æ 2 CMAS1 Name: ........................................................................................................ Date: .......................................... 1. Find local extremes and intervals where the function f (x) = 10x3 − 30x2 is increasing, resp. decreasing. Z √ 4− x + 5 sin x dx. x 2. Evaluate the integral 3. Evaluate the integral (by parts) 4. Evaluate the integral (by substitution) Z (2x + 1)ex dx. Z cot 2x dx. 5. Find the 3rd order Taylor polynomial of the function f (x) = e2x at the point a = 0. 3 RESULTS: 1. f 0 (x) = 30x2 − 60x = 30x(x − 2), f is increasing on (−∞, 0i, and h2, ∞), decreasing on h0, 2i, lomax at x = 0, lomin at x = 2. 2. √ √ Z x 4− x 4 + 5 sin x dx = − + 5 sin x dx = x x Z x √ 1 1 4 · − x− 2 + 5 sin x dx = 4 ln |x| − 2 x − 5 cos x + c x Z 3. f 0 = ex , f = ex , gZ = 2x + 1, g 0 = 2 Z (2x + 1)ex dx = (2x + 1)ex − 2 ex dx = (2x + 1)ex − 2ex + c = (2x − 1)ex + c 4. Z cot 2x dx = 1 2 Z 2 cos 2x 1 dx = ln | sin 2x| + c sin 2x 2 5. f 0 (x) = 2e2x , f 00 (x) = 2 · 2e2x , f 000 (x) = 2 · 2 · 2e2x , f (0) = 1, f 0 (0) = 2, f 00 (0) = 4, f 000 (0) = 8, T3 (x) = 1 + 2x + 2x2 + 34 x3 4 CMAS2 Name: ........................................................................................................ Date: .......................................... 1. Find intervals of concavity and convexity and inflection points of the function x−2 f (x) = . x Z 2. Evaluate the integral (by parts) x ln x dx. Z 3. Evaluate the integral (by substitution) Z 4. Evaluate the definite integral 2 5. 4 cos4 x sin x dx. 1 dx. x3 Find the first partial derivatives of the function f (x, y) = x5 − 3y 3 + 4x4 y 2 . 5 RESULTS: 1. f 00 (x) = − x43 , f is convex on (−∞, 0), concave on (0, ∞), no inflection points 2. 2 f 0 = x, f = x2 , g = ln x, g 0 = x1 Z Z 2 x2 x 1 x2 x2 x ln x dx = ln x − · dx = ln x − +c 2 2 x 2 4 3. t = cos x, Zdt = − sin x dx 4 cos x sin x dx = − Z t4 dt = − t5 cos5 x +c=− +c 5 5 4. Z 4 2 4 2 2 2 3 1 dx = − 2 = − + = x3 x 2 16 4 8 5. ∂f ∂x ∂f ∂y = 5x4 + 16x3 y 2 , = −9y 2 + 8x4 y 3 6 CMAS3 Name: ........................................................................................................ Date: .......................................... 1. Find local extremes and intervals where the function f (x) = resp. decreasing. Z x − 3x2 √ + 5 sin x x 2. Evaluate the integral 3. Evaluate the integral (by parts) x−1 is increasing, x2 dx. Z (x − 1) sin x dx. Z 4. Evaluate the integral (by substitution) 1 dx. 5 − 2x 5. Find the 3rd order Taylor polynomial of the function f (x) = cos 3x at the point a = 0. 7 RESULTS: 1. f 0 (x) = 2−x x3 , f is decreasing on (−∞, 0), and h2, ∞), increasing on (0, 2i, lomax at x = 2. 2. x − 3x2 √ + 5 sin x x x2 x √ − 3 √ + 5 sin x dx = dx = x x Z √ √ 3 1 2 6 x3 − x5 − 5 cos x + c x 2 − 3x 2 + 5 sin x dx = 3 5 Z Z 3. f 0 = sin x, f = − cos x, gZ = x − 1, g 0 = 1 Z (x − 1) sin x dx = −(x − 1) cos x + cos x dx = (1 − x) cos x + sin x + c 4. Z 1 1 dx = − 5 − 2x 2 Z −2 1 dx = − ln |5 − 2x| + c 5 − 2x 2 5. f 0 (x) = −3 sin 3x, f 00 (x) = −9 cos 3x, f 000 (x) = 27 sin 3x, f (0) = 1, f 0 (0) = 0, f 00 (0) = −9, f 000 (0) = 0, T3 (x) = 1 − 92 x2 8 CMAS4 Name: ........................................................................................................ Date: .......................................... 1. Find intervals of concavity and convexity and inflection points of the function f (x) = 2x4 − 12x2 . Z 2. Evaluate the integral (by parts) ln x dx. 3. Evaluate the integral (by substitution) Z Z 4. Evaluate the definite integral 3 6x2 ex dx. 2 (6x2 − 1) dx. 1 5. Find the first partial derivatives of the function f (x, y) = 2x5 y 2 + 3x2 − 2y 3 . 9 RESULTS: 1. f 00 (x) = 24x2 − 24 = 24(x + 1)(x − 1), f is convex on (−∞, −1i and h1, ∞), concave on h−1, 1i, inflection at x = −1 and x = 1 2. f 0 = 1, f = x, g = ln x, g 0 = x1 Z Z ln x dx = x ln x − dx = x ln x − x + c 3. t = x3 , Zdt = 3x2 dx Z 3 2 x3 6x e dx = 2 et dt = 2et + c = 2ex + c 4. Z 2 1 2 (6x2 − 1) dx = 2x3 − x 1 = (16 − 2) − (2 − 1) = 13 5. ∂f ∂x ∂f ∂y = 10x4 y 2 + 6x, = 4x5 y − 6y 2
© Copyright 2026 Paperzz