EFG DETERMINATION IN MOHR SALT

EFG DETERMINATION IN MOHR SALT
[Fe(NH4)2(SO4)2·6H2O] APPLICATION OF THE
INTENSITY TENSOR TO THICK SINGLE
CRYSTALS
R. Zimmermann, R. Doerfler
To cite this version:
R. Zimmermann, R. Doerfler.
EFG DETERMINATION IN MOHR SALT
[Fe(NH4)2(SO4)2·6H2O] APPLICATION OF THE INTENSITY TENSOR TO THICK
SINGLE CRYSTALS. Journal de Physique Colloques, 1980, 41 (C1), pp.C1-107-C1-108.
<10.1051/jphyscol:1980118>. <jpa-00219668>
HAL Id: jpa-00219668
https://hal.archives-ouvertes.fr/jpa-00219668
Submitted on 1 Jan 1980
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
Colloque C1, supplkment au n " 1, Tome 41, janvier 1980, page C1-107
JOURNAL DE PHYSIQUE
EFG DETERMINATICN I N ElWR SALT [ F ~ ( N H ~ ) ~ ( s- o
APPLICATICN
~ o
OF M E INTENSITY TENSOR TO M I C K SINGLE
CRYSTALS
R. Zimmermann and R. Doerfler
PhysikaZisches Institub, 0-8520 ErZangen, W.-Germany.
1. I n t r o d u c t i o n
t e n s i t y t e n s o r . We find[5]
The e v a l u a t i o n of t h e angular dependence of
M6ssbauer l i n e i n t e n s i t i e s y i e l d s informat i o n on t h e e l e c t r i c f i e l d g r a d i e n t (EFG)
a t t h e nucleus. For 5 7 ~ quadrupolar
e
spect r a it i s r a t h e r s i m p l i f i e d by i n t r o d u c t i o n
of t h e i n t e n s i t y t e n s o r I ( p , q = x , y , z ) u , 2 1
P9
due t o t h e f a c t t h a t t h e e v a l u a t i o n of t h e
d a t a can be s e p a r a t e d i n t o two s t e p s . The
f i r s t s t e p i s c h a r a c t e r i z e d by f i t t i n g t h e
i n t e n s i t y t e n s o r t o t h e f r a c t i o n a l l i n e int e n s i t i e s I a s described by t h e formula
(no GKE)
(1
I=*
Ipqepeq
where ex,ey,ez a r e t h e d i r e c t i o n c o s i n e s of
t h e r r a y r e l a t i v e t o a c r y s t a l frame OxyZ.
The second s t e p i s t h e determination of t h e
p o s s i b l e EFG t e n s o r s . This s t e p i s s t r a i g h t
forward and r e a d i l y y i e l d s t h e manifold of
p o s s i b l e s o l u t i o n s f o r t h e EFG t e n s o r s (witho u t any f u r t h e r l e a s t squares analysis)b ,23
I n t h e p r e s e n t communication we want t o show
t h a t t h e s e p a r a t i o n of t h e e v a l u a t i o n i n t o
two s t e p s is s t i l l p o s s i b l e i n t h e case of
t h i c k absorbers.
