜁1 = βˆ’(1/2)(1 + π‘–βˆš3)𝜁 + 3 + π‘–βˆš3, (𝜁 βˆ’ 2)3 =
(𝜁 βˆ’ 2)3 .
+
(𝑧 βˆ’ 𝑧) [(𝑧 βˆ’ 2)2 + (𝑧 βˆ’ 2) (𝑧1 βˆ’ 2) + (𝑧1 βˆ’ 2) ]
.
󡄨󡄨󡄨𝑧 βˆ’ πœσ΅„¨σ΅„¨σ΅„¨2 󡄨󡄨󡄨󡄨(𝑧 βˆ’ 2)2 + (𝑧 βˆ’ 2) (𝜁 βˆ’ 2) + (𝜁 βˆ’ 2)2 󡄨󡄨󡄨󡄨2
󡄨 󡄨
󡄨
󡄨
Because 𝑧1 = βˆ’(1/2)(1 + π‘–βˆš3)𝑧 + 3 + π‘–βˆš3, then (𝑧1 βˆ’ 2)3 =
(𝑧 βˆ’ 2)3 . The limit in the following ratio as 𝑧 β†’ 𝜁0 and 𝜁 = 𝜁0
gives
2
4
2
2
{ βˆ’3 (√3 + 𝑖) (𝜁 βˆ’ 2) [(𝑧 βˆ’ 2) + (𝑧 βˆ’ 2) (𝑧1 βˆ’ 2) + (𝑧1 βˆ’ 2) ] } βˆ’ (√3 + 𝑖) (𝜁0 βˆ’ 2)
lim {
= (√3 βˆ’ 𝑖) ,
}=
󡄨󡄨
󡄨󡄨
󡄨4
2 󡄨󡄨2
2
π‘§β†’πœ0
𝜁0 βˆ’ 2󡄨󡄨󡄨
󡄨
󡄨
󡄨
βˆ’
2)
+
βˆ’
2)
βˆ’
2)
+
βˆ’
2)
(𝑧
(𝑧
(𝜁
(𝜁
󡄨
󡄨
󡄨
{
}
󡄨
󡄨
(28)
3
= (𝑧1 βˆ’ πœ”π‘˜π‘™ βˆ’ 2) ,
3
(𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2)
π‘š+π‘›βˆˆ2Z,
π‘š2 +𝑛2 >0
󡄨󡄨
󡄨2
󡄨󡄨(𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2)3 βˆ’ (𝜁 βˆ’ 2)3 󡄨󡄨󡄨
󡄨
󡄨
(29)
3
=
βˆ‘
π‘š+π‘›βˆˆ2Z,
π‘š2 +𝑛2 >0
3
βˆ‘ 󡄨
󡄨󡄨
(𝑧 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3)
π‘š+π‘›βˆˆ2Z 󡄨󡄨󡄨(𝑧
which follows from the rearrangement of the indices in πœ”π‘šπ‘›
for certain π‘˜ + 𝑙 ∈ 2Z. Thus
βˆ‘
(𝑧1 βˆ’ πœ”π‘šπ‘› βˆ’ 2)
󡄨󡄨
󡄨2 .
󡄨󡄨(𝑧1 βˆ’ πœ”π‘šπ‘› βˆ’ 2)3 βˆ’ (𝜁 βˆ’ 2)3 󡄨󡄨󡄨
󡄨
󡄨
3
3 󡄨󡄨2
βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3) βˆ’ (𝜁 + 1 βˆ’ π‘–βˆš3) 󡄨󡄨󡄨
󡄨
(32)
3
󡄨󡄨2
󡄨󡄨
󡄨󡄨
󡄨󡄨
√
(𝑧
βˆ’
πœ”
+
1
βˆ’
𝑖
3)
󡄨󡄨
󡄨󡄨
1
π‘šπ‘›
󡄨󡄨 .
= βˆ‘ 󡄨󡄨󡄨
󡄨󡄨
3
󡄨
󡄨
√
√
π‘š+π‘›βˆˆ2Z 󡄨 (𝑧 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ 𝑖 3) βˆ’ (𝜁 + 1 βˆ’ 𝑖 3) 󡄨󡄨
󡄨󡄨
󡄨󡄨
+
Letting 𝑧 β†’ 𝜁0 , 𝑧1 β†’ 𝜁0 ∈ πœ•1 𝑃 the sum (22) tends to 0.
