EFG DETERMINATION IN MOHR SALT [Fe(NH4)2(SO4)2·6H2O] APPLICATION OF THE INTENSITY TENSOR TO THICK SINGLE CRYSTALS R. Zimmermann, R. Doerfler To cite this version: R. Zimmermann, R. Doerfler. EFG DETERMINATION IN MOHR SALT [Fe(NH4)2(SO4)2·6H2O] APPLICATION OF THE INTENSITY TENSOR TO THICK SINGLE CRYSTALS. Journal de Physique Colloques, 1980, 41 (C1), pp.C1-107-C1-108. <10.1051/jphyscol:1980118>. <jpa-00219668> HAL Id: jpa-00219668 https://hal.archives-ouvertes.fr/jpa-00219668 Submitted on 1 Jan 1980 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Colloque C1, supplkment au n " 1, Tome 41, janvier 1980, page C1-107 JOURNAL DE PHYSIQUE EFG DETERMINATICN I N ElWR SALT [ F ~ ( N H ~ ) ~ ( s- o APPLICATICN ~ o OF M E INTENSITY TENSOR TO M I C K SINGLE CRYSTALS R. Zimmermann and R. Doerfler PhysikaZisches Institub, 0-8520 ErZangen, W.-Germany. 1. I n t r o d u c t i o n t e n s i t y t e n s o r . We find[5] The e v a l u a t i o n of t h e angular dependence of M6ssbauer l i n e i n t e n s i t i e s y i e l d s informat i o n on t h e e l e c t r i c f i e l d g r a d i e n t (EFG) a t t h e nucleus. For 5 7 ~ quadrupolar e spect r a it i s r a t h e r s i m p l i f i e d by i n t r o d u c t i o n of t h e i n t e n s i t y t e n s o r I ( p , q = x , y , z ) u , 2 1 P9 due t o t h e f a c t t h a t t h e e v a l u a t i o n of t h e d a t a can be s e p a r a t e d i n t o two s t e p s . The f i r s t s t e p i s c h a r a c t e r i z e d by f i t t i n g t h e i n t e n s i t y t e n s o r t o t h e f r a c t i o n a l l i n e int e n s i t i e s I a s described by t h e formula (no GKE) (1 I=* Ipqepeq where ex,ey,ez a r e t h e d i r e c t i o n c o s i n e s of t h e r r a y r e l a t i v e t o a c r y s t a l frame OxyZ. The second s t e p i s t h e determination of t h e p o s s i b l e EFG t e n s o r s . This s t e p i s s t r a i g h t forward and r e a d i l y y i e l d s t h e manifold of p o s s i b l e s o l u t i o n s f o r t h e EFG t e n s o r s (witho u t any f u r t h e r l e a s t squares analysis)b ,23 I n t h e p r e s e n t communication we want t o show t h a t t h e s e p a r a t i o n of t h e e v a l u a t i o n i n t o two s t e p s is s t i l l p o s s i b l e i n t h e case of t h i c k absorbers. where 1 %i s t h e t e n s o r of t h e c o f a c t o r s of P9 1 t h e t r a c e l e s s i n t e n s i t y t e n s o r T =I --6 pq Pq 2 pq' i . e . I $ ~ = Tyy T zz -v2yzl l&'~xzTyz-TzzTxy~ . * Equations (1 ) ( 3 ) show t h a t t h e i n t e n s i t y t e n s o r can be determined from t h e angular dependenceof t h e absorption a r e a s . Usually d i f f e r e n t absorbers w i l l be used f o r each o r i e n t a t i o n . I n t h i s case t h e e f f e c t i v e thickne,ss w i l l n o t be a simple f u n c t i o n of t h e o r i e n t a t i o n . Therefore we might use t h e following s e l f c o n s i s t e n t scheme f o r t h e d e termination of I It i s based on t h e e x i pq' s t e n c e of t h e i n v e r s e f u n c t i o n of S ( t I , a ) c3): - This expansioncanbeeasilydriventohigher o r d e r . I f t h e p o l a r i s a t i o n were known t