C4 1 Integrate with respect to x 3 b sin 4x c cos e cos (2x − 1) f 3 sin ( π3 − x) g sec x tan x 5 sec2 2x j cosec π 2 a ∫0 d ∫0 π 3 cos x dx 6 7 π 3 cos (2x − ) dx ∫ 1 4 x k π 4 ) h cosec2 x 4 sin 2 x l 1 cos 2 (4 x + 1) π 6 b ∫0 e ∫ π 3 π 4 π 2 sin 2x dx c ∫0 sec2 3x dx f ∫ 1 2 2 sec 2π 3 π 2 1 2 x tan x dx cosec x cot x dx tan2 x dx = tan x − x + c. a Use the identity for cos (A + B) to express cos2 A in terms of cos 2A. ∫ cos2 x dx. Find a ∫ sin2 x dx b ∫ cot2 2x dx c ∫ sin x cos x dx d ∫ sin x cos 2 x dx e ∫ 4 cos2 3x dx f ∫ (1 + sin x)2 dx g ∫ (sec x − tan x)2 dx h ∫ cosec 2x cot x dx i ∫ cos4 x dx Evaluate π 2 a ∫0 d ∫ π 4 2 cos2 x dx b ∫0 cos 2 x sin 2 2 x e ∫0 π 4 π 6 dx π 4 cos 2x sin 2x dx c (1 − 2 sin x)2 dx f ∫ π 2 π 3 tan2 ∫ π 3 π 6 sec2 x cosec2 x dx 1 2 x dx a Use the identities for sin (A + B) and sin (A − B) to show that sin A cos B ≡ b Find 8 x cot d sin (x + a Express tan2 θ in terms of sec θ. b Find 5 1 4 x Evaluate b Show that 4 1 2 a 2 cos x i 2 Worksheet D INTEGRATION ∫ 1 2 [sin (A + B) + sin (A − B)]. sin 3x cos x dx. Integrate with respect to x a 2 sin 5x sin x b cos 2x cos x c 4 sin x cos 4x Solomon Press d cos (x + π 6 ) sin x
© Copyright 2026 Paperzz