Similarly, for the rest parts of the boundary πœ•3 𝑃+ , πœ•4 𝑃+
one can get that the sums in (21) and (20) tend to zero as we
let 𝑧 β†’ 𝜁0 ∈ πœ•1 𝑃. As a result for the case 𝜁0 ∈ πœ•1 𝑃+
lim [βˆ’
π‘§β†’πœ0
1
∫ 𝛾 (𝜁) πœ•]𝜁 𝐺1 (𝑧, 𝜁) π‘‘π‘ πœ ]
4πœ‹ πœ•π‘ƒ+
= lim [βˆ’
Hence for 𝑧 β†’ 𝜁0 on πœ•1 𝑃+
(√3 βˆ’ 𝑖)
π‘§β†’πœ0
(√3 βˆ’ 𝑖) (𝑧 βˆ’ 𝑧1 )
πœ•]𝜁 𝐺1 (𝑧, 𝜁) =
(1 + π‘œ (1)) .
󡄨2
󡄨󡄨
󡄨󡄨𝑧 βˆ’ πœσ΅„¨σ΅„¨σ΅„¨
(30)
2
βˆ’ 6𝑖 (𝜁 + 1 βˆ’ π‘–βˆš3)
3
4πœ‹
∫
⋅󡄨
.
3
3 󡄨󡄨2
󡄨󡄨
󡄨󡄨(𝑧 + 1 βˆ’ π‘–βˆš3) βˆ’ (𝜁 + 1 βˆ’ π‘–βˆš3) 󡄨󡄨󡄨
󡄨
󡄨
𝑧 βˆ’ 𝑧1
𝛾 (𝜁) 󡄨
𝑑𝑠 ]
󡄨󡄨𝑧 βˆ’ πœσ΅„¨σ΅„¨σ΅„¨2 𝜁
󡄨
󡄨
(33)
on the boundary πœ•1 𝑃.
Case 2. Let 𝜁0 be from πœ•2 𝑃+ , where 𝜁0 = 𝜁0 + 2π‘–βˆš3, 𝜁0 βˆ’ π‘–βˆš3 =
𝜁0 + π‘–βˆš3.
On πœ•2 𝑃+ , 𝜁 = 𝜁 + 2π‘–βˆš3, 𝜁 βˆ’ π‘–βˆš3 = 𝜁 + π‘–βˆš3.
For π‘š = 𝑛 = 0 the term in (22) is
βˆ’ 6𝑖 (𝜁 + 1 βˆ’ π‘–βˆš3)
3
πœ•1
𝑃+
= 𝛾 (𝜁0 )
On πœ•2 𝑃+ 𝜁 = 𝜁2 = 𝜁+2π‘–βˆš3 and πœβˆ’π‘–βˆš3 = 𝜁+π‘–βˆš3, for π‘š = 𝑛 = 0
in (22), the formula becomes
(𝑧 + 1 βˆ’ π‘–βˆš3) βˆ’ (𝑧 + 1 βˆ’ π‘–βˆš3)
(27)
This term is not singular for 𝑧 =ΜΈ 𝜁 and the terms of the sum
can be in general rewritten as (𝑧 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3)3 = (𝑧1 βˆ’
πœ”π‘˜π‘™ + 1 + π‘–βˆš3)3 for certain π‘˜ + 𝑙 ∈ 2Z. Therefore
For the other terms of the sum,
3
1
3
(𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2) = [βˆ’ (1 βˆ’ π‘–βˆš3) (𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2)]
2
𝜁0 ≠ 2.
(31)
2
3
(𝑧 + 1 βˆ’ π‘–βˆš3) βˆ’ (𝑧 + 1 βˆ’ π‘–βˆš3)
3
⋅󡄨
.