where 1 %i s t h e t e n s o r of t h e c o f a c t o r s of
P9
1
t h e t r a c e l e s s i n t e n s i t y t e n s o r T =I --6
pq Pq 2 pq'
i . e . I $ ~ = Tyy T zz -v2yzl l&'~xzTyz-TzzTxy~ . *
Equations (1 ) ( 3 ) show t h a t t h e i n t e n s i t y
t e n s o r can be determined from t h e angular
dependenceof t h e absorption a r e a s . Usually
d i f f e r e n t absorbers w i l l be used f o r each
o r i e n t a t i o n . I n t h i s case t h e e f f e c t i v e
thickne,ss w i l l n o t be a simple f u n c t i o n of
t h e o r i e n t a t i o n . Therefore we might use t h e
following s e l f c o n s i s t e n t scheme f o r t h e d e termination of I
It i s based on t h e e x i pq'
s t e n c e of t h e i n v e r s e f u n c t i o n of S ( t I , a ) c3):
-
This expansioncanbeeasilydriventohigher
o r d e r . I f t h e p o l a r i s a t i o n were known t h e
dimensionless.area of t h e two quadrupolar
l i n e s , S1 und S2 would y i e l d t h e e f f e c t i v e
t h i c k n e s s and t h e f r a c t i o n a l i n t e n s i t y of
each l i n e
2. Thickness Correction and I n t e n s i t y T e n s o r
For a w e l l resolved absorption l i n e t h e d i mensionless alrea S (S=2A/ (fTlr) where A i s
t h e background c o r r e c t e d a r e a , f t h e r e c o i l l e s s f r a c t i o n of t h e source a n d f t h e natur a l l i n e width) i s given by [3]:
(2)
s=+ [ K ( ~ I ( I + ~ ) ) + K ( ~ I ~ I]I - ~ )
where t i s t h e e f f e c t i v e t h i c k n e s s of t h e
absorber, a i s t h e p o l a r i s a t i o n ( i - e . t h e
p o l a r i s a t i o n of t h e f - r a y , i f t h e absorber
were an e m i t t e r ) and K i s t h e s a t u r a t i o n
f u n c t i o n of t h e a r e a f o r a powder absorber
(a=O)[41. I n o r d e r t o c a l c u l a t e t h e a r e a S
we must express t h e p o l a r i s a t i o n by t h e in-
To s t a r t with we may assume t h a t t h e p o l a r i s a t i o n were zero. This y i e l d s t h e i n t e n s i t i e s I1 und T 2 , t h e angular dependence of
which determines t h e i n t e n s i t y t e n s o r v i a
equation ( 1 ) . With formula ( 3 ) we can c a l c u l a t e the polarisationof eachorientation
and i n s e r t them i n t o equ.(S) f o r a second
determination of t h e i n t e n s i t i e s Ik. We can
r e r u n t h i s scheme u n t i l s e l f consistency
i s achieved.
3. EFG Determination i n Mohr S a l t
Mohr s a l t , Fe (NH4) (SO4) 2' 6B20, has monoclin i c c r y s t a l symmetry. There a r e twoequival e n t l a t t i c e s i t e s per u n i t c e l l withsymme9
Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980118
JOURNAL DE PHYSIQUE
C1-108
t r y r e l a t e d by r e f l e c t i o n i n ( 0 1 0 ) . Due t o
i s r e a s o n a b l e , i n view of t h e d - e l e c t r o n
the c r y s t a l symmetrytheintensity tensor
d e n s i t y of t h e g r o u n d s t a t e h a v i n g t h e shape
h a s one p r i n c i p a l a x i s a l o n g t h e twofold
of a d i s t o r t e d c i g a r r e . I t i s r a t h e r d i f f e -
a x i s b and i s hence c h a r a c t e r i z e d by i t s
r e n t from what has been found e a r l i e r [73 and
p r i n c i p a l components and one a n g l e d e s c r i -
confirms t h e n e c e s s i t y of t h i c k n e s s c o r r e c t i o n
bing t o rotationaroundtheb-axis. I n F i g . 1
. . .
1.00,
Fig.2: Asymmetry
. r
t h r e e quadrupole s p e c t r a a r e shown o u t o f a
parameter 9 a n d E u l e r
s e r i e s of 5. I t can be v i s u a l i z e d t h a t t h e
75
.
0.50
g
Fig.1: Quadrupolar spect r a of s i n g l e c r y s t a l s
100
l.l!lLl
t o\
1
V
0.25
0
The o r i e n t a t i o n of t h e
the
d,
c
axes system of t h e
5
0 2 0 LO 60 80
JI = orctan lVyz/VxZl
r of
l o c a l EFG r e l a t i v e
t o the principal
p--,J
180-y
of Mohr s a l t a t 300K.
a n g l e s a(, 8,
2-
0 w
$-ray i s a s i n d i c a t e d .