h e dimensionless.area of t h e two quadrupolar l i n e s , S1 und S2 would y i e l d t h e e f f e c t i v e t h i c k n e s s and t h e f r a c t i o n a l i n t e n s i t y of each l i n e 2. Thickness Correction and I n t e n s i t y T e n s o r For a w e l l resolved absorption l i n e t h e d i mensionless alrea S (S=2A/ (fTlr) where A i s t h e background c o r r e c t e d a r e a , f t h e r e c o i l l e s s f r a c t i o n of t h e source a n d f t h e natur a l l i n e width) i s given by [3]: (2) s=+ [ K ( ~ I ( I + ~ ) ) + K ( ~ I ~ I]I - ~ ) where t i s t h e e f f e c t i v e t h i c k n e s s of t h e absorber, a i s t h e p o l a r i s a t i o n ( i - e . t h e p o l a r i s a t i o n of t h e f - r a y , i f t h e absorber were an e m i t t e r ) and K i s t h e s a t u r a t i o n f u n c t i o n of t h e a r e a f o r a powder absorber (a=O)[41. I n o r d e r t o c a l c u l a t e t h e a r e a S we must express t h e p o l a r i s a t i o n by t h e in- To s t a r t with we may assume t h a t t h e p o l a r i s a t i o n were zero. This y i e l d s t h e i n t e n s i t i e s I1 und T 2 , t h e angular dependence of which determines t h e i n t e n s i t y t e n s o r v i a equation ( 1 ) . With formula ( 3 ) we can c a l c u l a t e the polarisationof eachorientation and i n s e r t them i n t o equ.(S) f o r a second determination of t h e i n t e n s i t i e s Ik. We can r e r u n t h i s scheme u n t i l s e l f consistency i s achieved. 3. EFG Determination i n Mohr S a l t Mohr s a l t , Fe (NH4) (SO4) 2' 6B20, has monoclin i c c r y s t a l symmetry. There a r e twoequival e n t l a t t i c e s i t e s per u n i t c e l l withsymme9 Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980118 JOURNAL DE PHYSIQUE C1-108 t r y r e l a t e d by r e f l e c t i o n i n ( 0 1 0 ) . Due t o i s r e a s o n a b l e , i n view of t h e d - e l e c t r o n the c r y s t a l symmetrytheintensity tensor d e n s i t y of t h e g r o u n d s t a t e h a v i n g t h e shape h a s one p r i n c i p a l a x i s a l o n g t h e twofold of a d i s t o r t e d c i g a r r e . I t i s r a t h e r d i f f e - a x i s b and i s hence c h a r a c t e r i z e d by i t s r e n t from what has been found e a r l i e r [73 and p r i n c i p a l components and one a n g l e d e s c r i - confirms t h e n e c e s s i t y of t h i c k n e s s c o r r e c t i o n bing t o rotationaroundtheb-axis. I n F i g . 1 . . . 1.00, Fig.2: Asymmetry . r t h r e e quadrupole s p e c t r a a r e shown o u t o f a parameter 9 a n d E u l e r s e r i e s of 5. I t can be v i s u a l i z e d t h a t t h e 75 . 0.50 g Fig.1: Quadrupolar spect r a of s i n g l e c r y s t a l s 100 l.l!lLl t o\ 1 V 0.25 0 The o r i e n t a t i o n of t h e the d, c axes system of t h e 5 0 2 0 LO 60 80 JI = orctan lVyz/VxZl r of l o c a l EFG r e l a t i v e t o the principal p--,J 180-y of Mohr s a l t a t 300K. a n g l e s a(, 8, 2- 0 w $-ray i s a s i n d i c a t e d . i n t e n s i t y tensor a t 300K a s a f u n c t i o n of t h e parameter?Y which d e s c r i b e s t h e 10101 090 - 1 0 1 2 manifold of p o s s i b l e s o l u t i o n s i n monocli- 3 n i c c r y s t a l s . The Euler a n g l e s a r e d e f i n e d vsloclty lmd5l e f f e c t of o r i e n t a t i o n i s r a t h e r l a r g e . The e v a l u a t i o n of t h e specera according t o sec- a s i n [ll The a n g l e s B and d a r e i d e n t i c a l w i t h t h e p o l a r a n g l e s a a n d Qof t h e p r i n c i p a l component t i o n 2 y i e l d s t h e f o l l o w i n g p r i n c i p a l com- v2.