3
3 󡄨󡄨2
󡄨󡄨
󡄨󡄨(𝑧 + 1 βˆ’ π‘–βˆš3) βˆ’ (𝜁 + 1 βˆ’ π‘–βˆš3) 󡄨󡄨󡄨
󡄨
󡄨
(34)
6
Journal of Complex Analysis
+ (𝑧 + 1 βˆ’ π‘–βˆš3) (𝑧2 + 1 βˆ’ π‘–βˆš3)
On this boundary 𝑧 = 𝑧2 = 𝑧 + 2π‘–βˆš3 and 𝑧 βˆ’ π‘–βˆš3 = 𝑧 + π‘–βˆš3
or 𝑧2 βˆ’ π‘–βˆš3 = 𝑧 + π‘–βˆš3; therefore
3
3
(𝑧 + 1 βˆ’ π‘–βˆš3) βˆ’ (𝑧 + 1 βˆ’ π‘–βˆš3) = (𝑧 + 1 βˆ’ π‘–βˆš3)
3
βˆ’ (𝑧2 + 1 βˆ’ π‘–βˆš3) = (𝑧 βˆ’ 𝑧2 ) [(𝑧 + 1 βˆ’ π‘–βˆš3)
2
+ (𝑧2 + 1 βˆ’ π‘–βˆš3) ] .
3
(35)
Substituting the latter into (34) and considering 𝑧 β†’ 𝜁0 ∈
πœ•2 𝑃+ , 𝜁0 =ΜΈ 1 + π‘–βˆš3, 𝜁 = 𝜁0
2
2
2
2
{
{ βˆ’6𝑖 (𝜁 + 1 βˆ’ π‘–βˆš3) [(𝑧 + 1 βˆ’ π‘–βˆš3) + (𝑧 + 1 βˆ’ π‘–βˆš3) (𝑧2 + 1 βˆ’ π‘–βˆš3) + (𝑧2 + 1 βˆ’ π‘–βˆš3)
lim {
󡄨󡄨
󡄨2
π‘§β†’πœ0 {
󡄨󡄨(𝑧 + 1 βˆ’ π‘–βˆš3)2 + (𝑧 + 1 βˆ’ π‘–βˆš3) (𝜁 + 1 βˆ’ π‘–βˆš3) + (𝜁 + 1 βˆ’ π‘–βˆš3)2 󡄨󡄨󡄨
󡄨󡄨
{
󡄨󡄨
4
(37)
=
3
󡄨󡄨
󡄨2
󡄨󡄨(𝑧 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3)3 βˆ’ (𝜁 + 1 βˆ’ √3)3 󡄨󡄨󡄨
󡄨󡄨
󡄨󡄨
(𝑧2 βˆ’ πœ”π‘šπ‘› + 1 + π‘–βˆš3)
βˆ‘
π‘š+π‘›βˆˆ2Z,
π‘š2 +𝑛2 >0
1
∫ 𝛾 (𝜁) πœ•]𝜁 𝐺1 (𝑧, 𝜁) π‘‘π‘ πœ ]
4πœ‹ πœ•π‘ƒ+
𝑧 βˆ’ 𝑧2
1
= lim [βˆ’
𝑑𝑠 ] = 𝛾 (𝜁0 ) .
∫ 𝛾 (𝜁) 󡄨
+
π‘§β†’πœ0
󡄨󡄨𝑧 βˆ’ πœσ΅„¨σ΅„¨σ΅„¨2 𝜁
2πœ‹π‘– πœ•2 𝑃
󡄨
󡄨
(𝑧 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3)
βˆ‘
lim [βˆ’
π‘§β†’πœ0
For π‘š =ΜΈ 0, 𝑛 =ΜΈ 0 by
π‘š+π‘›βˆˆ2Z,
π‘š2 +𝑛2 >0
(36)
on πœ•2 𝑃+ . Similar computations on the boundary parts πœ•1 𝑃+ ,
πœ•3 𝑃+ , πœ•4 𝑃+ give that the sums (21) and (20) tend to zero as
𝑧 β†’ 𝜁0 . Therefore, on the boundary part πœ•2 𝑃+ for 𝜁0 ∈ πœ•2 𝑃+
gives
(𝜁0 + 1 βˆ’ π‘–βˆš3)
βˆ’2𝑖 󡄨
= βˆ’2𝑖, 𝜁0 =ΜΈ βˆ’1 + π‘–βˆš3.