i n t e n s i t y tensor a t
300K a s a f u n c t i o n
of t h e parameter?Y
which d e s c r i b e s t h e
10101
090
-
1
0
1
2
manifold of p o s s i b l e s o l u t i o n s i n monocli-
3
n i c c r y s t a l s . The Euler a n g l e s a r e d e f i n e d
vsloclty lmd5l
e f f e c t of o r i e n t a t i o n i s r a t h e r l a r g e . The
e v a l u a t i o n of t h e specera according t o sec-
a s i n [ll The a n g l e s B and d a r e i d e n t i c a l
w i t h t h e p o l a r a n g l e s a a n d Qof t h e p r i n c i p a l component
t i o n 2 y i e l d s t h e f o l l o w i n g p r i n c i p a l com-
v2.(loc'.
ponents of t h e macroscopic i n t e n s i t y t e n s o r
( z p a r a l l e l b-axis
of t h e u n i t c e l l ) at300K
= 0.273
I z z = 0.536
YY
The e r r o r i s about 0.004. Note, however,
t h a t I x x + I y y + I Z z = 3 / 2a c c o r d i n g t o t h e o r y [I>
The r o t a t i o n of t h e x-axis r e l a t i v e t o t h e
c - a x i s and v e r s u s t h e a - a x i s of t h e u n i t
Ixx = 0.691
I
c e l l i s 34.50+12hose d a t a c h a r a c t e r i z e t h e
a n g u l a r dependence of t h e i n t e n s i t i e s uniquely and should always be quoted a s a d i -
Fig.3:
r e c t r e s u l t of t h e experiment.
system of t h e i n t e n s i t y t e n s o r r e l a t i v e t o
For n o n o c l i n i c c r y s t a l s t h e e v a l u a t i o n of
t h e s l i g h t l y d i s t o r t e d water octahedron i n
~ r i e n t a ' t i o nof t h e p r i n c i p a l axes
t h e i n t e n s i t y t e n s o r y i e l d s a l i n e a r mani-
Mohr s a l t . One p o s s i b l e o r i e n t a t i o n of
f o l d of p o s s i b l e s o l u t i o n s t h e range of
v
which i s f o r t u n a t e l y very narrow f o r Mohr
s a l t . For a l l s o l u t i o n s t h e s i g n o f t h e qua-
~ ~ i s (shown.
~
References
[I]
i n Fig.2.
shown
r i v e d from X-ray a n a l y s i s [6].
s o r ( = macrpscopic EFG-tensor)
of t h e i n t e n s i t y t e n s o r . H e n c e l i t i s d i r e c t e d between t h e water molecules. T h i s r e s u l t
and Meth.
Munck and R.
Zimmermann, Miissbauer
Gruverman and C.W.
(1976) Eds.
S e i d e l , Plenum
P r e s s , New York, London
b]
Housley, R.W.
R.M.
Phys.Rev.
[4]
has been
p l o t t e d t o g e t h e r w i t h t h e water octahedron.
According t o Fig.2 t h e p r i n c i p a l component.
Ck>
V 2 s of t h e l o c a l EFG i s c l o s e t o t h e y-axis
E.
I.J.
I n Fig. 3 t h e
p r i n c i p a l axes system of t h e i n t e n s i t y ten-
Zimmermann, N u c l . f n s t .
R.
E f f e c t Methodology, Vol.10
c h a r a c t e r i z e d by a c e r t a i n o r i e n t a t i o n of
t h e s l i g h t d i s t o r t e d w a t e r o c t a h e d r o n a s de-
)
L2]
Each p o s s i b l e s o l u t i o n i s a l s o
t h e EFG ( c f . F i g . 2 ) which can be r e l a t e d t o
~
128 (1975) 537
d r u p o l e s p l i t t i n g i s n e g a t i v e . Theasymmetry
parametervariesbetween 0.6and0.8as
~
178
Grant and U.
Gonser,
(1969) 514
G.A.
Bykov and P.Z.
JETP
16
Hien, S o v i e t Phys.
(1963) 646
151 R. Zimmermann, t o be published
la
H.
A.M.
Montgomery, R.V.
Chastain, J. J . N a t t ,
Witkowksa, and E.C.
Acta c r y s t .
22
Lingafelter,
(1967) 775
171 R. I n g a l l s , K. Ono, and L. Chandler,
Phys.Rev.
172
(1968) 295