(loc'. ponents of t h e macroscopic i n t e n s i t y t e n s o r ( z p a r a l l e l b-axis of t h e u n i t c e l l ) at300K = 0.273 I z z = 0.536 YY The e r r o r i s about 0.004. Note, however, t h a t I x x + I y y + I Z z = 3 / 2a c c o r d i n g t o t h e o r y [I> The r o t a t i o n of t h e x-axis r e l a t i v e t o t h e c - a x i s and v e r s u s t h e a - a x i s of t h e u n i t Ixx = 0.691 I c e l l i s 34.50+12hose d a t a c h a r a c t e r i z e t h e a n g u l a r dependence of t h e i n t e n s i t i e s uniquely and should always be quoted a s a d i - Fig.3: r e c t r e s u l t of t h e experiment. system of t h e i n t e n s i t y t e n s o r r e l a t i v e t o For n o n o c l i n i c c r y s t a l s t h e e v a l u a t i o n of t h e s l i g h t l y d i s t o r t e d water octahedron i n ~ r i e n t a ' t i o nof t h e p r i n c i p a l axes t h e i n t e n s i t y t e n s o r y i e l d s a l i n e a r mani- Mohr s a l t . One p o s s i b l e o r i e n t a t i o n of f o l d of p o s s i b l e s o l u t i o n s t h e range of v which i s f o r t u n a t e l y very narrow f o r Mohr s a l t . For a l l s o l u t i o n s t h e s i g n o f t h e qua- ~ ~ i s (shown. ~ References [I] i n Fig.2. shown r i v e d from X-ray a n a l y s i s [6]. s o r ( = macrpscopic EFG-tensor) of t h e i n t e n s i t y t e n s o r . H e n c e l i t i s d i r e c t e d between t h e water molecules. T h i s r e s u l t and Meth. Munck and R. Zimmermann, Miissbauer Gruverman and C.W. (1976) Eds. S e i d e l , Plenum P r e s s , New York, London b] Housley, R.W. R.M. Phys.Rev. [4] has been p l o t t e d t o g e t h e r w i t h t h e water octahedron. According t o Fig.2 t h e p r i n c i p a l component. Ck> V 2 s of t h e l o c a l EFG i s c l o s e t o t h e y-axis E. I.J. I n Fig. 3 t h e p r i n c i p a l axes system of t h e i n t e n s i t y ten- Zimmermann, N u c l . f n s t . R. E f f e c t Methodology, Vol.10 c h a r a c t e r i z e d by a c e r t a i n o r i e n t a t i o n of t h e s l i g h t d i s t o r t e d w a t e r o c t a h e d r o n a s de- ) L2] Each p o s s i b l e s o l u t i o n i s a l s o t h e EFG ( c f . F i g . 2 ) which can be r e l a t e d t o ~ 128 (1975) 537 d r u p o l e s p l i t t i n g i s n e g a t i v e . Theasymmetry parametervariesbetween 0.6and0.8as ~ 178 Grant and U. Gonser, (1969) 514 G.A. Bykov and P.Z. JETP 16 Hien, S o v i e t Phys. (1963) 646 151 R. Zimmermann, t o be published la H. A.M. Montgomery, R.V. Chastain, J. J . N a t t , Witkowksa, and E.C. Acta c r y s t . 22 Lingafelter, (1967) 775 171 R. I n g a l l s , K. Ono, and L. Chandler, Phys.Rev. 172 (1968) 295
© Copyright 2026 Paperzz