σ΅„¨σ΅„¨πœ + 1 βˆ’ π‘–βˆš3󡄨󡄨󡄨4
󡄨󡄨
󡄨󡄨
]}
}
}
}
}
3
(38)
󡄨󡄨
󡄨2 .
󡄨󡄨(𝑧2 βˆ’ πœ”π‘šπ‘› + 1 βˆ’ π‘–βˆš3)3 βˆ’ (𝜁 + 1 βˆ’ π‘–βˆš3)3 󡄨󡄨󡄨
󡄨󡄨
󡄨󡄨
Letting 𝑧 β†’ 𝜁0 ∈ πœ•2 𝑃+ and since 𝑧2 β†’ 𝜁0 , the sum tends to
0. Then
𝑧 βˆ’ 𝑧2
πœ•]𝜁 𝐺1 (𝑧, 𝜁) = βˆ’2𝑖 󡄨
(1 + π‘œ (1))
󡄨󡄨𝑧 βˆ’ πœσ΅„¨σ΅„¨σ΅„¨2
󡄨
󡄨
Case 3. Let 𝜁0 be defined on πœ•3 𝑃+ by 𝜁0 = βˆ’(1/2)(1 βˆ’ π‘–βˆš3)𝜁0 βˆ’
3 + π‘–βˆš3.
On πœ•3 𝑃+ with 𝜁 = 𝜁1̌ = βˆ’(1/2)(1βˆ’π‘–βˆš3)πœβˆ’3+π‘–βˆš3, (𝜁+2)3 =
(𝜁 + 2)3 .
For π‘š = 𝑛 = 0 in (21) the formula becomes
(𝑧 + 2)3 βˆ’ (𝑧 + 2)3
.
βˆ’3 (βˆ’βˆš3 + 𝑖) (𝜁 + 2)2 󡄨
󡄨󡄨(𝑧 + 2)3 βˆ’ (𝜁 + 2)3 󡄨󡄨󡄨2
󡄨󡄨
󡄨󡄨
Since (𝑧1̌ + 2)3 = (𝑧 + 2)3 , then
(𝑧 + 2)3 βˆ’ (𝑧 + 2)3 = (𝑧 + 2)3 βˆ’ (𝑧1̌ + 2)
2
(42)
Letting 𝑧 β†’ 𝜁0 , 𝑧1̌ β†’ 𝜁0 , and 𝜁 = 𝜁0 for the fraction
2
4
3 (βˆ’βˆš3 + 𝑖) (𝜁 + 2)2 [(𝑧 + 2)2 + (𝑧 + 2) (𝑧1̌ + 2) + (𝑧1̌ + 2) ] (βˆ’βˆš3 + 𝑖) (𝜁0 + 2)
lim
=
= (√3 + 𝑖) .
󡄨󡄨
󡄨2
󡄨󡄨
󡄨4
π‘§β†’πœ0
󡄨󡄨(𝑧 + 2)2 + (𝑧 + 2) (𝜁 + 2) + (𝜁 + 2)2 󡄨󡄨󡄨
σ΅„¨σ΅„¨πœ0 + 2󡄨󡄨󡄨
󡄨
󡄨
For the other terms of (21) (𝑧 βˆ’ πœ”π‘šπ‘› + 2)3 = (𝑧1̌ βˆ’ πœ”π‘˜π‘™ + 2)3 and
(41)
3
= (𝑧 βˆ’ 𝑧1̌ ) [(𝑧 + 2)2 + (𝑧 + 2) (𝑧1̌ + 2) + (𝑧1̌ + 2) ] .
(39)
(40)
(43)
Therefore
3
(𝑧 βˆ’ πœ”π‘šπ‘› + 2)
βˆ‘
π‘š+π‘›βˆˆ2Z,
π‘š2 +𝑛2 >0
󡄨󡄨
󡄨2
󡄨󡄨(𝑧 βˆ’ πœ”π‘šπ‘› + 2)3 βˆ’ (𝜁 + 2)3 󡄨󡄨󡄨
󡄨
󡄨
3
=
βˆ‘
π‘š+π‘›βˆˆ2Z,
π‘š2 +𝑛2 >0
(𝑧1̌ βˆ’ πœ”π‘šπ‘› + 2)
󡄨󡄨
󡄨2 .
󡄨󡄨(𝑧1̌ βˆ’ πœ”π‘šπ‘› + 2)3 βˆ’ (𝜁 + 2)3 󡄨󡄨󡄨
󡄨
󡄨
(44)
𝑧 βˆ’ 𝑧3
πœ•]𝜁 𝐺1 (𝑧, 𝜁) = (βˆ’βˆš3 βˆ’ 𝑖) 󡄨
(1 + π‘œ (1))
󡄨󡄨𝑧 βˆ’ πœσ΅„¨σ΅„¨σ΅„¨2
󡄨
󡄨
(45)
for 𝑧 β†’ 𝜁0 ∈ πœ•3 𝑃+ . On the boundary parts πœ•1 𝑃+ , πœ•2 𝑃+ , πœ•4 𝑃+
in the same manner we can prove that the sums (19), (22), and
Journal of Complex Analysis
7
(20) tend to zero as 𝑧 β†’ 𝜁0 ∈ πœ•3 𝑃+ . Thus for this Case 3 is as
follows:
lim [βˆ’
π‘§β†’πœ0
𝑧 βˆ’ 𝑧4
πœ•]𝜁 𝐺1 (𝑧, 𝜁) = 2𝑖 󡄨
(1 + π‘œ (1)) ,
󡄨󡄨𝑧 βˆ’ πœσ΅„¨σ΅„¨σ΅„¨2
󡄨
󡄨
1
∫ 𝛾 (𝜁) πœ•]𝜁 𝐺1 (𝑧, 𝜁) π‘‘π‘ πœ ]
4πœ‹ πœ•π‘ƒ+
= lim [βˆ’
(√3 + 𝑖)
π‘§β†’πœ0
4πœ‹
If 𝑧 β†’ 𝜁0 , 𝑧4 β†’ 𝜁0 ∈ πœ•4 𝑃+ , this sum (20) tends to 0 for
𝜁 ∈ πœ•4 𝑃+ . Thus on this boundary part
𝑧 βˆ’ 𝑧1̌
𝛾 (𝜁) 󡄨
󡄨2 π‘‘π‘ πœ ]
+
󡄨
πœ•3 𝑃
󡄨󡄨𝑧 βˆ’ πœσ΅„¨σ΅„¨σ΅„¨
(46)
∫
lim [βˆ’
π‘§β†’πœ0
= 𝛾 (𝜁0 )
= lim
Case 4. Let 𝜁0 be from πœ•4 𝑃+ , where 𝜁0 = 𝜁4 = 𝜁.
Obviously, similar calculations on the boundary parts
imply the related sums to be convergent to zero, except for
the boundary part πœ•4 𝑃+ , where the boundary behavior is to
be observed carefully.
On πœ•4 𝑃+ with 𝜁 = 𝜁 for π‘š = 𝑛 = 0 in formula (20) we
have
(47)
π‘§βˆ’π‘§
𝛾 (𝜁) 󡄨
𝑑𝑠 = 𝛾 (𝜁0 )
󡄨󡄨𝑧 βˆ’ πœσ΅„¨σ΅„¨σ΅„¨2 𝜁
󡄨
󡄨
In the next lemma the boundary behavior of the function
πœ‘(𝜁) in the corner points ±2, ±1 + π‘–βˆš3, is observed. It is
shown that the continuity of the function is preserved at all
the corner points which are treated as an intersection of two
lines through the boundary parts.
lim
= 0,
{βˆ’
1
∫ [𝛾 (𝜁) βˆ’ 𝛾 (𝜁0 )] πœ•]𝜁 𝐺1 (𝑧, 𝜁) π‘‘π‘ πœ }
4πœ‹ πœ•π‘ƒ+
(52)
𝜁0 ∈ {±2, ±1 + π‘–βˆš3} , 𝑧 ∈ 𝑃+ .
The proof of this lemma is given in detail in [9]. We
consider now the main theorem of this paper.
(𝑧 βˆ’ 𝑧4 )
6𝑖 (𝜁 βˆ’ 2)2 󡄨
󡄨󡄨𝑧 βˆ’ πœσ΅„¨σ΅„¨σ΅„¨2
󡄨
󡄨
(48)
2
(𝑧 βˆ’ 2)2 + (𝑧 βˆ’ 2) (𝑧4 βˆ’ 2) + (𝑧4 βˆ’ 2)
⋅󡄨
󡄨󡄨(𝑧 βˆ’ 2)2 + (𝑧 βˆ’ 2) (𝜁 βˆ’ 2) + (𝜁 βˆ’ 2)2 󡄨󡄨󡄨2
󡄨󡄨
󡄨󡄨
+
4
(49)
(𝜁 βˆ’ 2)
= 2𝑖 󡄨 0
󡄨4 = 2𝑖.
σ΅„¨σ΅„¨σ΅„¨πœ0 βˆ’ 2󡄨󡄨󡄨
Again, the terms of the sum (20) are rewritten and it follows
that
3
(𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2)
󡄨󡄨
󡄨2
󡄨󡄨(𝑧 βˆ’ πœ”π‘šπ‘› βˆ’ 2)3 βˆ’ (𝜁 βˆ’ 2)3 󡄨󡄨󡄨
󡄨
󡄨
3
(𝑧4 βˆ’ πœ”π‘šπ‘› βˆ’ 2)
.
󡄨
3
3 󡄨2
π‘š+π‘›βˆˆ2Z, 󡄨󡄨󡄨(𝑧4 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝜁 βˆ’ 2) 󡄨󡄨󡄨
󡄨
π‘š2 +𝑛2 >0 󡄨
𝑀 = 𝛾 π‘œπ‘› πœ•π‘ƒ+
(53)
π‘“π‘œπ‘Ÿ 𝑓 ∈ 𝐿 𝑝 (𝑃+ ; C) , 2 < 𝑝, 𝛾 ∈ 𝐢 (πœ•π‘ƒ+ ; C)
is uniquely solvable in the Sobolev space π‘Š2,𝑝 (𝑃+ ; C) ∩
𝐢(𝑃+ ; C) by
2
(𝑧 βˆ’ 2)2 + (𝑧 βˆ’ 2) (𝑧4 βˆ’ 2) + (𝑧4 βˆ’ 2)
lim 6𝑖 (𝜁 βˆ’ 2) 󡄨
󡄨2
π‘§β†’πœ0
󡄨󡄨󡄨(𝑧 βˆ’ 2)2 + (𝑧 βˆ’ 2) (𝜁 βˆ’ 2) + (𝜁 βˆ’ 2)2 󡄨󡄨󡄨
󡄨
󡄨
2
Theorem 7. The Dirichlet problem fo the Poisson equation
𝑀𝑧𝑧 = 𝑓 𝑖𝑛 𝑃+ ,
and taking the limit in the second fraction for 𝑧 β†’ 𝜁0 ∈ πœ•4 𝑃
and since 𝜁 = 𝜁0
βˆ‘
πœ•4
𝑃+
on the boundary πœ•4 𝑃+ . Thus, equality (24) for the function
πœ‘(𝑧) is valid.
π‘§β†’πœ0 βˆˆπœ•π‘ƒ+
Here 𝑧 = 𝑧4 = 𝑧; then term (47) is
=
∫
(51)
Lemma 6. If 𝛾 ∈ 𝐢(πœ•π‘ƒ+ ; C), then
(𝑧 βˆ’ 2)3 βˆ’ (𝑧 βˆ’ 2)3
6𝑖 (𝜁 βˆ’ 2)2 󡄨
.
󡄨󡄨(𝑧 βˆ’ 2)3 βˆ’ (𝜁 βˆ’ 2)3 󡄨󡄨󡄨2
󡄨󡄨
󡄨󡄨
π‘š+π‘›βˆˆ2Z,
π‘š2 +𝑛2 >0
1
π‘§β†’πœ0 2πœ‹π‘–
on the boundary part πœ•3 𝑃.
βˆ‘
1
∫ 𝛾 (𝜁) πœ•]𝜁 𝐺1 (𝑧, 𝜁) π‘‘π‘ πœ ]
4πœ‹ πœ•π‘ƒ+
(50)
𝑀 (𝑧) = βˆ’
1
∫ 𝛾 (𝜁) πœ•]𝜁 𝐺1 (𝑧, 𝜁) π‘‘π‘ πœ
4πœ‹ πœ•π‘ƒ+
1
βˆ’ ∫ 𝑓 (𝜁) 𝐺1 (𝑧, 𝜁) π‘‘πœ‰ π‘‘πœ‚,
πœ‹ 𝑃+
(54)
where 𝜁 = πœ‰ + π‘–πœ‚.
Proof. We need to prove that (54) is a solution of the Poisson
equation in problem (53). The property of the Pompeiu
operator 𝑇𝑓(𝑧) = βˆ’(1/πœ‹) ∫𝐷(𝑓(𝜁)/(𝜁 βˆ’ 𝑧))π‘‘πœ‰ π‘‘πœ‚, described
in [13, 14] as πœ•π‘§ 𝑇𝑓(𝑧) = 𝑓(𝑧), provides a weak solution of 𝑀𝑧𝑧
󡄨󡄨
󡄨2
3
󡄨󡄨
(𝜁 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3 󡄨󡄨󡄨󡄨
󡄨
𝐺1 (𝑧, 𝜁) = log 󡄨󡄨 ∏
󡄨
σ΅„¨σ΅„¨π‘š+π‘›βˆˆ2Z (𝜁 βˆ’ πœ” βˆ’ 2)3 βˆ’ (𝑧 βˆ’ 2)3 󡄨󡄨󡄨
󡄨
󡄨
π‘šπ‘›
(55)
8
Journal of Complex Analysis
References
and the derivative
3 (𝑧 βˆ’ 2)
πœ•π‘§ 𝐺1 (𝑧, 𝜁) =
βˆ’
3
(𝜁 βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)
3
3 (𝑧 βˆ’ 2)2
3
(𝜁 βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3
βˆ‘
[
π‘š+π‘›βˆˆ2Z,
π‘š2 +𝑛2 >0
[
+
βˆ’
2
3 (𝑧 βˆ’ 2)2
(56)
3
(𝜁 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3
3 (𝑧 βˆ’ 2)2
3
3
].
(𝜁 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ 2) ]
In order to construct the Pompeiu-type operator we
consider the following term:
3 (𝑧 βˆ’ 2)2
3
(𝜁 βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3
1
2 (3 βˆ’ 𝑧) βˆ’ 𝜁
=
.
+
𝜁 βˆ’ 𝑧 (𝜁 βˆ’ 2)2 + (𝜁 βˆ’ 2) (𝑧 βˆ’ 2) + (𝑧 βˆ’ 2)2
(57)
Define a function
Μƒ (𝜁, 𝑧) =
𝑔
βˆ’
+
(𝜁 βˆ’ 2) + (𝜁 βˆ’ 2) (𝑧 βˆ’ 2) + (𝑧 βˆ’ 2)2
3 (𝑧 βˆ’ 2)2
3
(𝜁 βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3
βˆ‘
π‘š+π‘›βˆˆ2Z,
π‘š2 +𝑛2 >0
βˆ’
2 (3 βˆ’ 𝑧) βˆ’ 𝜁
2
(
3 (𝑧 βˆ’ 2)2
(58)
3
(𝜁 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3
3 (𝑧 βˆ’ 2)2
3
(𝜁 βˆ’ πœ”π‘šπ‘› βˆ’ 2) βˆ’ (𝑧 βˆ’ 2)3
)
which is analytic with respect to 𝑧 ∈ 𝑃+ ; then πœ•π‘§ 𝐺1 𝑧, π‘§π‘’π‘‘π‘Ž =
Μƒ (𝜁, 𝑧). Then, the equation π‘€π‘§πœ is rewritten as
1/(𝜁 βˆ’ 𝑧) + 𝑔
1
πœ•π‘§π‘§ {βˆ’ ∫ 𝑓 (𝜁) 𝐺1 (𝑧, 𝜁) π‘‘πœ‰ π‘‘πœ‚}
πœ‹ 𝑃+
1
1
Μƒ (𝜁, 𝑧)] π‘‘πœ‰ π‘‘πœ‚}
= πœ•π‘§ {βˆ’ ∫ 𝑓 (𝜁) [
+𝑔
+
πœ‹ 𝑃
πœβˆ’π‘§
(59)
= 𝑓 (𝑧) .
This provides the solution to the differential equation in
problem (53) in a weak sense. The boundary condition 𝑀 = 𝛾
on the boundary πœ•π‘ƒ+ holds because of Lemmas 5 and 6.
Conflict of Interests
The author declares that there is no conflict of interests
regarding the publication of this paper.
[1] H. Begehr and T. Vaitekhovich, β€œHarmonic Dirichlet problem
for some equilateral triangle,” Complex Variables and Elliptic
Equations, vol. 57, no. 2–4, pp. 185–196, 2012.
[2] H. Begehr and T. Vaitekhovich, β€œHow to find harmonic green
functions in the plane,” Complex Variables and Elliptic Equations, vol. 56, no. 12, pp. 1169–1181, 2011.
[3] H. Begehr and T. Vaitekhovich, β€œGreen functions, reections and
plane parqueting,” Eurasian Mathematical Journal (EMJ), vol. 1,
no. 1, pp. 17–31, 2010.
[4] H. Begehr and T. Vaitekhovich, β€œThe parqueting-reection principle for constructing Green functions,” in Proceedings of the
7th International Workshop β€œAnalytical Methods of Analysis and
Differential Equations” (AMADE ’12), pp. 11–20, Cambridge
Scientific Publishers, Minsk, Belarus, September 2012.
[5] H. Begehr and T. Vaitekhovich, β€œSchwarz problem in lens and
lune,” Complex Variables and Elliptic Equations, vol. 59, no. 1, pp.
76–84, 2014.
[6] S. Burgumbayeva, Boundary value problems for tri-harmonic
functions in the unit disc [Ph.D. thesis], Free University of Berlin,
Berlin, Germany, 2009, http://www.diss.fu-berlin.de/diss/
receive/FUDISSthesis000000012636.
[7] E. Gartner, Basic complex boundary value problems in the upper
half plane [Ph.D. thesis], Free University of Berlin, Berlin,
Germany, 2006, http://www.diss.fu-berlin.de/diss/receive/
FUDISSthesis000000002129.
[8] B. Shupeyeva, Some basic boundary value problems for
complex partial differentialequations in quarter ring and half
hexagon [Ph.D. thesis], Free University of Berlin, Berlin,
Germany, 2013, http://www.diss.fu-berlin.de/diss/receive/
FUDISSthesis000000094596.
[9] B. Shupeyeva, β€œHarmonic boundary value problems in a quarter
ring domain,” Advances in Pure and Applied Mathematics, vol.
3, no. 4, pp. 393–419, 2012.
[10] T. Vaitsiakhovich, Boundary value problems for complex partial
differential equations in a ring domain [Ph.D. thesis], Free
University of Berlin, Berlin, Germany, 2008, http://www.diss
.fu-berlin.de/diss/receive/FUDISSthesis000000003859.
[11] I. N. Vekua, Generalized Analytic Functions, International Series
of Monographs in Pure and Applied Mathematics, Pergamon
Press, Oxford, UK, 1962.
[12] Y. F. Wang and Y. J. Wang, β€œSchwarz-type problem of nonhomogeneous Cauchy-Riemann equation on a triangle,” Journal
of Mathematical Analysis and Applications, vol. 377, no. 2, pp.
557–570, 2011.
[13] H. Begehr and T. Vaitekhovich, β€œHarmonic boundary value
problems in half disc and half ring,” Functiones et Approximatio
Commentarii Mathematici, vol. 40, no. 2, pp. 251–282, 2009.
[14] Y. Wang, Boundary value problems for complex partial differential equations in fan shaped domains [Ph.D. thesis], Free
University of Berlin, Berlin, Germany, 2011, http://www.diss
.fu-berlin.de/diss/receive/FUDISSthesis000000021359.
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014